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Abstract—Solid-state drives (SSDs) made of flash memory
are widely utilized in enterprise servers nowadays. Internally,
the management of flash memory resources is done by an
embedded software known as the flash translation layer (FTL).
One important function of the FTL is to map logical addresses
issued by the operating system into physical flash addresses. The
efficiency of this address mapping in the FTL directly impacts
the performance of SSDs. In this paper, we propose a hybrid
mapping FTL scheme, called Aggregated Data movement Aug-
menting Predictive Transfers (ADAPT). ADAPT observes access
behaviors online to handle both sequential and random write
requests efficiently. It also takes advantage of locality revealed
in the history of recent accesses to avoid unnecessary data
movements in the required merge process. More importantly,
by these mechanisms, ADAPT can adapt to various workloads
to achieve good performance. Experimental results show that
ADAPT is as much as 35.4%, 44.2% and 23.5% faster than
a state-of-the-art hybrid mapping scheme, a prevalent page-
based mapping scheme, and a latest workload-adaptive mapping
scheme, respectively, with a small increase in space requirement.

I. INTRODUCTION

The access to secondary storage of enterprise servers varies
significantly. As flash-based solid-state drives (SSDs) start
replacing traditional hard disks, an efficient and adaptive al-
gorithm on flash management that takes advantage of runtime
access behaviors is likely to achieve better performance.

There are two types of flash memory, NOR flash and NAND
flash. The latter has a higher density and is cheaper, making it
more prevalent today. Unlike NOR flash, NAND flash is not
byte addressable. Read and write operations on a NAND flash
chip must be performed in units of pages. Each page has a data
area for storage and a spare area for essential information [16].
However, data in a page cannot be written (“programmed”)
unless the block it is in is first erased [22]. A block is the unit
for an erasure and contains multiple pages [6]. Such out-of-
place data updating is a primary concern on flash management,
especially the logical to physical address mapping.

The management of flash memory is performed by an
embedded software called the flash translation layer (FTL).
The FTL services requests from the upper-level file system
and performs actions at the lower-level flash memory. Its
basic functionalities include address mapping, wear leveling
and bad block management. Among these, the mapping from
logical address to physical address has the most impact on

the performance due to its frequent use, making it an ideal
candidate for optimization.

Existing FTLs, like BAST [8] and FAST [13], target the
address mapping of embedded systems. With the widespread
use of SSDs in enterprise servers, workload characteristics of
general-purpose computing systems have to be considered. For
example, FAST’s successor FASTer [15] focuses on online
transaction processing (OLTP) systems. I/O requests of OLTP
systems are generally random and small with a handful of data
highly accessed.

Besides OLTP, however, there are also other important
classes of I/O workloads. For instance, mail and media servers
serve contents that may be fairly large. These types of work-
loads differ from OLTP in that accesses are less skewed and
generally more data need to be written or read in a request;
sequential and random write requests may mix in different
ratios and form dynamic access patterns, which requires FTLs
to adapt to them efficiently for high access performance.

Several FTLs have been proposed to exploit the access
behaviors of workloads. The above mentioned FASTer targets
OLTP systems. LAST [14] separates sequential and random
writes by the number of pages to be accessed in a request, and
deals with them differently. Both of them are hybrid mapping
scheme [14] [23]. Hybrid mapping is a combination of basic
page mapping and block mapping by dividing all physical
blocks into the data space, log space and free block pool.
Each logical block is block-mapped to a block in data space.
Block mapping is not flexible when updating data to a page
because of the coarse granularity of mapping unit and out-
of-place updating. Therefore, the log space is maintained to
temporarily hold updates using page mapping. Newly-arrived
updates will be put into log pages. When no clean page is left
in the log space, a victim log block will be selected and merged
with corresponding data blocks. After merging, the victim is
erased and returned to the free block pool. Another clean block
will be allocated to replenish the log space. During a merge in
FASTer, a page containing valid data is given a second chance
by being retained inside the log space.

In this paper, we propose a novel hybrid mapping scheme
called Aggregated Data movement Augmenting Predictive
Transfers (ADAPT). It is a workload-dependent adaptation
heuristic that considers access behaviors at runtime in its
maintenance of the log space. The main contributions of this
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TABLE I
I/O REQUEST SIZE OF VARIOUS WORKLOADS

Trace Small Medium Large
TPC-C 20 99.17% 0.83% 0.00%
SPC1 86.58% 10.63% 2.79%
MSR-hm 0 76.70% 13.72% 9.58%
MSR-mds 0 72.35% 19.79% 7.86%
MSR-prn 0 79.46% 8.88% 11.66%
MSR-prxy 0 87.91% 6.82% 5.27%
MSR-rsrch 0 68.22% 25.04% 6.74%
MSR-stg 0 72.33% 18.62% 9.05%
MSR-ts 0 67.81% 25.87% 6.32%
MSR-web 0 67.50% 23.85% 8.65%

paper, and also main components of ADAPT, are:
• An online algorithm adaptively partitions the log space so

as to efficiently handle requests that are a mix of sequen-
tial and random writes. The log space is usually divided
into a sequential area and a random area for sequential
or random writes respectively. Unlike previous designs
using fixed sizes, ADAPT will monitor the processing
of write requests at runtime and dynamically adjust the
capacities of the two areas.

• A merge-or-move decision procedure based on a predic-
tion mechanism is employed in the random area of the
log space. This mechanism considers the recent history
of writes and will compute the likelihood of a page being
updated in the near future. The basic idea is that during
a merge, if a page is found to have been written recently,
it will be given a second chance to stay in the log space.
Otherwise, it will be directly merged.

• Sometimes, it may turn up that most pages in the log
block to be merged are valid. During the merge, our
aggregated data movement scheme will give the entire
block a second chance instead of processing pages one at
a time, and simply append the block to the end of random
area of the log space.

These features complement each other, and enable ADAPT
to outperform previous designs, as will be shown in our
experiments.

The rest of this paper is organized as follows. Section 2
presents access patterns of various workloads and background
of hybrid mapping. Section 3 describes the details of ADAPT.
Section 4 shows experimental results with Section 5 presenting
some related works. Section 6 will conclude this paper.

II. MOTIVATION AND BACKGROUND

A. Motivation

Workload characteristic is an important factor in the design
of FTL. For instance, FAST paid more attention to random
writes using only one log block for sequential writes [13].
FASTer was designed mainly with OLTP systems in mind [15].
Typical OLTP workloads are dominated by small and random
I/O requests. A high-level access skewness exists on a handful
of pages with other pages rarely touched.

However, besides OLTP, there are other types of server
workloads. Table I shows that the variation in I/O request

sizes is significant. Traces in Table I are from [20], [24]
and [18], collected in various environments. Here we define
a small request as one that is 4KB (2 pages with 2KB per
page), or less. This same definition was used by previous
works [14] [15]. A medium request is one whose size is smaller
than 16KB (8 pages), and any request that is larger is classified
as large. For preliminary analysis, we roughly deem large
requests to be sequential, which agrees with LAST [14]. TPC-
C 20 in Table I is a typical OLTP workload which hardly
has sequential writes but is almost full of random requests
in all 7.7 million write records. Comparatively, MSR-prxy 0,
one that was taken in a proxy server and also has a large
amount of small writes, contains a lot of large requests. For
non-OLTP workloads in Table I, sequential writes compose
about 3% to 12% of all requests. If these requests are handled,
for example, with one log block as in FAST, there will be high
capacity misses that can badly degrade the performance. For
small random requests, since they are frequent and interpose
with sequential writes, how to satisfy them is always attractive
in the development of FTLs. One key insight of our design
is that the FTL should use an intelligent strategy to deal with
workloads that are mixed with sequential and random writes.

Logical Block Number Page Number Page Offset

Page Mapping Table

Physical Block Number Page Number Page Offset

Logical Block Number Page Number Page Offset

Block Mapping Table

Physical Block Number Page Number Page Offset

(a) Page Mapping

(b) Block Mapping

Fig. 1. Page mapping and block mapping

B. Background

Hybrid mapping is the preferred mechanism in FTL design.
While the logical-to-physical block mapping is used as the ba-
sis, page mapping is employed to manage temporary updates.
Fig. 1 sketches the two basic mapping schemes.

Typically, the log space is about 3% of all space [12] [15].
It is usually partitioned into a sequential area for sequential
writes and a random area for random writes. FAST uses one
log block for its sequential area while LAST has a fixed
number of blocks. They also have methods to decide whether a
request is sequential or random. When a write request arrives,
the FTL first checks whether the page in the mapped data block
is clean. If not, a log page will be allocated to accept the data.
The old copy will be invalidated. The relationship between
the logical page and the log page is recorded in the log page
mapping table. Fig. 2 is adopted from [14]. In Fig. 2 a square
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Fig. 2. Three types of merge

is a page and a rectangle of four squares represents a physical
block. The number in each square is the logical page number
that it maps to. Data in a shaded page are invalid. In Fig. 2(c),
logical page 2 is mapped to data block D2 but cannot be
rewritten directly. A page in log block L3 has to be allocated.
Successive updates can be handled by more log pages, and
mapping entries are changed accordingly. In Fig. 2(c), three
log pages in L2 and L3 are used for logical page 4. If all
pages of log space are exhausted, a merge procedure must be
performed to make space.

Fig. 2 shows three types of merge in FAST. Switch and
partial merge have lower overheads, and are expected in the
sequential area. For a switch merge (shown in Fig 2(a)), the
log block contains contiguous valid data from the same logical
block. It can therefore be simply switched to data space. In
a partial merge, the log block will also replace its relevant
data block but some valid data in current data block have
to transferred to it first, as shown in Fig 2(b). Full merge is
more complicated. FAST is a fully associative hybrid mapping
scheme, which means a log block in the random area is not
bound to any one data block like BAST but shared by all.
Thus, a full merge is costly because each page with valid data
in the log block must be (potentially) merged with a different
data block. This requires many writes and erasures. FAST and
FASTer organize the random area in a FIFO queue (that they
called “round-robin”), and the victim for the full merge will
be the one at the head of the random area.

A recent proposal, WAFTL [25], considers the issue of
workload adaptation. It also combines two basic mapping
schemes, but differs from hybrid mapping in its management
on buffer space and data blocks. It has a page-mapping buffer
zone like the log space to hold updates, and data blocks are
partitioned into Block-level Mapping Blocks (BMB) and Page-
level Mapping Blocks (PMB). When the buffer zone is full, a
data migration procedure will be called to transfer the data out.
WAFTL claims to be workload-adaptive by sending buffered
data to either BMB or PMB upon their access frequencies:
highly accessed will be sent to PMB and others will be put in

BMB. Unlike merging a log block, data migration will flush
all data in buffer zone and completely reconstruct the space.
It is quite costly to move so many data at a time.

III. OUR PROPOSED FTL SCHEME: ADAPT

A. Overview of ADAPT

In this section, we will describe ADAPT. It is a fully-
associative hybrid mapping FTL that also utilizes log space
to temporarily hold updates. However, ADAPT manages log
space in a novel way to adapt to various workloads. Essen-
tially, it adjusts the partitioning of the log space in response to
sequential and random write requests met during runtime. By
observing online access behavior, ADAPT also avoid prema-
ture merges by predicting the likelihood of future references.

B. Online Adaptive Partitioning of the Log Space

How to efficiently handle sequential writes and random
writes is an important issue in FTL design. As mentioned
before, the log space is partitioned into the sequential and
random areas. Hybrid mapping schemes always expect sequen-
tial writes to cause switch or partial merge. FAST utilizes one
log block as the sequential area [13] while LAST considers
multi-tasking environments and employs a fixed number of log
blocks to handle sequential requests [14]. On one hand, using
one log block tends to result in block thrashing. On the other
hand, since the system workload changes from time to time,
it is also not optimal to reserve a fixed number of blocks.

Before presenting our design, let us first revisit the issue
of identifying sequential writes. FAST uses two conditions
to direct a write request to the sequential log block: (1) if
its page number is zero within the logical block (data that
the log block holds at present will be merged), or (2) the
logical block number of the write request is the same to that
of the sequential log block and the pages to be written can
be simply appended in the log block. The first condition is
likely to incorrectly label a random request beginning from
page zero to be a sequential one, and may result in frequent
merges. In LAST, besides using more blocks for sequential
writes to avoid such merges, it also takes into account the size
of a write request: if a request writes data to a number of
pages, it will be a sequential request. LAST was implemented
in PCs of Windows XP operating system, so its threshold was
set to be 4KB (2 pages) [14]. For ADAPT, however, we do
not use an absolute number of pages accessed in a request
to determine whether it is sequential or random. Instead, we
will adaptively change the threshold. How this is done will be
described below.

We shall now present our area partitioning scheme of
ADAPT. Unlike FAST or LAST, the sizes of the sequential
and random area are adjusted dynamically. The key idea is
that, at runtime, if performance suffers from having insufficient
sequential log blocks, blocks will be transferred from the
random area to the sequential area, and vice versa. To do these,
ADAPT maintains two variables in a time interval. The first



is the switch and partial merge ratio,

δ =
count of switch and partial merges

count of sequential log block allocation
.

This is the count of switch and partial merges over all block
allocations from the sequential area. Another one is the full
merge ratio,

ϕ =
count of merged pages in full merges

count of full merge
.

This is the average number of merged pages in the full merges
occurring in the random area.

Algorithm 1: Adjustment of Log Space in ADAPT

1 begin
2 reqst count ++;
3 if (reqst count < INTERVAL ) then
4 return;
5 end
6 else
7 reqst count := 0;
8 if (δ > 0.4) then
9 victim := GetHeadofRandArea(void);

10 Merge(victim, RW);
11 f ree blk := AllocFreeBlock(void);
12 AddtoSeqArea( f ree blk);
13 end
14 else if (ϕ ≥ BLOCK SIZE

2 ) then
15 victim := GetVictimofSeqArea(void);
16 Merge(victim, SW);
17 f ree blk := AllocFreeBlock(void);
18 AddtoRandArea( f ree blk);
19 end
20 return;
21 end
22 end

δ and ϕ represent the situations of recent write requests
in a certain period inside the sequential and random areas,
respectively. δ varies from 0 to 1. A larger δ means a higher hit
rate of block allocation in sequential area. Evidently enlarging
the capacity of sequential area is likely to be profitable. Based
on our empirical observations, if δ > 0.4 we will do so. On the
other hand, a smaller δ implies more requests were incorrectly
treated as sequential, and hence the need for sequential log
blocks is not high. ϕ is an integer between 0 and the number
of pages in a block, typically 64 [6]. A larger ϕ means that
on average a full merge has to process more valid pages.
So having more blocks in the random area may alleviate
the pressure. Experiments show that it is time to enlarge the
random area when ϕ ≥ 32, which means on average more than
half a block have to be processed in a full merge. A smaller
ϕ implies random requests are handled well by the current
random area size, and possibly some blocks can be transferred
to sequential area. By measuring δ and ϕ , ADAPT can adjust
the utilization of blocks in both areas. To avoid significant

fluctuation on performance, ADAPT will transfer one block
every time between two areas. If δ suggests increasing the
sequential area, ADAPT will select a victim block in the
random area, merge it with its relevant data blocks and reclaim
it. A clean block will be allocated to be a sequential log block
then. The random area can be adjusted likewise.

In ADAPT, the enlargement of the sequential area has
a higher priority than that of the random area. That is to
say, ADAPT will consider δ before ϕ . There are several
reasons for this. Firstly, switch and partial merges are less
expensive. Secondly, sequential log blocks are managed using
block mapping, which consumes less RAM space. Thirdly,
the utilization of random log blocks can be optimized with
ADAPT’s predictive transfer and aggregated movement com-
ponents, which will be covered in next few subsections.

Unlike LAST’s predefined 4KB threshold, the threshold of
ADAPT to direct a request to the sequential or random area is
also adaptive. In a recent interval, a very small δ , say less than
0.1, means that the sequential area was not very effective. This
will cause the threshold to be changed. From our observation
on enterprise workloads, over a long period of time, sequential
writes tend to access a similar number of pages, either a
handful (around 2 pages) or a large number (about 32 pages).
Thus, if the threshold is very low, ADAPT will increase it
to a large value. Otherwise, the threshold will be decreased.
This simple adjustment is quite easy to implement. From our
experiments, however, we saw that a latency might be needed
to gradually adapt to a specific workload.

Algorithm 1 shows main steps in adjusting the log space.
The adjustment is activated every INTERVAL requests (line
2 to 5). The impact of the interval length will be discussed
in Section 4. We check δ first at line 8. If it is not positive,
we will check ϕ at line 14. The partitions are then adjusted
as described above. A victim block is picked from one area
and merged with its data blocks (line 9 to 10 or line 15 to
16). A free block will be allocated from the free block pool
to replenish the other area (line 11 to 12 or line 17 to 18).
The way to select a victim in the random area is the same as
a common merge procedure. ADAPT organizes the random
area as a FIFO queue like FAST and FASTer, and the head
will be the victim each time (line 9). For the sequential area,
however, it is better to find a block that will make a full merge
or partial merge, which is computed by the function at line 15.

Note that our adaptation is different from previous
works [19] [10]. They adapt by changing the degree of
associativity between the random log space and the data space.
In other words, a log block may be changed from being
shared by many data blocks to being bound to one. ADAPT’s
adaptivity focuses on the partitioning of log space to service
either type of write request efficiently. ADAPT also differs
from WAFTL whose adaptation is in the transfer of data from
the buffer zone to either the page or block mapping areas of
the data space.



C. Predictive Transfers

The second chance scheme is the main feature of FASTer.
FASTer gives valid data in the victim log block a second
chance thereby preventing premature merges. With the sec-
ond chance scheme, valid data from the head block of the
random area will be moved to the block at the rear of the
queue. FASTer performs well for OLTP systems because
they frequently access little data from some very hot logical
pages and not too many data would be left in the victim log
block for movement. For other classes of workloads, however,
such movements seem wasteful. While the second chance
scheme can reduce the number of erasures, it may significantly
increase the amount of data copying. Table II shows typical
latencies of write and erasure of NAND flash [6]. It can be
deduced that moving five pages will reverse the gain of an
avoidance of an erasure. This is especially detrimental if a
page given a second chance turn out not to be accessed during
the time it is in the log space. This leads to the idea that if we
can predict the likelihood whether a page in the random area
will be used, we can make a better decision on whether to
delay merging this page or not. In general, a page at the front
of the random area that is likely to be accessed again should
be given a second chance in a merge process. Otherwise, if it
is unlikely to be updated in the near future, then it should be
directly merged.

TABLE II
LATENCIES OF LARGE-BLOCK SLC NAND FLASH

Read Write Erase
130.9 µs 405.9 µs 2 ms

(2KB) (2KB) (128KB)

As with most forms of prediction, the principle of temporal
locality can be applied here. Particularly, a page that has been
written recently is most likely to be updated again. We utilize
the historical write information of a page to predict its future
access possibility. Hence, on deciding if a page should be
given a second chance, we shall examine whether its data were
recently updated.

The data structure for prediction of ADAPT is the historical
access table (HAT). HAT records a history of recent writes to
logical pages at runtime. It is a hashed queue maintained in
RAM. The key used for hashing is the logical base address
in a write request, i.e., the concatenation of the logical block
and page numbers. Each entry consists of the key and the
number of pages that was written within a historical request.
Hashing allows for queries about the existence of an entry
to be answered quickly. Entries in the HAT are updated
dynamically and managed via a queue discipline. On a coming
write request, if its logical base address and the size to be
accessed are already cached in the HAT, it will be moved to
the rear; otherwise, a new entry will be enqueued in the HAT.
If the HAT is already full, the entry at the head of the queue
(the least recent one) will be deleted to make room for the new
entry. In this way, we maintain a history of the most recent
writes for the purpose of prediction.

The overhead of HAT is not significant. It is resident in

RAM together with address mapping tables, thus having a
much shorter access latency than flash memory. The HAT does
not need to be persistently stored since access behaviors are
always changing and not correlated over a long time. The HAT
is also small. As shown in Fig. 3, each entry of the HAT has
two fields, the base page number (4 bytes), and the number
of pages accessed (2 bytes). Thus, 1KByte of RAM can hold
about 170 requests. Our experiments actually showed that a
1KByte HAT could perform well. More discussions of the size
of HAT will be given in Section 4 with various configurations.
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Fig. 3. Predictive transfer with historical access table

Fig. 3 gives an instance of merging with prediction. A
rectangle is a physical block, and each has four squares for
four pages. The number in a physical page represents the
mapped logical page. An ‘X’ means invalid data that will be
skipped in merging. Suppose the random area space runs out
of free pages. A merge procedure will be performed. Firstly,
a new block (Ln) will be allocated from the free block pool,
and enqueued to the rear of the random area. In return, block
L0 will be removed and examined. In Fig. 3, there are two
valid pages in block L0, namely page 0 and page 3. Page 3
corresponds to logical page 9. Its access record exists in the
HAT, and so it is given a second chance, i.e., it will be copied
into block Ln. However, the record for page 0 (which maps to
logical page 17) cannot be found in the HAT, and it will be
merged immediately with its relevant data block.

ADAPT’s predictive transfer is different from the adaptive
merge of a recently proposed hybrid mapping FTL named
MAST [23]. MAST uses 2D-striping to access data. When a
merge has to be performed, MAST will also migrate valid log
pages to other log blocks. However, in merging or migrating
a log page, MAST will consider the logical block it is related
to. If that logical block is cold, and its total number of related
log pages is bigger than a predefined threshold, the log page
will be merged. Otherwise it will be migrated. In other words,
MAST’s criterion is the number of log pages that a logical
block is using, while ADAPT utilizes the recent access history
of the logical page of the corresponding log page.



D. Aggregated Data Movement
As we have observed in our experiments, with the workloads

from media and file servers, the victim log block to be merged
may still have a lot of valid pages. I/O requests of non-OLTP
systems may not be that small, as is shown in Section 2.
Especially in multi-tasking environments, the access to storage
may be switched to other applications frequently, thereby
leaving many log pages valid even when they are to be merged.
It is inefficient to process these pages one at a time. Therefore,
we propose an aggregated data movement scheme to solve the
problem. The example in Fig. 4 will be used to explain this
scheme. When the random area runs out of free pages, the
merge procedure will be called. Unlike before, we shall first
examine the two blocks at the head of the random area, i.e.,
L0 and L1 in Fig. 4. If the number of valid pages in L0 does
not exceed an aggregated move threshold, τ , or if both L0
and L1 exceed τ , we will just merge L0 with its relevant data
blocks using the predictive transfer described above, i.e., a
situation similar to Fig. 3. The only remaining case is when
L0 exceeds τ , but L1 does not. Then we will instead merge
L1, but move L0 to the back of the log space, just ahead of
the newly allocated block that is resulted from the merging of
L1, as shown in Fig. 4.
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Here we only consider two blocks at the front of random

area. It is because scanning too many blocks will cause
performance degradation. Another reason is that we do not
want to change too much the FIFO manner of random area.
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Now that most pages in a log block can be valid, it is also
possible that all pages in a block become invalid even though
it has not reached the head. FAST and FASTer leave such
blocks there until they are merged. To merge a block without
valid pages is trivial: erase it and allocate a clean one.

Unlike previous hybrid mapping, ADAPT proposes to early
reuse the space of blocks that are full of invalid pages. Note
that each log block’s number of valid pages is recorded. If this
number of a block decreases to zero, ADAPT will immediately
remove it from log space and allocate another clean one to the
random area. Fig. 5 gives an example. L1 is detached and Lx is
appended to bring in more free space. The performance then
benefits from the early reuse of log blocks (ERL), because
merging the current head like L0 in Fig. 5 can be delayed
since free space has been made by Lx. Yet the time for blocks
behind L1 to be merged is not affected by the removal of
L1. Take, for example, L2, which would be merged when two
blocks that are allocated for merging L0 and L1 are exhausted
at the rear. Now it only waits for L0’s replenishing block to
be used, but Lx has been introduced for L1. Thus, L2 still has
to wait for two blocks’ exhaustion to be merged. However,
the effect of ERL cannot be very significant. The first reason
is that switch among multi-tasks will scatter data across log
space and there is little chance to find a block without any
valid data. Secondly, one log block of pages help marginally
to satisfy continuous allocation requests.

To support ADAPT’s aggregated data movement and ERL
modules, we need to know the number of valid pages in each
log block. We assume that this is also stored in a table in
RAM. It is possible to store this information in the spare area
of blocks, but the access latency will be longer. The space
requirement for such a table is also comparatively low. A block
typically comprises of 64 pages, and one byte is sufficient
to store the total number of valid pages. Since log blocks
typically take up 3% of the overall capacity, an xGBytes flash
SSD with the standard 128KBytes large block configuration,
will require a total of 0.24xKBytes of RAM to store the per-
block valid page counts. A 64GBytes SSD, for instance, will
require a table of less than 16KBytes. This is quite small
compared to the main block mapping table which is about
2MBytes (assuming each entry has a 3-byte physical block
number and one byte for mapping status).

The ADAPT FTL scheme that we propose consists of the
online adaptive partitioning of log space, the predictive trans-
fer, the aggregated data movement, and ERL described above.
We shall now give more details about the implementation of
ADAPT, especially during the full merge to make decisions.

E. Merge or Move Decision Procedure

Algorithm 2 outlines the decision making procedure that is
executed in the merge procedure in ADAPT. It first locates
the victim log block to be merged, the new head and rear
of random area, as well as the numbers of valid pages of the
victim and the head block (line 2 to line 6). At line 7, it checks
whether aggregated movement needs to be performed. If so,
it will append the block to the rear of the random area (line
9), set the corresponding flag (line 8), and attempt to merge
the next block to create the space (line 10 to 11).

If the condition for aggregated movement is not met, each
valid page of the log block will be checked (line 14 to 28). At
line 19, the HAT is queried to see whether the page has been



Algorithm 2: Merge decision procedure in ADAPT

1 begin
2 victim := GetHeadofRandArea(void);
3 head log blk := RenewRandAreaHead(void);
4 rear log blk := GetRearofRandArea(void);
5 vp no vic := GetValidPageNo(victim);
6 vp no hd := GetValidPageNo(head log blk);
7 if ((vp no vic≥ τ) && (vp no hd < τ)) then
8 AG MOV := true;
9 Insert(rear log blk, victim);

10 new head := RenewRandAreaHead(void);
11 MergeBlock(head log blk, AG MOV);
12 return;
13 end
14 else
15 page no := 0;
16 while (page no < BLOCK SIZE) do
17 state := GetPageState(victim, page no);
18 if (state == VALID) then
19 f lag := IsHATHit(victim, page no);
20 if ( f lag == true) then
21 MoveData(victim, page no,

rear log blk);
22 end
23 else
24 MergePage(victim, page no);
25 end
26 end
27 page no++;
28 end
29 end
30 return;
31 end

accessed recently. If so, it will be moved to the block at the
rear (line 21). Otherwise, it will be merged with corresponding
data block (line 24).

Note that in the implementation, we have two levels of
merges, one at the block level (line 11) and another at the page
level (line 24). This adds flexibility to resource management
at runtime.

IV. EXPERIMENTS

A. Configurations and Assumptions

In this section we will evaluate the effectiveness of ADAPT
using a number of workloads. The experiments were con-
ducted using the FlashSim [9] simulator. We implemented
FASTer, DFTL [4], WAFTL and ADAPT in FlashSim for
comparison. DFTL is a demand-based page mapping scheme.
All the parameters of the NAND flash, including the latencies
of read, write and erasure which are shown in Table II, were
obtained from [6].

To assess ADAPT’s performance on various workloads, we
utilized 10 traces from three sources. SPC1 is a trace that was

collected at a large financial institution [20]. Another trace is a
typical OLTP trace from the TPC-C database benchmark [24],
TPC-C 20. The other traces are the MSR-series from Mi-
crosoft’s data centers [18]. The I/O characteristics of these
traces have been presented in Table I. We believe these traces
are representative of various workload scenarios. The number
of write requests in these traces is at least a million. We did
not use other shorter traces found in some previous works.

There are also several assumptions in our experiments.
Firstly, as with earlier works [15], we assume that the FTL has
sufficient DRAM buffer to hold all mapping tables required by
FASTer. DFTL and WAFTL were configured to have the same
capacity of RAM as FASTer. ADAPT needs less RAM space
than FASTer for mapping tables because more log blocks are
managed using block mapping for sequential writes. Secondly,
the traces used were collected from different machines. There-
fore, we had to assigned a capacity configuration to each one
based on their access patterns and lengths so that they are of
more or less the same scale.

We evaluated each scheme by the elapsed time to complete
the simulation in FlashSim, together with counts of write
and erasure. FlashSim has a module that accumulates the
time caused by reads, writes and erasures as well as bus
competitions on the chip. However, because the absolute value
varies significantly with each trace, we chose to present the
results in a normalized form. For ADAPT, the HAT size was
set to 1KB and the aggregated move threshold τ was 56 by
default. The length of the interval to measure δ and ϕ was
4000 write requests. There will be more discussions about the
values of τ , δ and ϕ later. As with previous works, log space
was set to be 3% of the overall data capacity [13][15]. The
buffer zone of WAFTL also took up 3% of data capacity as
originally proposed [25]. Since FAST used one block [13] and
LAST used 1/16 of the log space [14] for the sequential area,
the lower and upper limits of ADAPT’s dynamic sequential
area were one block and 1/16 of all log blocks by default,
respectively.
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B. Performance Evaluation

Fig. 6 shows the elapsed time for simulating each trace
under DFTL, WAFTL and our proposed ADAPT, normalized
against that of FASTer. Fig. 7 and Fig. 8 show the erase and
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write counts, respectively, of WAFTL and ADAPT normalized
against those of FASTer. FASTer, WAFTL and ADAPT com-
bine page mapping and block mapping in a similar way, and
utilize parts of flash blocks for buffering. On the other hand,
DFTL does page-level mapping, and its overheads include
loading and evicting mapping between flash and RAM. Thus
our comparisons using write and erase counts exclude DFTL.
The rightmost bars in the three figures represent the sum of
ten traces’ results normalized against the total for FASTer.
Let us first compare ADAPT with FASTer and WAFTL since
they share similar designs on flash management. It is evident
from Fig. 6 that ADAPT outperforms them, consuming 35.4%
less time than FASTer at best for the SPC1 workload, and
23.5% less than WAFTL for MSR-rsrch 0 workload. In all,
ADAPT is 20.7% and 15.3% on average faster than FASTer
and WAFTL respectively.

There is an interesting phenomenon in the case of the TPC-
C 20 trace. FASTer was developed for OLTP applications.
Even so, from Fig. 6, we can see that for the TPC-C 20
trace, ADAPT is still marginally better than FASTer. Since
I/O requests are predominantly random and small in this
OLTP workload, with access severely skewed, there is little
opportunity for ADAPT’s mechanisms to exact its maximum
impact.

Fig. 7 and Fig. 8 are the results for write and erase counts,
respectively. From the two figures we can see that in every
trace, ADAPT performs less writes and erasures than FASTer
and WAFTL. However, there is something interesting to note
in the results. In Fig. 7 we can see that for MSR-mds 0,
FASTer needs four times more erasures than ADAPT, but the
results in Fig. 6 show FASTer is merely 13.9% slower than

ADAPT. This is because the performance is mainly dominated
by the number of write operations at runtime. For MSR-mds 0
in Fig. 8, ADAPT has only 7.4% less writes than FASTer.
Consequently, the overall improvement of performance is not
as significant as the reduction on erase counts would suggest.
The situation is also the same for WAFTL and ADAPT
executing MSR-ts 0. WAFTL has less erasures, but slightly
more writes making it worse than ADAPT. Moveover, WAFTL
was designed to flush all data in the buffer zone because it
wants to take advantage of the integration of logical blocks
that are buffered. However, to move all data is not trivial, and
it will take too many writes and erasures. On the other hand,
ADAPT attempts to leave data in the buffer for a longer time
to avoid unnecessary movements.

We also implemented a state-of-the-art page mapping
scheme. Since lazyFTL was said to have a similar performance
to DFTL [17], we have selected DFTL for comparison. The
results are also presented in Fig. 6, normalized against those
of FASTer. From the figure, we can see ADAPT is faster
than DFTL by as much as 44.2% for the case of MSR-prn 0.
Unlike FASTer or WAFTL that considers characteristics of
one or more types of workload, DFTL merely loads page-
mapping entries to RAM on demand, and handles sequential
and random writes in the same way. For MSR-prn 0, 9.46% of
its requests would write more than 64KB (32 pages) at a time.
ADAPT could respond well to such access patterns. However,
these continual large writes from multi-tasks would cause
DFTL to reclaim blocks frequently for clean pages as well
as load and evict mapping entries, thereby badly degrading
overall performance.

TABLE III
PREDICTION HIT RATES AND AGGREGATED MOVES

Trace Prediction Hit Rate Aggregated Moves
SPC1 79.50% 132
TPC-C 20 100.00% 0
MSR-hm 0 95.68% 233561
MSR-mds 0 96.49% 1727
MSR-prn 0 99.93% 124608
MSR-prxy 0 99.72% 8323
MSR-rsrch 0 98.75% 2050
MSR-stg 0 93.24% 1045
MSR-ts 0 95.16% 1165
MSR-web 0 96.99% 5408

Table III shows the prediction hit rates and the number of
aggregated move for each trace. The hit rate is high for most
traces. For SPC1, even with a relatively lower hit rate, good
performance can still be achieved by the cooperation of all
modules in ADAPT. From Table III, we can also see there is
no aggregated movement for the OLTP TPC-C 20 trace, and
the prediction hit rate is 100%. This agrees with our earlier
analysis in Section 2.

Aggregated movement and predictive transfer affect each
other. If an aggregated move is performed on a block, then
its pages will stay longer in the log space. This will result in
the block at the rear of the random area having many valid
pages. If the heuristics are correct, many of the pages will



be accessed again soon, leaving the remaining pages to be
processed by predictive transfer when this block again reaches
the head of the random area. Therefore, aggregated movement
and predictive transfer complement each other.

C. Effects of Log Space Capacity

The impact of the log space capacity was also investigated.
We performed experiments where the log space was provi-
sioned as 3%, 5% and 10% of the overall capacity. The results
are shown in Fig. 9. We normalize the results for provisioning
5% and 10% of space as log space against that for 3%. It can
be seen that generally performance improves with larger log
spaces. However, the extent of effect varies. For some traces,
the impact on performance is significant, but for others, such as
TPC-C 20, it is not. We believe this is particularly noteworthy
for SSD users to utilize resources.
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Fig. 9. Effects of different log space capacities

D. Effects of Log Space Partitioning

We also did experiments to verify the effects of adaptively
adjusting the partitioning of the log space. In Fig. 10, ADAPT
and ADAPT-sw had the same configuration including predic-
tive transfer and aggregated movement except that ADAPT-
sw used only one log block for sequential writes, which is
the same as FAST and FASTer. All results are normalized to
those of ADAPT-sw. From Fig. 10 we can see ADAPT can
be faster by as much as 31.9% in the case of SPC1. However,
TPC-C 20 is still special because it has almost no sequential
writes as shown in Table I.

Fig. 11 shows the result for different thresholds used in the
identification of sequential writes. We used three configura-
tions. The first, ADAPT-2, has a threshold of 2 pages (4KB)
which is the same as LAST. The threshold of the second,
ADAPT-32, is 32 pages (64KB). The last one is the full
version of ADAPT that adaptively adjust the threshold based
on δ . The lower and upper bounds of ADAPT are set to 2
and 32, respectively. Results of the ADAPT-32 and ADAPT
are normalized against those of ADAPT-2 and presented in
Fig. 11. From Fig. 11 we can see that ADAPT is faster
than ADAPT-2 and ADAPT-32 most of the time. But with
some workload like MSR-ts 0, ADAPT had to spend 12.7%
more time to finish the trace. We analyzed MSR-ts 0, and
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found that the feedback in current interval does not accurately
reflect the access behaviors. The results in next subsection will
address this by showing how performance can be significantly
improved with longer intervals.
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E. Effects of the Interval Length on Adaptation

ADAPT needs to observe and calculate δ and ϕ in an
interval. By default, we used an interval of 4000 requests
in the experiments. We also experimented with intervals of
2000, 3000, 5000 and 6000 requests. Their results are shown
in Fig. 12 and Fig. 13. From the results, we can see that in most
cases, the length of the interval hardly affects the performance.
For MSR-stg 0 and MSR-ts 0, however, their results may
fluctuate a little more. That means current configuration is
too short to reflect the online behaviors. By prolonging the
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interval, better performance can be achieved, as shown in
Fig. 13. This agrees with results in Fig. 11.

F. Effects of HAT Size

The HAT is an important data structure for ADAPT. Fig. 14
presents four results of each trace when the size of HAT was
configured to be 512, 1024 (1K), 1,536 and 2,048 (2K) bytes.
The results for 512 bytes are used to normalize the other cases.
It can be concluded from these results that the optimal size
of the HAT depends on the workload. Recall that the HAT is
used to record the recent write history which is then used for
prediction. Obviously, keeping too long or too short a history
may result in wrong predictions. If the HAT is too big, it would
store outdated access records, causing pages that should be
merged immediately to stay too long in log space. If the HAT
is too small, the prediction would not get a full view of the
locality, and unnecessary merges may be performed.

0.85

0.9

0.95

1

1.05

1.1

1.15

1024

1536

2048

Trace

Elapsed Time (normalized against 
results with HAT size of 512B)
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The performance of ADAPT on TPC-C 20 trace changes
slightly with different HAT sizes. This can also be attributed
to its access patterns. Due to the skewness of the accesses in
the OLTP workload, a small HAT suffices. It therefore makes
little difference in enlarging the HAT. The results also suggest
that due to the differences in locality, the size of the HAT
should be tuned for each workload.

G. Tuning of Aggregation Threshold

The threshold τ to trigger aggregated data movement is an
important parameter in ADAPT. For ease of reading, we have
separated the results as Fig. 15, Fig. 16 and Fig. 17.
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In accordance with [6], each block has 64 pages in our
simulations. In general, when the number of valid pages in
the block to be merged reaches the aggregated move threshold,
i.e., τ , the block would be moved, and the one next to it will
be merged instead. If τ equals to 32, aggregated move will be
performed if 50% or more pages of the block are valid. If it is
64, all the pages in a block will have to be valid in order for
an aggregated move to be activated. Fig. 15, 16 and 17 show
the impacts of various values of τ on performance.



We know that TPC-C 20 has no aggregated movements
from Table III. For other traces, we can see from the figures
that for some of them, including MSR-ts 0, MSR-web 0,
MSR hm, and MSR-prn 0, the results are better with a higher
τ . For others, such as SPC1, MSR-rsrch 0, MSR-mds 0 and
MSR-stg 0, τ does not affect performance. However, for
the MSR-prxy 0 trace, performance degraded with larger τ .
Again, we attribute this to the access patterns of the traces.
Traces in the first category generally have more valid pages
in the log block to be merged than others. Hence, a higher τ

improves the performance. For traces in the second category,
the number of valid pages is moderate and stays fairly constant
throughout the execution, and different thresholds showed little
impact.

We analyzed MSR-prxy 0, and found out more about its
access behaviors. As discussed in Section 2, requests with 2
pages (4KB) are considered to be small. But in MSR-prxy 0,
there is a huge number of requests that are even smaller. 77.8%
of the requests in MSR-prxy 0 only write to one page and
data in these pages are frequently updated and scattered. Thus
the log block to be merged may have dozens of valid pages.
However, a higher τ gives aggregated movement little chance
to show off its advantage, leaving valid pages to be processed
by predictive transfer. A larger log window would absorb more
small requests. From Fig. 9 we can see it is MSR-prxy 0 that
improves the most with larger log space.

H. Impact of Early Reuse of Log Blocks

We also investigated the impact of the early reuse of log
blocks. Experiments were conducted with the ERL module
enabled or disabled, respectively. When it is disabled, if a
log block has no valid data at runtime, it would be left in
the log space until it reaches the head of the log space.
Fig. 18 shows the results. ADAPT-nd is the configuration
without ERL module. The results agree with our expectation
in Section 3 that ERL may help marginally. Compared to
ADAPT-nd, ADAPT could require less time to finish each
trace, at most 4.3% with the case of MSR-web 0.
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V. RELATED WORKS

Page mapping and block mapping are two basic mapping
schemes. The mapping table used for page mapping is signif-

icantly larger. To alleviate this issue, DFTL [4] was proposed
by caching parts of entire table that are in use in RAM.
This RAM space can be managed using Least-Recently-Used
(LRU) eviction. DFTL achieved better performance compared
to FAST and LAST. The latest LazyFTL [17] is similar in
design and performance as DFTL, but its focus is on data
reliability.

Block mapping lacks flexibility due to its coarse granularity.
Write requests to a page will cause block-level copying
because of out-of-place updating. Recently, an improved block
mapping scheme, DAC [21], was proposed. It is similar to
DFTL, and caches mapping entries and pages on-demand in
RAM in two levels.

Mapping schemes based on other granularities have also
been developed. One example is a set-based mapping strat-
egy [3]. Each set contains multiple blocks. Logical sets are
mapped to physical sets with another table used to store the
mapping of logical block to physical block in a set. There are
also other schemes that try to strike a balance between page
mapping and block mapping, such as Janus-FTL [11].

There are many hybrid mapping schemes. The log space
can be viewed as a cache of data blocks. FAST, FASTer and
ADAPT are fully associative, and BAST is block associative.
More complicated N-way associative schemes of log blocks
have also been designed. Physical blocks are grouped together,
and they are associated to a set of log blocks where the size of
the set may be dynamically changed at runtime [19][10]. Other
mapping schemes, such as the superblock [7] and KAST [2],
give more considerations to garbage collection and real-time
systems, respectively.

Recently, content-aware FTLs that attempt to reduce du-
plicate writes have been proposed too. Examples include
CAFTL [1] and CA-SSD [5]. They can potentially benefit from
improvements in content detection and reduction.

VI. CONCLUSION

Address mapping of the flash translation layer is central
to the performance of flash-based devices. In this paper,
we proposed Aggregated Data movement Augmenting Pre-
dictive Transfers (ADAPT), a hybrid mapping FTL scheme
that adjusts to various workloads by exploiting their access
behaviors and temporal locality. ADAPT can handle both
sequential and random writes efficiently by dynamically tuning
the partitioning of the two areas of log space that process the
respective types of writes. To do so, ADAPT collects statistics
on how log blocks in the sequential and random area are
used, and then utilizes these statistics to adjust its parameters.
ADAPT also explores the locality to reduce unnecessary data
movements in full merges. It employs a prediction mechanism
to decide whether a log page should be merged, or given
a second chance. In addition, ADAPT records the number
of valid pages in each random log block at runtime. If a
block to be merged has more than a certain threshold of
valid pages, the entire block would be kept in the log space.
However, if a block is found to have no valid page, it will
be immediately reclaimed and replaced even if it has not



got its turn for merging. Our experiments show that ADAPT
can outperform FASTer by as much as 35.4% with a modest
additional RAM space requirement of less than 16KBytes for a
64GBytes SSD. ADAPT is also faster than DFTL and WAFTL
by as much as 44.2% and 23.5% respectively. We believe by
being adaptive to various workloads, ADAPT will enhance the
general performance of SSDs.
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