
Design of Clocked Circuits Using UML

Abstract
embedde
technique
complex
has been
but the c
In this pa
design a c
the digit
software
simulatio

With t

designers
can man
productiv
is a prov
been use
applicati

Howev
semantic
to specif
not interc

In this
we can u
system
automati
include s
framewo
as statec
SystemC
generatio
synthesiz
very hi
impleme

Figure 1 O

Figure
UML
requirem
All these
translator

Santhosh Kumar Pilakkat
Embedded Systems-SDR Lab

Institute for Infocomm Research, Singapore
E-mail: pilakkat@i2r.a-star.edu.sg

S

C
D

Zhenxin Sun, Weng-Fai Wong, Yongxin Zhu
School of Computing

National University of Singapore
E-mail: {sunzhenx, wongwf, zhuyx}@comp.nus.edu.sg
– Clocking is an essential component of any
d system design. However, traditional design
s are either short of clocking support or too
for users. The Unified Modeling Language (UML)
proposed as design tool in real time system design,
locking semantics has not been properly dealt with.
per, we will present our experience of using UML to
locked system. In particular, UML is used to model
al down converter, an essential component of
radios. Our tool chain automatically generates the
n as well as synthesizes the final implementation.

I. INTRODUCTION

he increasing complexities of embedded systems,
 have been searching for new methodologies that
age the complexity as well as yielding high
ity.[2] The Unified Modeling Language (UML)
en modeling and specification language that has
d widely in development of complex software

ons [13].
er, UML lacks natural support for timing

s. Previous works have tried to use extra notations
y the clock settings. Most of these notations are
hangeable and non-reusable.
 paper, we address this problem by showing how
se existing UML notations to specify a real time
with clock settings. This design is then

cally translated into detailed implementations that
imulators as well as synthesized hardware. In our
rk, UML’s class and component diagrams, as well
harts are translated into an intermediate form in
. Clock settings are used during the SystemC code
n. At the end of this top-down design flow,
able SystemC models are generated. Therefore,

gh level specifications can be lowered to
ntations that are very close to hardware [11].

ur Design Flow of the Clocked Chips

 1 shows our design flow. We start` with formal
models, specifying different aspects and
ents of the system using different UML diagrams.
 diagrams are used as input to the translator. The
 automatically generates the system level

SystemC implementations from the model.

II. RELATED WORKS AND SCOPE OF OUR

WORK

Lack of support for clocks is a challenge for the several
efforts similar to ours that use UML as the design vehicle.
In YAML[10], the system structure is modeled using UML
notions with extensions. Some results have been reported
using both class diagram and statechart to generate SoC
designs without clock specifications [3,4,12]. In another
approach, extended task graphs were used to capture the
system’s behavior as well as the clock specification [5].

 Our approach differs from others in that rather than
formulating another system description language, we used
standard UML for the task. In particular, we use I-logix’s
Rhapsody to build UML models and specify clock setting
in the component diagrams. The following features are
unique in our approach:

1. To ensure the correctness and reusability, we use the
existing UML notations available in Rhapsody 4.2
with customization to build executable UML models.

2. Clock settings of components are specified using
component diagram. They are used in the code
generation phase.

3. XMI, an interchangeable UML representation, is used
as the input of our translator which then generates
SystemC code directly.

4. The generated SystemC models can be simulated
using the SystemC simulator, and the implementation
can then be easily tested and verified.

Figure 2 UML to SoC design flow

Figure 2 shows the proposed code generation flow.
Starting with the system’s specification, UML models are
built. Verification and refinement can be done at several
levels to test whether the requirements are completely and
correctly captured. The system is first translated into
transaction level modeling (TLM) level model. This can be

tructure Behavior Clocking

lass
iagram

Statechart
Diagram

Component
Diagram

Translator

 System Level Implementation

Gate model

Specifications

UML

TLM model

Behavioral model

XMI

RTL model

Synthesis

Refinement

done fairly rapidly. When there is sufficient confidence
obtained from simulation, the behavioral and RTL level
models can be generated. These can be further compiled
into gate level models.

In this top-down flow, testing and verification can be
done at all the stages. The controlled lowering of the
model with extensive testing at every stage is essential for
the successful design and deployment of complex
embedded solutions.

III: IMPLEMENTATION OF DESIGN FLOW

Our design flow is based on UML notations and

SystemC. In the design flow, designers only need to work
at the UML level and the rest are automated, thereby
boosting productivity. In rest of this section, we will
introduce the details of how we capture the system
specification and SystemC code generation.

Class Diagram Semantics and Translation: Class
diagrams are used to model the structural information of a
design.[7] Classes are used to model the system
components and communication interfaces. A class has
attributes and operations. Each attribute has a type,
publicity and static status. Functions have return types,
arguments types and names, as well as the publicity and
static status.

Each class will be translated into a SystemC sc_module.
To model different module elements, we make use of the
stereotype of class. There is a mapping from SystemC
elements to the UML stereotypes. To model the details of
the SystemC design elements, we introduced three
extensions using UML stereotypes mechanism. Table 1
shows the mapping between SystemC elements and UML
stereotypes.

SystemC elements UML stereotypes
Modules Normal class
Interfaces <interface>
Primitive channel <pri_channel>
Hierarchical channel <channel>

Table 1 Mapping from SystemC elements to UML stereotypes

Aggregation is used to model the ‘contains’ information
of components. If A has aggregation relation with B, then
B will be modeled as component of A.

Associations among the classes are used to model the
communication relationships between the components.
These relations include association and aggregations. If
two components have message or signal exchange, an
association will be placed in between. The direction of the
association indicates the direction of the communication.

Statechart and Component behaviors: The statechart
formalism was introduced by Harel [1]. A statechart design
essentially consists of states and transitions like a finite
automaton. Statechart diagrams in UML allow for guards
on transitions, propagated transitions, actions on
transitions, actions on state entry, activities that last as long
as a states, and actions on exit. Figure 3 shows an example
of a statechart consisting of a simple state and an initial
state.

Dynamic behavior of a UML class is expressed in terms
of state transition diagrams of simple states which in turn
is translated as a process. SystemC provide three different
types of processes: sc_thread, sc_cthread, and sc_method,
which we use in different levels of abstraction[8]. A
local variable called a state is used to hold the current state
identifier, and it is assigned to the value of initial state
identifier during the initialization stage. Processes keep
transiting between states until a final state is reached.
When the process enters a new state, it first performs the
actions_on_entry. Then the reaction is performed. For
most of time, processes stay in one state, waiting for some
events. Upon receiving an event, a process will perform
the guard action and change the value of state accordingly.
When it exits the state, the action_on_exit will be
performed.

State transitions are translated into variable assignments
to states in main loop. Each transition corresponds to
assigning a new state identifier to the state variable. The
assignment will be done after the action_on_exit actions
are performed.

Figure 3. A Statechart Example

if (true)//there is no final state
{
 switch(state)
 {
 case state waitdata:
 wait for event indata
 if (N<48){
 processData();
 N++;
 state=waitdata;
 break;
 }
 else{
 processData();
 N=0;
 State=writeout;
 Break;
 }
 case init:
 if(true) initialization();
 default:
 state=init;
 }
}
The above code is the template used to create the state

machine based on the statechart in Figure 3. Using this
template, the generated code will perform the behaviors
defined in the statechart diagram.

Clocking and Component Diagram: Clock setting is an
essential component in embedded system design. In the
most general case, different hardware components may be
clocked differently. Clock rates will affect the overall
speed of the final hardware, how the component
communicate, cost, power, and other important issues.

working

datain/
if(N<48){
 processData();
 N++;}
Else{
 processData();

SendDataToGfilter(
);
 N=0;

/initialize()

Furthermore, in synthesized code, processes are sensitive
to clocks. The clock rate will therefore directly determine
their behavior.

Figure 4 Example of Component Diagram

It is quite natural to describe clock settings as a property
of components. Therefore, we chose to use the component
diagram to model clock settings. Here again, we make use
of stereotypes. In the Figure 4, components are the module
instances and the stereotypes of the components are set as
CLOCKx, where x is the period of the clock. In Figure 4,
we have the clock settings of two components. There are
one instance of Component_A and one instance of
Component_B. The clock period of Component_A is set to
be 1ns, while Component_B is 2ns. For components
without explicit clock setting, a default clock with the
period of 1ns is used. The following is the SystemC code
for creating clocks with clock period equals to 1ns, 2ns,
and 10ns.

sc_clock base_CLK; //default clock
sc_clock CLOCK2(“CLOCk2”, 2, 0.5, 0, false);
sc_clock CLOCK10(“CLOCk10”, 10, 0.5, 0, false);

The clock will be connected to the component when they
are defined in the driver class. So far, the clock type is not
included here, however, in similar way as the clock period,
the processor should be able to process the clock type and
translate accordingly.

IV: CASE STUDY

Software Radio: A software radio is a radio whose
channel modulation waveforms are defined in software [9].
Software radios employ a combination of techniques that
include multi-band antennas and RF conversion; wideband
ADC and digital to analog conversion (DAC); and the
implementation of IF, baseband and bitstream processing
functions in general purpose programmable processors.
The resulting software-defined radio in part extends the
evolution of programmable hardware, increasing
flexibility via increased programmability. It also represents
an ideal that may never be fully implemented but that
nevertheless simplifies and illuminates tradeoffs in radio
architectures that seek to balance standards compatibility,
technology insertion and the compelling economics of
today's highly competitive marketplace.

Digital Down Converter: We implemented a digital down
converter (DDC) for the global system for mobile
communications (GSM) - a wireless communication
protocol. Digital radio receivers often have fast analog to
digital converters delivering vast amounts of data.
However, in many cases, the signal of interest represents a
small proportion of that bandwidth. A DDC is a filter that
extracts the signal of interest from the incoming data
stream. Our implementation closely follows the MATLAB
example in Xilinx’s system generator (see Figure 5).

Figure 5 Block Diagram of Digital Down Converter

DDC Structural model and translation: From Figure 5,
we can see that the Digital Down Converter consists of a
mixer, a cascade integrator-comb and two decimators.
The desired channel is translated to baseband using the
digital mixer comprised of multipliers and a direct digital
synthesizer (DDS). The sample rate of the signal is then
adjusted by a multi-stage, multi-rate filter consisting of a
cascade integrator-comb (CIC) filter and two polyphase
finite impulse response (FIR) filters with a decimation
factor of 2. The functions performed in the system are
complex multiplication, and multi-rate filtering. The
overall down sampling rate of the converter is 192:1.

Each of the components is modeled as a class, and they
communicate through event sending (see Figure 8). The
model has been translated into both TLM, behavioral and
RTL levels. We could not find the source code for a similar
DDC in UML or SystemC for comparison. Hence we have
compared just the FIR module of our design with an FIR
example provided by Synopsys. The only modification we
did to the Synopsys code was to ensure that the
coefficients and the bit-widths of the ports are the same as
those of our FIR model. The codes were compiled into
gate-level net-list using Synopsys tc6a_cbacore library,
which targets cell-based array architectures [11]. The same
timing constraints were used on the synthesis runs of both.
By comparisons of the final synthesized hardware, we
found that our generated code uses about 33.25% more
resources than the hand-coded version. We believe that this
is an acceptable overhead given the fact we input the
model using the Rhapsody tool with UML notations.

Figure 6 Component Diagram of Digital Down Converter

Figure 7 N-stage CIC Structure for Analysis Purposes [9]

DDC component model and clock settings: We assign
different clock rate of different DDC components. Figure 6
shows the clocking setting of the DDC components. The
first several components form a stream pipeline. Every

cycle, each of them will process one data and send a data
to its following components. The components will have
rate decimation by factor of 48 after CIC. Therefore, every
48 cycles, CIC only gives 1 output and gfilter has the
clock period of 48ns. The two decimators are running on
low clock rate. Each of them decimates the sample rate by
half. They help to further reduce the sampling rate. The
Digital Down Converter can bring the incoming signal rate
down from 1MHz to 5.21KHz.

Cascade Integrator-comb filter (CIC) can be used to

reduce the sample rate by a large factor. In our example, a
4-stages CIC with 48:1 rate changing is modeled. Error!
Reference source not found. shows a general structure of
CIC. In our example, R=48, N=4 and M=1. We can see
that there is a rate conversion module in the CIC
component. The rate change is modeled as clock rate
change. The sampling rate will be decrease to 1/48, and the
component following the CIC is deployed on clock with
48 slower clock rate. Figure 7 shows a general analytical
structure of CIC.

Figure 8 Class Diagram of Digital Down Converter

V: CONCLUSION

In this paper, we outlined a design flow to develop clocked
hardware circuits using UML-notations. We use Class,
statechart and Component diagrams to model system
specifications. Our experience with the extensive case
study of the design of digital down converter show that
this approach works well in practice. As future work, we
would like to explore further how our approach can be tied
in with real-time software so as to have an integrated
hardware-software specification and modeling tool chain.

REFERENCES

[1] J.R. Beauvais, T. Gautier, P. Le Guernic, R.
Houdebine, E. Rutten. “A translation of Statecharts
into Signal”. Proceedings of the International
Conference on Application of Concurrency to System
Design (CSD'98), IEEE Publ., pages 52-62,
Aizu-Wakamatsu, Japan, March 1998

[2] P Boulet, J.L. Dekeyser, Cedric Dumoulin, Philippe
Marquet. “MDA for SoC Embedded Systems Design,
Intensive Signal Processing Experiment”.
SIVOES-MDA workshop at UML 2003, 20-24
October 2003 San Francisco

[3] S. Bourduas, F. Khendek and Daniel Vincent. “From
MSC and UML to SDL”. COMPSAC. P.153-158
2002

[4] P. N. Green and M. D. Edwards. “The Modelling of
Embedded Systems Using HASoC”. in Proceedings
of DATE 2002 Conference, Paris, France, March
2002.

[5] S. Klaus, S. A. Huss and T Trautmann, "Automatic

Generation of Scheduled SystemC Models of
Embedded Systems From Extended Task Graphs",
Proc. Int. Forum on Design Languages, Marseille ,
France, September 2002

[6] G. Martin, L. Lavagno, Jean Louis-Guerin.
“Embedded UML: a merger of real-time UML and
co-design”, Proceedings of the ninth international
symposium on Hardware/software codesign, p.23-28,
April 2001

[7] OMG workgroup, UML homepage.
http://www.uml.org

[8] The Open SystemC Initiative (OSCI). SystemC
homepage. http://www.systemc.org/

[9] J. H. Reed. “Software Radio, a modern approach to
radio engineering”. Prentice Hall PTR. 2002

[10] V. Sinha, F. Doucet, C. Siska, R. K. Gupta, S. Liao, A.
Ghosh. “YAML: A Tool for Hardware Design
Visualization and Capture”. In Proc. International
Symposium on System Synthesis, 2000

[11] Synophsis company. “CoCentric SystemC™
Compiler RTL User and Modeling Guide”, Synophsis
Inc. 2003

[12] W.H. Tan, P.S. Thiagarajan, W.F. Wong, Y. Zhu and
S.K. Pilakkat “Synthesizable SystemC Code from
UML Models”. National University of Singapore,
School of Computing. 2004

[13] Q. Zhu, A. Matsuda, S. Kuwamura, T. Nakata, and M.
Shoji. “An Object-Oriented Design Process for
System-on-Chip using UML”. In Proc. of the 15th
International Symposium on System Synthesis (ISSS
2002), Kyoto, Japan. p.249-254, 2002

http://www.uml.org/

