
Performance Analysis of Superscalar Processors Using A

Queueing Model

Y. Zhu and W.F. Wong
Department of Information Systems and Computer Science

National University of Singapore

Singapore 119260

E-mail: fzhuyongx, wongwfg@comp.nus.edu.sg

Abstract

Superscalar processors have become the de facto standard of RISC processors today. Due

to its complexity, estimating the performance of any superscalar processor design is a di�cult

task. To this end, several analytical models of such processors have been proposed. In this

paper, we present a novel Multiple Class and Multiple Resource Queueing Model (MCMR) of

superscalar processors. In this model, instruction classes and functional units can be modelled

and studied. With analysis, numerical calculation and discrete event simulations, we were able

to identify a bottleneck in superscalar processor design.

1 Introduction

Current techniques for determining the performance of a new superscalar processor design are

usually based on trace-driven simulation. A benchmark is run on existing hardware to generate

a trace. A simulator con�gured for the new implementation then \runs" through the trace and

generates performance information. In order to obtain accurate performance data, this process

must be repeated for many large benchmarks with extremely long traces. This approach has some

shortcomings. The traces are long and expensive to store. Simulation of these long traces is also

time-consuming.

Another approach is modelling. Previous works on this approach includes those of [Austin

& Sohi 1992], [Lam & Wilson, 1992] and [Dubey et al., 1994] which are based on probability

theory. These studies are generally experimental studies which attempt to obtain performance by

simulation. In [Noonberg & Shen, 1994] the use of probability vectors were proposed in obtaining a

more theoretical model of a superscalar processor. However, none of the above use queueing theory

in their modelling. Our paper presents a novel queueing model of superscalar processors. In this

theoretical model, a benchmark and a trace are analysed only once to compute the instruction

distributions. These distributions are essentially an abstraction of the characteristics of the trace.

Each processor implementation's speci�cation is analysed to determine the functional unit resource

set. Once the instruction distributions of a programare determined, its performance on an arbitrary

machine, characterised by the functional unit resource set, can be computed without re-examing

the trace.

Section 2 describes our model in detail. Section 3 gives analytical performance results of our

model. A discrete simulation setup to verify our model is described in Section 4. The veri�cation

of our analytical results by discrete simulation in Section 5. This is followed by a conclusion.

1



2 MCMR Model Description

A multiple-class multiple-resource (MCMR) system is a queueing system where there are several

classes of customers, each requiring a particular set of resources to service. There have been a

number of studies on the MCMR system. Assuming a simple distribution for the arrival process,

[Lazowska et al., 1984] described a simple method to estimate a MCMR system's performance.

Some steady state solutions were also reported in works in [Matta & Shankar, 1995] and [Jain,

1991]. For modeling a superscalar processor, we used a MCMR system shown in Fig. 1.

Queue
Individual

Cache
Inst.

Fetch Unit

Unit

Unit

Unit

Functional

Functional

Functional

Central Window

Queue

Queue

Individual

Individual

Arriving

Inst.

Result

Data

Figure 1: A MCMR Queueing Model on a Superscalar Processor

In our MCMR model of a superscalar processor, `MC' denotes the multiple instruction classes

while `MR' represents the multiple functional units.

We have a set R of resources and a set of C of customer classes. Each class in C represents

a class of customers that requires a particular set of resource. Speci�cally, each class-c customer

requires some subset Rc of resources Rc � R. Furthermore, the class-c customer requires some

number of units, denoted by c.req, of each resource r 2 Rc. In our MCMR model of a superscalar

processor, each instruction would come belong to a customer class and before each member of an

instruction class can be executed, a number of functional units would need to be acquired.

In front of the functional units is a central windowwhich is a shared bu�er that holds instructions

waiting for execution. If a functional unit is busy, the instructions destined for it will queue in the

central window until the functional unit becomes available.

Let �c(t) denote the instantaneous arrival rate of class-c requests, �rc(t) stand for the service

rate of resource r for class-c requests, and 1=�rc(t) denote the instantaneous service time of a class-c

request at r. Transient conditions arise when the statistics of the customer arrival processes or the

service rates of the resources vary with time, due to externally time-varying factors or dynamic

control decisions based on current or delayed system state information.

An arriving class-c customer is blocked at a resource r 2 Rc if and only if c.req exceeds the

amount of the resource that is currently available. An arriving class-c customer is blocked if and

only if it is blocked at any r 2 Rc. A blocked customer is either lost or retried later. Among the



main performance measures of interest are the instantaneous blocking probabilities of the di�erent

classes, instantaneous average number of customers at resources, etc.

To estimate the steady-state performances of such systems, we apply a queueing analysis to

the superscalar processor model. Validations against discrete event simulations show the accuracy

and advantages of the MCMR superscalar processor model.

3 Model Analysis

Let jCj be the member number of set C in the model. Each class c is an open class with arrival

rate �c. We denote the vector of arrival rates by ~� � (�1; �2; :::; �jCj). In the case of superscalar

processors, the arrival rates equal the output rate of the instruction fetching unit. We de�ne the

instruction class occurrence with ~O � (O1; O2; :::; OjCj) and let Spfetch denote the (maximum)

number of instructions fetched per machine cycle. With these de�nitions, the arriving rates can

be expressed:

�c;c2Cr =
1

Oc;c2Cr

Spfetch (1)

Because the throughputs of the classes in open models are part of the input speci�cation, the

solution technique for these models is quite simple. We now describe the computation of the

various performance measures which can be obtained from the model.

3.1 Processing Capacity

A system is said to have su�cient capacity to process a given o�ered load ~� if it is capable of doing

so when subjected to the workload over a long period of time. For multiple class models, su�cient

capacity exists if the following inequality is satis�ed:

max
r
f
X
c2Cr

�cg < 1 (2)

This simply ensures that no functional unit is saturated as a result of the combined loads of all

the classes. In the derivations that follow, we will assume that this inequality is satis�ed.

3.2 Throughput

By the Forced Flow Law the throughput of class c at resource r as a function of ~� is:

xc;c2Cr (~�) = �c;c2Cr (3)

Every instruction class c; c 2 Cr contributes xc;c2Cr to the sum throughput of the resource r,

or a functional unit of a superscalar processor. The throughput of the superscalar processor is the

sum of all the throughputs of the individual functional units.

3.3 Utilisation

>From the Utilisation Law, the utilisation is expressed in terms of arriving rate vector �rc;c2Cr and

the service time demanded by the customer drc;c2Cr

uc;c2Cr(~�) = xc;c2Cr(~�)�c;c2Cr = �c;c2Crdc;c2Cr (4)

The utilisation of a resource is the product of the throughput of that resource and the average

service requirement at that resource. This measures how busy a resource r is serving instructions



from class c. In other words, we can tell from the measurement the proportion of time a functional

unit spends servicing instructions from class c.

3.4 Residence Time

As with single class models, the residence time is given by

Resrc(
~�) = drc[1 + N r

c (
~�)] (5)

where N r
c (~�) is the average number of customers seen at server k by an arriving class c customer.

The intuition behind this formula is similar to that for single class models. The explanation depends

on the scheduling discipline used. For �rst come �rst service (FCFS) servers, the residence time

is simply the sum of an arriving job's own service time, vc�
r
c , where the vc denotes the average

number of visits that a system-level request makes to that resource, and the service times of the

jobs already present at the arrival instant, vc[N
r
c (~�)�

r
c], since at FCFS servers all classes must have

the same service time at each visit. For processor shared (PS) servers, the residence time is the

basic service requirement, vc�rc , \inated" by a factor representing the service rate degradation

due to other jobs competing in the same queue, 1 + N r
c (~�).

An implication of the assumptions made in constructing separable networks is that the queue

length seen on average by an arriving customer must be equal to the time-averaged queue length.

Thus, for queueing servers under the FCFS rule:

Resrc(~�) = drc[1 + qk(~�)] (6)

where qk(~�) is the time averaged queue length at server k (the sum over all classes). Applying

Little's law:

Resrc(~�) = drc[1 +

jCjX
j=1

�jrj;k(~�)] (7)

Notice now that the right hand side of the above equation depends on the particular class c only

for the basic service demand drc. Thus,
Resrc(

~�)

Resr
j
(~�)

must equal
drc
dr
j

, giving Resrj (~�) =
drj
drc
Resrc(~�).

Substituting into the equation above and rewriting, we have:

Resrc(~�) =
drc

1�
PjCj

j=1 uj;k(
~�)

(queueing servers under the FCFS rule) (8)

In our superscalar processor model, the residence time is the time which class c instructions have

to spend before they can be served by a functional unit r. The residence time is the basis for

computing the system response time, as will be later discussed.

3.5 Queue Length

Assuming a FCFS rule and applying Little's law to the residence time equation above, the queue

length of class c at server k, qrc(
~�), is given by

qrc(
~�) = �cRes

r
c(
~�) =

uc;k(~�)

1�
PjCj

j=1 uj;k(
~�)

(9)

After the individual queue lengths qrc are obtained, the mean queue length of all instruction classes

at server k, resource r, can be computed as the sum of the individual mean queue lengths qrc of

class c at a functional unit.



3.6 System Response Time

The response time for a class c customer, rc(~�), is the sum of its residence times at all sequential

devices. More speci�cally, the instruction fetching unit is in a place sequentially before the other

functional units. Consequently, the response time for the class c is:

rc(~�) = Resrc(
~�) +

1

Spfetch
(10)

The response time for the whole system is given by maxc;c2C rc. This is also the time it takes each

instruction to travel through the entire processor, i.e. the latency.

3.7 Average Number in System

The average number of class c customers in the system can be calculated using Little's law, or by

summing the class c queue lengths at all servers:

qc(~�) = �crc(~�) =
X

r;r2Rc

qrc(~�) (11)

In our superscalar processor model, the average number in the system includes instructions both in

central window and the instruction fetching unit bu�er. The central window is assumed to account

for the most part of the instructions in the system. Using this measure, we can decide if the central

window size �ts the the usage requests of the application.

3.8 Blocking Probability

The class c customers require Rc resources which are Rc servers of the same service rate � with

bu�er size B. Therefore, the birth-death process has the following arrival and service rate:

�n =
X
c2Cr

�c (12)

�n =

�
n� n = 1, 2, : : : , m � 1 where Cr has members less than m

m� n = m;m + 1,: : : , m � 1
(13)

The following expressions are for the probability of n jobs in the system:

pn =

(
�n

n!�n p0; n = 1; 2,: : : , m � 1
�n

m!mn�m�n
p0; n = m;m+ 1,: : : , B

(14)

In terms of the tra�c intensity � = �=m�, we have

pn =

(
(m�)n

n! p0; n = 1; 2,: : : , m� 1
�nmm

m! p0; n = m;m + 1,: : : , B
(15)

The probability of zero jobs in the system is computed by the relationship

BX
n=0

pn = 1 (16)

It gives

p0 = [1 +
(1� �B�m+1)(m�)m

m!(1� �)
+

m�1X
n=1

(m�)n

n!
]�1 (17)



The blocking probability is the probability when all the Rc servers and their bu�ers are used up.

We denote it as pRcB .

pRcB =
�Bmm

m!
p0 (18)

The blocking probability for the all the full system is:

pB = max
c;c2C

pRcB (19)

The blocking probability is determined by the characteristics of the instructions being processed

and the processor's con�guration. It indicates the likelihood of an arriving instruction being blocked

from being served and therefore is an important indicator of congestion and performance.

4 Discrete Simulation

We veri�ed our analytical results by comparing it against that obtained from discrete simulation

an equivalent superscalar processor. This was done using a discrete simulation language called

QMSM (queueing model simulation) which is similar to discrete simulation languages introduced

in [MacDougall, 1987] and [Niels, 1990].

In QMSM view of system, a system comprises a collection of inter-connected facilities. A facility

may represent some resource of the system. The inter-connection of facilities is determined by the

guests' travel routes rather than some explicit statements. Guests represent the active objects

of the system. The system behaviour is modelled as the guest movements. A guest can reserve

facilities, and schedule future activities. When the resource in request is not available, a guest is

queued. A state change of any system object is an event. In a discrete event simulation language

like QMSM, an event is collection of the activities happening at the same time instant.

We de�ned the processor's resources and behaviour using QMSM in our simulation. The

functional units of the processor are de�ned as facilities. The guests of di�erent classes represent

the classi�ed instructions. The instructions are classi�ed according to their requests for functional

units which execute the instructions. Therefore, we have as many instruction classes as there are

functional units. The processor behaviour including instruction fetching, instruction issuing and

instruction execution is modeled as di�erent events. To model pipelining, facilities are given bu�ers

the size of the pipeline stages.

To test the model, we chose two benchmarks in the popular SPEC 92 suit: 022.li from

SPECint92 and 030.matrix30 from SPECfp92. Both were executed on a Sun SPARC workstation.

Traces for the two SPEC 92 benchmarks were collected by a modi�ed version of the QPT [Ball &

Larus, 1991] pro�ling and tracing software.

>From analysing the trace, we obtain the occurrences of f di�erent instruction classes. This

information is used to generate pseudo-instructions representing the instruction classes in the

simulator. These pseudo-instructions are regarded as guests by our simulator. These guests will

visit facilities which represents the functional units. The guests undergo the events which represent

the benchmark trace behaviour as mentioned before. After all the guests had passed through the

simulator, the performance results are calculated.

5 Results

The characteristics of the two benchmarks used, with respect to the functional units, are sum-

marised in Fig. 2

The instructions in the trace obtained on Sun SPARC workstations are divided according to

the functional units, namely the integer execution unit (IEU), oating point unit (FPU), load and



Benchmark IEU Inst. FPU Inst. LSU Inst. PDU Inst.(100%) Nop Branch

022.li 38.42% 0 33.23% 4.661320853e+9 1.38% 23.78%

030.matrix300 32.53% 25.51% 38.54% 1.693589255e+9 0.00037% 3.42%

Figure 2: Characteristics of the Benchmarks in Our Scope

store unit (LSU), and prefetch and dispatch unit (PDU). The memory management unit, external

cache unit and memory I/O interface unit do not execute instruction directly. Therefore, these do

not have their own instruction classes.

Some other SUN SPARC architecture features such as the instruction fetching capacity, integer

execution unit pipeline stages, oating point unit pipeline stages, load & store unit pipeline depth

and central window size are considered in our simulation.

For the benchmarks characterised above, the analytical results from our MCMR model are

given in Fig. 3

Benchmark Throu. Ave. Que. Fetch Unit Que. Num. in Sys. Sys. Resp. T.

022.li 1.43300 2.26643 1.50000 6.79930 4.81779

030.matrix300 1.93170 1.94289 1.50000 7.77155 4.86300

Figure 3: Analytical Performance Results

Fig. 4 shows the results of the QMSM discrete simulator.

Benchmark Throu. Ave Que. Fetch Unit Que. Num. in Sys. Sys. Resp. T.

022.li 1.30700 1.65367 1.50100 4.96100 3.84225

030.matrix300 2.00000 1.62500 1.50002 6.50000 5.45540

Figure 4: Simulation Performance Results

The analytical and simulation results generally match well. We note that the analytical results

show the performance slightly better than the simulation ones do. We attribute the di�erences to

the randomness in the instruction generation process in the simulation. Nevertheless, we can still

argue that validations against discrete event simulations show the accuracy and advantages of the

MCMR superscalar processor model.

Moreover, according to the results above performance is mostly limited by the instruction

fetching capacity. A central window of size exceeding the number of instructions in the system,

i.e. Number in Sys., does not signi�cantly improve the performance.

6 Conclusion

In this paper, we proposed a novel queueing model of superscalar processors. To use this model,

an instruction trace is analysed once to obtain a few key parameters which characterise the trace.

These are then fed into the model to compute the performance of any number of superscalar

processor con�guration. Our initial results show that, even without considering instruction de-

pendencies, the performance of a superscalar processor is limited by instruction bandwidth. The

overall performance bottleneck lies in the instruction fetching unit. The unit limits the growth of

instruction bandwidth no matter how fast the rest of processor works. Even very large instruction

window sizes do not improve the situation signi�cantly. Encouraged by this, we intend to re�ne

the model to pursue further studies in superscalar processor design.



7 Acknowledgement

We are indebted to M.K. Quek and T.C. Cheng for their assistance in collecting the traces.

References

Austin, Todd M. and Sohi, Gurindar S. (1992) Dynamic Dependency Analysis of Ordinary Pro-

grams, Proc. 19th Int'l Symp. on Comp. Arch., 1992, pp. 342-351.

Ball, Thomas J. and Larus, James R. (1991) Optimal Pro�ling and Tracing Programs, CS-TR-91-

1031, Computer Science Dept., Univ. of Wisconsin-Madison, USA Jul 1991.

Dubey, Pradeep K. et al. (1994) Instruction Window Size Trade-O�s and Characterization of

Program Parallelism, IEEE Trans. on Comp., 43(4), Apr 1994, pp. 431-442.

Jain, Raj (1991) The Art of Computer Systems Performance Analysis, John Wiley & Sons, Inc.

New York USA 1991, pp. 535-536.

Lam, Monica S. and Wilson, Robert P. (1992) Limits of Control Flow on Parallelism, Proc. of

19th Int'l Symp. on Comp. Arch, 1992, pp. 46-57.

Lazowska, Edward D. et al. (1984) Quantitative System Performance, Prentice-Hall, Inc., Engle-

wood Cli�s, New Jersey, USA 1984, pp. 135-136.

MacDougall, M.H. (1987) Simulating Computer Systems Techniques and Tools, MIT Press, USA

1987.

Matta, Ibrahim and Shankar, A. Udaya (1995) Z-Iteration: A Simple Method for Throughput

Estimation in Time-Dependent Multi-Class Systems, Proc. of SIGMETRICS '95, Ottowa,

Canada 1995, pp. 126-135.

Niels, Houbak (1990) SIL{A Simulation Language: User' Guide, Springer-Verlag, Berlin, Germany

1990.

Noonburg, Derek B. and Shen, John P. (1994) Theoretical Modeling of Superscalar Processor

Performance, Proc. of MICRO 27, San Jose, USA 1994, pp. 53-62.


