
Compiler Optimizations for Adaptive EPIC
Processors

Krishna V. Palem1, Surendranath Talla1??, and Weng-Fai Wong2

1 Center for Research on Embedded Systems and Technology,
Georgia Institute of Technology

palem@ece.gatech.edu

2 Dept. of Computer Science,
National University of Singapore

Abstract. Advances in VLSI technology have lead to a tremendous in-
crease in the density and number of devices that can be manufactured in a
single microchip. One of the interesting ways in which this silicon may be
used is to leave portions of it uncommitted and re-programmable depend-
ing on an applications needs. In an earlier paper, we proposed a machine
architecture for achieving this reconfigurability and compilation issues
that such an architecture will face. In this paper, we will elaborate on
the compiler optimization issues involved. In particular, we will outline
a framework for code partitioning, instruction synthesis, configuration
selection, resource allocation, and instruction scheduling. Partitioning is
the problem of identifying code sections that may benefit by mapping
them on to the programmable logic resources. The instruction synthesis
phase generates suitable implementations for the candidates partitions
and updates the machine description database with the new instructions.
Configuration selection is the problem of narrowing down the choices of
which synthesized instruction (from the set generated by the instruc-
tion synthesis phase) to use for each of the code regions that will be
mapped to programmable logic. Unlike traditional optimizing compilers,
the adaptive EPIC compiler must deal with the existence of synthesized
instructions. Compilation techniques addressing each of these problems
will be presented.

1 Introduction

Phenomenal advances in semiconductor technology have made it possible to put
an increasing amount of silicon devices into the same surface area. This dramatic
increase in device density has brought up a fundamental question: how can the
extra silicon be effective employed to improve the execution performance of ap-
plications? Many straightforward ideas like increasing the number of functional
units or the size of the caches run into the problem of diminishing returns.

?? Author’s current affiliation: StarCore Technology Center, Atlanta, GA 30328.

2

One interesting proposal is to keep a portion of the silicon uncommitted—
as re-programmable logic. Processors demonstrating this design, having a core
RISC processor and an on-chip, tightly coupled re-programmable logic pool, have
been introduced[27]. Depending on the granularity of the re-programmable logic
portion, these processors can be used in two ways. The first approach that was
adopted by the early generation of such processors is to go for mapping larger
granularity computations on the re-programmable logic. The re-programmable
logic essentially implements a significantly large grain computation and inter-
faces it to the application executing in the core is of the nature of a subroutine
call. Programmers are expected to know the syntax and semantics of such sub-
routines and to write the subroutine calls into their application. The alternative
that is generally still under-researched is to use the re-programmable logic to
implement application-specific instructions. This finer grain approach requires a
greater involvement of the compiler. This approach is interesting in that it is an
automated approach. On the flip side, we will need a different variation of the
generic RISC-core with re-programmable logic processor to support fine grain
operations as well as new compiler algorithms.

In this paper, we will describe our proposal for an Adaptive Explicitly Par-
allel Instruction Computer (AEPIC) processor. The bulk of the paper, however,
will be devoted to new compiler algorithms needed to generate code for such a
machine.

2 Previous Work

The earliest known computing system based on reconfigurable devices wa pro-
posed and implemented by Gerald Estrin at UCLA [11]. It is a hybrid machine
consisting of a general purpose processor augmented with high speed logic de-
vices (ALU’s, memories) which were interconnected via application specific in-
terconnect. Due to a lack of enabling technology, the reconfiguration was done
manually. Mario Schaffner’s Circulating Page Structure (CPS) machine [23] im-
plemented a form of hardware paging scheme where the application task was
partitioned into pages which circulate through the programmable hardware to
compute the task.

The introduction of field programmable gate array (FPGA) devices by Xilinx
in the mid 80’s [32, 26] spurred a flurry of research in the development of FPGA
based reconfigurable computing engines. prism [2] developed at Brown Univer-
sity demonstrates substantial speedup in the case of large binary operations.
pam, a universal reconfigurable hardware co-processor developed by researchers
at DEC Paris Research Labs [3, 4, 29], has been used to demonstrate superior
performance/cost ratio compared to every other existing technology of its time
on a dozen applications ranging from computer arithmetic, cryptography, im-
age analysis, neural networks, video compression, high-energy physics, biology
and astronomy. Another such reconfigurable co-processor board developed by
Super Computing Research Center at Maryland called splash-2 [12] has been
used to achieve two orders of magnitude speedup on genome sequence matching

3

compared to supercomputers of that time (Cray2). The cover story of an issue
of Scientific American [28] written by researchers at UCLA outlines some novel
applications of reconfigurable devices.

Other notable reconfigurable computing projects include the Programmable
Reduced Instruction Set Computer (prisc) [21, 22], garp [16], disc [31], rapid [13],
the CMU Cached Virtual Hardware (cvh), PipeRench [5], and Chimaera [14,
15].

Reconfigurable Architecture Workstation (raw) proposed by Agarwal and
his colleagues at MIT [30, 19, 1] consists of processors that are sets of intercon-
nected tiles each of which contains instruction and data memories, an arithmetic-
logic unit, registers, configurable logic, and a programmable switch that supports
both dynamic and static (compiler orchestrated) routing, interconnected by pro-
grammable interconnects. Compiling to a raw machine is complicated by two
factors:

– Unlike traditional super-scalars, a RAW processor does not bind specialized
logic structures such as register renaming or dynamic instruction issue logic
into hardware. Scheduling and resource allocation are the responsibility of
the compiler.

– Communication patterns within the code need to be analyzed in order to
schedule inter-tile communication.

Preliminary experience with compiling to the raw machine can be found in [1,
19].

So far, most research efforts have focused on the architectural aspects of
reconfigurable systems. Little attention has been paid to compilation issues.
Many performance studies have been done and impressive speedups were demon-
strated. However, important issues like compilation times, target cost have been
neglected. Our research attempts to address these latter issues.

3 Adaptive Explicitly Parallel Instruction Computing
(AEPIC)

Processors that take advantage of instruction level parallelism generally fall into
two main categories: superscalar (dynamically scheduled) and VLIW (statically
scheduled). With the addition of features such as predicated execution, sup-
port for software pipelining etc., the latter has been renamed Explicitly Parallel
Instruction Computer (EPIC). We refer to Schlansker and Rau [24] for an eval-
uation of these two ILP approaches. It is to EPIC that we propose adding a
reconfigurable component that is amenable to compiler optimizations. We call
this new configuration Adaptive EPIC (AEPIC) [25]. Figure 1 shows the ab-
stract execution model for AEPIC. The “hardwired component” in Figure 1 is
the EPIC core processor. The adaptive component consists of functional units
that have been configured into the datapath by some reconfiguration instruc-
tions. Operations performed by the configured functional units are triggered by
specific AEPIC instructions invoked on the hardwired functional units.

4

A

B

C

AEPIC
executable

Hardwired
functional units

(F1,F2,...F5)

Configured
functional units

(C1,C2,C3)

C1 C3C2

AEPIC program
instructions

}

F
1

F
2

F
4

F
3

F
5

Hardwired
component

Adaptive
component

Fig. 1. AEPIC executable and abstract data-path

Figure 2 shows the details of a AEPIC machine. The core component consists
of a standard EPIC machine. The adaptive component of the AEPIC proces-
sor consists of the Configuration Cache Hierarchy, Multi- context Reconfigurable
Logic Array (MRLA) and Array Register File (ARF) connected together via bus
interconnect. The MRLA provides the programmable logic resources to host the
Configured Functional Units (CFUs). The C-Cache serves as a temporary cache
for configurations before they are instantiated on the MRLA. This is analogous
to the way registers serve as storage for program values. The rest of the config-
uration cache hierarchy consists of the C1 cache connected to external memory.
The Configuration Register File (CRF) consists of a set of configuration registers
(CRs). Each CR serves as an alias to either a configured functional unit or a
configuration allocated in the C-Cache. Most of the AEPIC instructions take a
configuration register as an operand. These are the AEPIC instructions that per-
form operations such as delete a CFU, etc. The instruction refers to the CFU by
its alias—the configuration register. For example, the delete CFU operation in
AEPIC is DELC cr, L, p. Here, cr is the configuration register associated with
the desired CFU, L is the latency assumed by the compiler for this operation
and p the predicate guard for this operation.

We shall now give a more detailed description of the MRLA as it is pertinent
to the compiler optimizations discussed in the rest of the paper. The Multi-
context Reconfigurable Logic Array (MRLA) is the primary resource used for
hosting the configured functional units. Like a typical Field Programmable Gate
Array (FPGA), the MRLA is a two dimensional region of the processor die that

5

CRF

GPR,FPR,BTR,...

C-Cache
C1

MRLA

ARF

L1

L2

I-Cache

F1 F2 F3

MultiOp

F/D

Fig. 2. AEPIC machine model

is composed of programmable logic and interconnect blocks. We shall use the
term Programmable Element (PE) to refer to both the programmable logic block
as well as the programmable interconnect block. Each PE is associated with a
configuration instruction (its “program”) which determines the behavior of that
programmable element. Any given logic design can be emulated on the MRLA by
supplying suitable configuration instructions for all the programmable elements
of the array. In the context of AEPIC machines, these logic designs are the CFUs.

In a standard FPGA only one configuration instruction is associated with
each programmable element. This implies that only one logic design can be resi-
dent on the array until the device is reconfigured (i.e., a new set of configuration
instructions are associated with the programmable elements of the array). In an
MRLA, each programmable element can be associated with multiple configura-
tion instructions. This allows multiple logic designs (CFUs) to be simultaneously
resident on the MRLA. The desired logic design can be activated by selecting
the appropriate configuration instruction for each of the programmable element.

Configuration instruction slots for each PE (called the configuration memory)
are stored in an ordered sequence and all PEs have the same number (D) of
configuration instruction slots. MRLA takes an input called context id which
can take values from 1 to D. A value of k to the context id input selects the

6

configuration
store

active
context

MRLA

=3

PE136

PE

3

6

1

Fig. 3. Structure of MRLA

execution
contexts

active
context

ARF

slice

C-cache

MRLA

Fig. 4. MRLA multiple contexts

kth configuration instruction from the configuration memory as the instruction
for each PE. The kth confi guration instruction is referred to as the active
configuration instruction for that PE.

The set of configuration instructions with identical index in the configuration
memory of a PE is referred to as an execution context. The execution con-
text that is associated with currently active configuration is called the active
context. MRLA can be effectively viewed as an array of FPGAs, one array per
execution context; and the context id serves as the index into this array. Selec-
tion of an execution context, makes all the CFUs of that context available for
instruction processing by subsequent instructions.

With this brief introduction to our proposed AEPIC architecture, we shall
now deal with the compilation issues of such a machine.

4 Compilation Framework

Inputs to an AEPIC compiler are (a) the application source program written
in a high level language such as C/C++, (b) a description of the particular
instance of the AEPIC processor described in a machine description language
(c) a library containing parameterized configurations for popular computational
routines such as FFT, DCT, etc. The input source code may be instrumented
with pragmas intended to give partitioning/mapping hints to the compiler. These
cues are communicated to different phases of the compilation process through
the intermediate code representations.

The first phase is a standard lexical and syntactic analysis phase. The par-
titioning module will help delineate portions of the program that might benefit
from execution on the configurable portion of the target. The partitioning phase
is followed by two independent phases that may be performed in parallel: the
high-level optimization phase and the operation synthesis phase. In the high-
level optimization phase, the code to be executed on the hardwired functional
units (which execute instructions from the AEPIC ISA) is optimized as is typ-
ically performed in a standard ILP compiler. The instruction synthesis phase

7

generates suitable mappings of the code partitions identified by the partitioning
phase. Each of these mappings are packaged as custom operations. The ma-
chine description is updated with the synthesized instructions. The instruction
synthesis phase may generate multiple implementations for the identified par-
titions reflecting different performance/device-area tradeoffs. The configuration
selection phase tags different regions of the intermediate code with semantically
equivalent custom operations. At the end of the configuration selection phase,
every region of the code identified for mapping on to the configurable part of
the target has a unique configuration associated with it.

Subsequent phases of the compilation are similar in structure to back-end
phases of a typical ILP compiler suitably adapted to consider the special char-
acteristics of configurations/CFUs. A typical ILP compiler back-end comprises
of (at the minimum) the following phases, in sequence: pre-pass scheduling, reg-
ister allocation, post-pass scheduling and code generation. In addition to these,
AEPIC compilation introduces an extra phase: configuration allocation. The con-
figuration allocation phase is aimed at optimizing allocation of resources for
configurations—a task analogous to that of register allocation. The resources
meant for configuration are the C-cache and the MRLA. These resources are
independent of those intended for register allocation. Hence, configuration al-
location may be performed in parallel or in any order with respect to register
allocation. The main task of the scheduler is to reduce the critical path through
the code by masking reconfiguration overheads.

In the above framework, the scheduled and allocated code is transformed into
machine code, which is then translated to object code for simulation. Simulation
yields correctness as well as performance data for the program on the given input
data. The execution profile can be re-instrumented into the IR for profile based
optimizations.

4.1 Partitioning

Partitioning is the task of determining the set of code segments (referred to
as candidates) in the application which may be synthesized as application spe-
cific instructions. These application specific instructions are implemented on the
MRLA as configured functional units.

The partitioning module takes as input (a) an intermediate code representa-
tion of the source program and (b) the machine description of the target AEPIC
processor and identifies regions of the intermediate code that can benefit from
mapping to the MRLA. Although not necessary, the partitioner can only benefit
from an execution profile of the application. The execution profile gives execution
frequencies of different regions of the intermediate code. This information can
be obtained by compiling to a base EPIC architecture and re-instrumenting the
intermediate code with the profile data from the simulator. Since the reconfigu-
ration overhead can be quite large, it may not pay to reconfigure the processor
for a certain segment of the code if it is known that this section will rarely be
executed. The execution profile can be used by the partitioner to eliminate such
code segments from consideration for mapping onto the MRLA.

8

The code-partitioner is composed of four main steps. These steps are per-
formed in sequence on each intermediate representation that is created during
the compilation process.

1. Profile. The profile phase is composed of four steps:

– Instrument: The IR nodes are tagged with code for gathering the execution
profile for each node. So for example, in a basic block IR, each basic block
will be associated with a “execution frequency” variable and a piece of code
at the entry of the basic block which updates this variable whenever control
enters the basic block.

– Translate: During this step the instrumented IR is translated to C language
code which is then compiled using the native compiler to yield a semanti-
cally equivalent (to the application program) executable with one additional
attribute: this executable also gathers the runtime properties of the program
as specified by the instrumentation code.

– Execute: The execute step runs the instrumented and compiled application
using the inputs associated with the application program.

– Re-instrument: After the execute step, the application generates the execu-
tion profile (written out by the instrumented code) and re-instruments the
starting IR with the actual execution profile values (such as the frequency
of execution of a basic block, etc.)

2. Analyze. After the profile step, the IR is tagged with the execution profile.
This information is used to identify the most frequently executing regions of the
code. The analyze phase traverses the IR and determines various properties of
the program that may be useful in determining if a region is a candidate for
partitioning. Some of these properties are bit-widths/types of variables, whether
certain arrays are constants or are bounded of known dimensions, etc.

3. Identify. The identify step performs a bottom-up traversal of the IR and
tags each region as a candidate for mapping using certain heuristics based on
control structure, operation types and other attributes identified in the analyze
phase. The identify phase also considers machine resource constraints (from the
machine description database) and any user supplied cues transmitted through
the IR, in deciding whether a region of the IR is a feasible candidate for mapping.

4. Coalesce. The coalesce phase merges adjacent regions marked by the identify
phase if the merged regions can still be accommodated on the MRLA assuming
the given machine constraints.

4.2 Instruction Synthesis

Instruction synthesis is a systematic technique for defining new instruction set for
a given micro-architecture. The process typically involves analyzing the bench-
mark(s) to infer the most suitable operation repertoire based on its computa-
tional characteristics for the intended micro-architecture. In certain cases the
micro-architecture itself is synthesized in parallel with the instruction set.

9

The Instruction Synthesis (IS) module takes a list of candidate partitions that
have been identified for mapping onto the programmable logic and synthesizes
a set of functional units that can implement all the computations of the code
partitions. In addition to the candidate partitions list, the IS module may also
take as input, a library of pre-synthesized macros for various basic operators and
frequently used kernels such as FFT, DCT, FIR/IIR filters, etc. The purpose
of this library is to speedup the process of mapping a given partition to the
MRLA. It helps to keep these pre-synthesized macros generic so that they are
applicable to a wide range of the target programmable logic parameters, and
also accommodate variations in the structure of the input partitions.

4.3 Configuration Selection

After the partitioning and instruction synthesis phase, all the regions of the
intermediate code that may be mapped to the MRLA have been identified.
Each of the candidate partitions can now be replaced with one of the equivalent
configurations synthesized by the IS phase. Configuration Selection (CS) is the
problem of determining which semantically equivalent synthesized configuration
(custom instruction) to associate with each candidate partition that is mapped
to MRLA.

We extend the EPIC code generation path to include configuration selec-
tion. The key difference compared to traditional instruction selection is that the
selection can happen at multiple levels in the IR. Configuration selection can
happen for leaf level operations as well as higher level structures such as groups
of instructions, program statements, loops, and functions, etc.

4.4 Configuration Allocation

After configuration selection, some of the nodes of the intermediate code may be
tagged with application specific instructions. The configuration selection mod-
ule does not consider availability of resources on chip when it decides on which
configuration to assign with each partition that is synthesized into application
specific instruction. Any realistic AEPIC processor would have limited pro-
grammable logic resources available for CFUs and hence it is quite possible that
all the desired configurations cannot be accommodated on chip simultaneously.

Configuration Allocation (CA) is the problem of optimally allocating/de-
allocating on-chip resources that are intended for holding configurations (on
C-cache) or CFUs (on MRLA). Poor allocation of resources for configurations
can lead to long periods of processor stalls caused either due to waiting for
the configurations to load into the MRLA or due to excessive thrashing in the
configuration memory hierarchy. Hence, optimal allocation of configurations to
C-cache and MRLA resources is critical for achieving high performance on an
AEPIC processor. In addition, we would like the allocation algorithm itself to
be time and space efficient.

This problem is analogous to the problem of implementing virtual memory on
systems with limited physical memory or to the problem of allocating registers

10

for program variables performed in most standard compilers. In the remainder
of this section, we present a formal definition of the configuration allocation
problem and relate it to the well studied problem of register allocation. We
show how extensions to the register allocation techniques yield solutions to the
configuration allocation problem.

Register Allocation (RA) allocates program variables (also referred to as
temporaries) to registers in order to minimize the overall number of accesses to
external memory. Fundamentally, both register allocator and configuration allo-
cator perform the same task—allocation of on-chip resources for program values
(variables in the case of RA and configurations in the case of CA). Configuration
allocation differs from register allocation in the following ways:

1. Non-uniform allocation units. Sizes of configurations are typically much
larger and vary widely compared to the sizes of data values stored in registers
which are much smaller and almost always uniform in size.

2. Heterogeneous resources to be allocated. There are two types of local memo-
ries for configurations: (1) the C-cache and (2) the MRLA. These resources
differ in their capacities, access (read/write) costs and sizes of allocation
units. There is only one type of resource to be allocated in register alloca-
tion - the register set.

3. Immutable values. Currently, AEPIC architecture configurations are im-
mutable. So memory write back of configurations is not an issue.

4. No copies or moves. AEPIC does not provide any architecturally visible
features to create copies or move configurations with in the MRLA or the
C-cache.

There are two types of storage classes are available for hosting configurations:
(1) C-cache and (2) MRLA. Allocated configurations are present in exactly one
of these storage classes. Every allocated configuration whether it is on the MRLA
or in the C-cache is associated with a distinct configuration register from the
configuration register file (CRF). The unit of allocation in the C-cache is a C-
cache block and on the MRLA it is a slice. All configurations are constrained to
consume an integral number of consecutive slices in the MRLA. Configuration
data for each MRLA slice requires an integral number of blocks in the C-cache.
The basic steps involved in using configurations are:

1. Allocate a configuration register with the configuration to be loaded.
2. Allocate requisite number of blocks in the C-cache for the configuration. If

the C-cache is insufficient for the configuration, then the allocation fails and
application is aborted. If the configuration is smaller than the C-cache size
but the total free space is less than that which the configuration requires,
then some of the resident configurations are evicted (since configurations are
immutable, they are simply deleted and not written back to memory).

3. Schedule the loading of configuration data into the C-cache into the allocated
blocks.

4. Allocate consecutive slices on the MRLA to load the configuration that was
loaded into the C-cache (to instantiate the CFU corresponding to the con-
figuration).

11

5. Schedule transfer of configuration data from the C-cache to MRLA.
6. One or more operations are executed on the CFU.
7. At some point if the MRLA resources are required for another CFU or if this

configuration will not be used any more, then it is evicted to the C-cache (if
it may be used again) or just deleted from MRLA.

8. Allocated configuration register is freed - it can be allocated to a new con-
figuration.

Note that the same configuration register refers to the configuration data
when it was in the C-cache and to the corresponding CFU when loaded onto
the MRLA. Once the configuration is completely moved to MRLA from the C-
cache, the C-cache resources allocated for the configuration may freed since it is
wasteful blocking those resources as long as the configuration data is available
on the MRLA. However, in certain cases it might be useful to architecturally
expose the deallocation operation. For example, if multiple instances of the CFU
corresponding to the configuration are needed on the MRLA, it might be more
efficient to copy the configuration data from the C-cache to the MRLA once for
each of the CFU instances instead of loading from external memory into the
MRLA to make copies of the CFU already available on the MRLA.

4.5 A Simplified AEPIC Allocation Model

For the remainder of this section we consider a simplified version of the config-
uration allocation problem. In the simplified version, the machine is assumed to
contain N configuration registers and each “virtual” configuration in the pro-
gram intermediate code specifies an integer k which is the number of physical
configuration registers it requires. The only difference between this problem and
the conventional register allocation is that, in the conventional register alloca-
tion problem, each virtual register (also called program temporary) is assigned
to a single physical register.

A live range is an isolated and connected group of nodes in the control flow
graph that connects the definitions and uses of a given program variable. It is
the principle data structure for register allocation. Two live ranges interfere if
one of them is live at the definition point of the other. As the reader may have
already noted, there is a close resemblance between register live ranges and con-
figuration. The algorithm to construct the interference graph for configurations
is very similar to that for register live ranges.

Pruning For Configuration Allocation If there are program regions where
the total resource requirement of configurations that are live at that point ex-
ceeds the available resources on the processor, configuration allocation will fail.
Analogous to the concept of register pressure, we define the total resource re-
quirement at any program point the resource pressure at that point. Pruning is
a technique of preprocessing the live ranges of configurations to ensure that the
resource pressure never exceeds the total resources available on the machine.

12

Pruning involves (a) determining the set of live ranges to split and, (b) de-
termining the right split points for the selected live ranges. Once a live range
is split, compensation code needs to be inserted to fetch the values (configura-
tions) for the uses encountered in the second (or later, if multiple splits were
performed) part of the live range. One downside of reducing the resource pres-
sure is the additional time taken for executing the compensation code. Hence
pruning decisions cannot be made arbitrarily. In addition to the resource pres-
sure, execution frequency should be taken into account before a selecting a live
range for splitting since that determines the number of times the compensation
code would be executed.

We propose a pruning technique based on the hierarchical technique proposed
by Callahan and Koblenz [6]. In their algorithm, gaps between references to a
register in a live range are identified. These are possible regions which can be
spilled to memory. The maximal length live-range gap is referred to as wedges
in [9]. Non-overlapping and maximal wedges are identified using the control
tree [20]. The choice of wedge s to prune is a function of (a) the runtime cost
of compensation code that would be added in the pruned region and, (b) size
of the region of the program region that would benefit from the pruning deci-
sion. Our algorithm takes into account the special requirements of configurations
(their non-uniform sizes - which implies non-uniform spill costs; immutability -
which implies stores to memory are not required) and also enhances the scheme
with regard to identifying spill candidates and spill locations based on execution
profile as well. The algorithm, adapted from the register live range pruning al-
gorithm from [9] and is described in Algorithm 1. The relevant parameters and
the data-structures used by the algorithm are listed below.

R = total number of recourse units available for allocation
C = configurations (candidates) to be allocated
T = Control tree of the program

ResUnits[c] = number of resource units required by the configuration c

Live[n] = set of configurations live in control node n
Refs[n] = configurations that are referenced in control node n

Wedges[n] = list of candidates with wedges that have heads at n
Freq[e] = number of times control traversed along edge e

Excess[n] =

{∑
c∈Live[n]ResUnits[c]−R n ∈ T.Leaves,

Maxc∈T.Children[n]{Excess[c]} n /∈ T.Leaves.

LiveUnits[n,C] =

1 n ∈ T.Leaves ∧ C ∈ Live[n],
0 n ∈ T.Leaves ∧ C /∈ Live[n],∑
p∈T.Children[n] LiveUnits[p, C] n /∈ T.Leaves.

13

4.6 Graph Multi-coloring Configuration Allocator (GMCA)

Here we provide a simple configuration allocator called Graph Multi-coloring
Configuration Allocator (GMCA), based on Chaitin’s graph coloring register al-
locator [7, 8] wi th the spill and split decision modifications suggested by Hansoo
and Leung [18] for the simplified AEPIC configuration resource model. All past
graph coloring based register allocation schemes are based on the idea of sim-
plification [17]. If a graph G contains a node v with fewer than K neighbors
and if G − v can be colored with K colors, then G is K colorable. In the case
of configuration allocation, multiple colors may be allocated to each node and
hence it calls for a stronger version of the simplification step. We first state and
prove this simplification lemma and then show it is used in our GMCA algorithm.

Let G(V,E,w) be an undirected graph where w : v → ZZ is a weight function
defined on the vertices. Let C : v → S be a function on the vertex set such that
S ⊂ {1, . . . ,K}. Then C is a valid K-multi-coloring of the graph if |C(v)| = w(v)
and ∀e ∈ E,where e = (u, v), C(u) ∩ C(v) = ∅.

Lemma 1. [Simplification lemma]
Let vertex v ∈ V be such that

∑
u∈Adj(v) w(u) ≤ K − w(v). Let G′ = G − v be

the subgraph obtained by removing v and its incident edges from G. If G′ can be
K-multi-colored, then so can G.

Proof: Let C be the K-multi-coloring of G′. Let Sv =
⋃
u∈Adj(v) C(u). By def-

inition of C, |C(u)| = w(u). This implies that |Sv| ≤
∑
u∈Adj(v) w(u). Given

that
∑
u∈Adj(v) w(u) ≤ K − w(v), it implies that |Sv| ≤ K − w(v). Consider

Cv = {r|r ∈ {1, . . . ,K}, r /∈ C(u)}}. Clearly, |Cv| ≥ K−w(v). Let Cw(v)
v be any

w(v) sized subset of Cv. Let

C ′(p) =
{
C(p) if p ∈ V (G′)
C
w(v)
v if p = v

Then, C ′ is a valid K-multi-coloring of G.
A vertex v ∈ V such that

∑
u∈Adj(v) w(u) ≤ K − w(v) then the vertex is

called unconstrained else it is referred to as an constrained node. Pseudo-code
for the Graph Multi-coloring Configuration Allocator (GMCA) based on the
simplification lemma is presented in Algorithm 2.

Phases of graph multi-coloring configuration allocator.

1. Build: Live ranges are computed and the interference graph is constructed
during this phase.

2. Coalesce: The coalesce step removes any unnecessary move (copy) instruc-
tions effectively merging the live ranges corresponding to the values con-
nected by the move instruction.

14

3. Simplify: The simplification lemma is the basis for this step. Unconstrained
nodes are selected and pushed onto the color stack and removed from the
interference graph. Since the simplification lemma guarantees that uncon-
strained nodes can always be colored if the reduced graph is colorable, they
are removed from the graph. This step in turn might enable other constrained
nodes to become unconstrained. If so, then it is repeated until either the
graph is empty or all nodes are constrained.

4. Prioritize: Priorities are assigned to constrained live ranges. Live ranges are
selected for coloring in order of their priority. Priority functions capture the
expected benefit of allocating the live range to on chip resources as opposed
to external memory.

5. ProcessNode: The highest priority node is selected for coloring. For each
node, just as in [10], a Forbidden set is maintained which indicates the set of
colors (resources) that have already been allocated and hence cannot be used
for the current node. If there are enough available colors that can satisfy
the color requirement for the current node, the node is colored and the
Forbidden sets of its neighbors are updated to reflect the allocation. If the
set of available colors cannot satisfy the demand for this node, then the
node is either spilled or the live range split depending on which one is most
beneficial.

6. ProcessStack: Unconstrained nodes eliminated (pushed onto the color stack)
during the simplify phase are colored in the reverse order in which they were
removed from the graph. The original graph is incrementally reconstructed
by adding one node at a time from the top of the color stack and is assigned
the color vector. The simplification lemma guarantees that enough colors are
available to color the inserted node.

5 Conclusion

In this paper, we defined the problems encountered in each of the phases of the
compilation path for AEPIC. In some cases we proposed techniques that may
be used to solve these compilation problems. Substantial research still needs to
be done and we do not make any claims on whether any of these techniques are
sufficient to fully exploit the capabilities of AEPIC processors.

References

1. Anant Agarwal, Saman Amarasinghe, Rajeev Barua, Matthew Frank, Walter Lee,
Vivek Sarkar, Devabhaktuni Srikrishna, , and Michael Taylor. The RAW compiler
project. In Proceedings of the Second SUIF Compiler Workshop, pages 21–23,
Stanford, CA, August 1997.

2. P. M. Athanas and H. F. Silverman. Processor reconfiguration through instruction-
set metamorphosis. IEEE Computer, 26(3):11–18, March 1993.

3. P. Bertin, D. Roncin, and J. Vuillemin. Introduction to programmable active
memories. In J. McCanny, J. McWhirther, and E. Swartslander Jr., editors, Systolic
Array Processors, pages 300–309. Prentice Hall, 1989.

15

4. P. Bertin, D. Roncin, and J. Vuillemin. Programmable active memories: a perfor-
mance assessment. In G. Borriello and C. Ebeling, editors, Research on Integrated
Systems: Proceedings of the 1993 Symposium, pages 88–102, 1993.

5. Srihari Cadambi, Jeffrey Weener, Seth Copen Goldstein, Herman Schmit, and
Donald E. Thomas. Managing pipeline-reconfigurable fpgas. In Proceedings
ACM/SIGDA Sixth International Symposium on Field Programmable Gate Ar-
rays, February 1998.

6. D. Callahan and B. Koblenz. Register allocation via hierarchical graph coloring.
In Proceedings of the ACM SIGPLAN ’91 Conference on Programming Language
Design and Implementation, volume 26, pages 192–203, Toronto, Ontario, Canada,
June 1991.

7. G. Chaitin, M. Auslander, A. Chandra, J. Cocke, M. Hopkins, and P. Markstein.
Register allocating via coloring, 1981.

8. Gregory J. Chaitin. Register allocation and spilling via graph coloring. SIGPLAN
Notices (Proceedings of the SIGPLAN ’82 Symposium on Compiler Construction,
Boston, Mass.), 17(6):98–105, 1982.

9. F. Chow, K. Knobe, A. Meltzer, R. Morgan, and K. Zadeck. Register allocation.
10. Fred C. Chow and John L. Hennessy. Register allocation by priority–based coloring.

In Proceedings of the ACM SIGPLAN 84 Symposium on Compiler Construction,
pages 222–232, New York, NY, 1984. ACM.

11. G. Estrin. Organization of computer systems – the fixed plus variable structure
computer. In Proceedings of the Western Joint Computer Conference, pages 33–40,
1960.

12. M. Gokhale, W. Holmes, A. Kopser, S. Lucas, R. Minnich, D. Sweely, and D. Lo-
presti. Building and using a highly parallel programmable logic array. IEEE
Computer, 24(1):81–89, January 1991.

13. C. Ebeling D. C. Green and P. Franklin. RaPiD – reconfigurable pipelined dat-
apath. In R. W. Hartenstein and M. Glesner, editors, Field-Programmable Logic:
Smart Applications, New Paradigms, and Compilers. 6th International Workshop
on Field-Programmable Logic and Applications, pages 126–135, Darmstadt, Ger-
many, September 1996. Springer-Verlag.

14. S. Hauck, T. W. Fry, M. M. Hosler, and J. P. Kao. The chimaera reconfigurable
functional unit. In IEEE Symposium on FPGAs for Custom Computing Machines,
pages 87–96, 1997.

15. S. Hauck, M. M. Hosler, and T. W. Fry. High-performance carry chains for fpgas.
In ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
pages 223–233, 1998.

16. John R. Hauser and John Wawrzynek. GARP: A MIPS processor with a recon-
figurable coprocessor. In J. Arnold and K. L. Pocek, editors, Proceedings of IEEE
Workshop on FPGAs for Custom Computing Machines, pages 12–21, Napa, CA,
April 1997.

17. A. Kempe. The geographical problem of the four colors. Amer. J. Math. 2, 193–
200., 1879.

18. H. Kim and A. Leung. Frequency based live range splitting. Technical report,
ReaCT-ILP Laboratory, New York University, 1999.

19. Walter Lee, Rajeev Barua, Devabhaktuni Srikrishna, Jonathan Babb, Vivek
Sarkar, Saman Amarasinghe, and Anant Agarwal. Space-time scheduling of
instruction-level parallelism on a RAW machine. MIT/LCS Technical Memo TM-
572, December 1997.

20. S. Muchnick. Advanced compiler design and implementation, 1997.

16

21. R. Razdan and M. D. Smith. A high-performance microarchitecture with hardware-
programmable functional units. In Proceedings of the 27th Annual International
Symposium on Microarchitecture, pages 172–80. IEEE/ACM, November 1994.

22. Rahul Razdan. PRISC: Programmable Reduced Instruction Set Computers. PhD
thesis, Harvard University, May 1994.

23. Mario R. Schaffner. Processing by data and program blocks. IEEE Transactions
on Computers, 27(11):1015–1028, November 1978.

24. M. Schlansker and B. Rau. EPIC: An architecture for instruction-level parallel pro-
cessors. Technical report HPL-1999-111, Hewlett-Packard Laboratories, Technical
Publications Department, 1501 Page Mill Road, Palo Alto, CA 94304., 2000.

25. S. Talla. Adaptive Explicitly Parallel Instruction Computing. PhD thesis, New
York University, 2000.

26. Stephen M. Trimberger. Field-Programmable Gate Array Technology. Kluwer Aca-
demic Publishers, 1994.

27. Triscend Corp., Mountain View, U.S.A. Triscend A7 Configurable System-on-a-
Chip Family Data Sheet, 2001.

28. John Villasenor and William H. Mangione-Smith. Configurable computing. Sci-
entific American, pages 66–71, June 1997.

29. J. Vuillemin, P. Bertin, D. Roncin, M. Shand, H. Touati, and P. Boucard. Pro-
grammable active memories: Reconfigurable systems come of age. IEEE Transac-
tions on VLSI Systems, 4(1):56–69, 1996.

30. E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim,
M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal. Baring
it all to software: RAW machines. IEEE Computer, pages 86–93, September 1997.

31. M. J. Wirthlin and B. L. Hutchings. DISC: The dynamic instruction set com-
puter. In J. Schewel, editor, Proceedings of the International Society of Optical
Engineering (SPIE). Field Programmable Gate Arrays (FPGAs) for Fast Board
Development and Reconfigurable Computing., volume 2607, pages 92–103, Philade-
phia, PA, 1995.

32. Xilinx, San Jose, CA. The Programmable Logic Data Book, 1994.

17

Algorithm 1 Pruning
function InitPrune(N) {

if (N ∈ T.Leaves) {
LivePart[N] ← Live[N];
Excess[N] ← (

∑
n∈Live[N]

ResUnits[n])−R;

∀C ∈ Live[N] : LiveSize[C,N] ← |C|;
} else {

∀M ∈ N.children : InitPrune(M);
LivePart[N] ← ∪M∈N.childrenLivePart[M];
Refs[N] ← ∪M∈N.childrenRefs[M];
Excess[N] ← MaxM∈N.childrenExcess[M];
∀C ∈ LivePart[N] : LiveSize[C,N] ←

∑
M∈N.children LiveSize[C,M] ;

∀C ∈ Refs[N] ∧ ∀M ∈ N.children:
if (C /∈ Refs[M] ∧ C ∈ LivePart[M])

NewWedge(C,M);
}

}
function UpdatePressure (W,N) {

if (N ∈ T.leaves) {
Live[N] ← Live[N] - {W};
Excess[N] ← Max{(

∑
n∈Live[N]

ResUnits[n])−R, 0};
} else {

Excess[N] ← Maxm∈N.Children{UpdatePressure(W,m)};
}
return Excess[N];

}
function Prune (N) {

PrioritizeWedges(N);
while (Excess[N] > 0 ∧ |Wedges[N]| > 0) {

W ← Wedges[N].top();
PruneWedge(W);
UpdatePressure(W,N);

}
∀M ∈ N.Children ∧ Excess[N] > 0: Prune(M);

}

18

Algorithm 2 Graph multi-coloring configuration allocator
function GMCA(CFG cfg) {

G ← Build(cfg);
while (G 6= ∅) {

while (∃v|v is unconstrained) {
S.push(v);
G ← G− {v};

}
if (G 6= ∅) {

ComputePriorities(G, h);
v ← HighestPriorityNode(G);
if (IsColorable(v)) {

Color(v);
} else {

G ← Split(G, v);
}

}
}
ProcessStack(S);

}
function IsColorable(v) {

return (v.ColorReq ≥ (K −
∑

0<i≤Kv.Forbidden[i]));

}
function Color(v) {

availColors ← v.Forbidden;
P ← Min{i|0<i≤K}{

∑
0<k≤i availColors[k] = v.ColorReq};

mask ← 1P 0N−P ;
v.Assignment ← v.availColors ∧mask;
∀u|u ∈ Adj(v) : u.Forbidden ← u.Forbidden ∨ v.Assignment;

}

