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Abstract

The performance of the instruction memory hierarchy is
of crucial importance in embedded systems. In this paper,
we propose a reconfigurable instruction memory hierarchy
for embedded systems whose architectural parameters can
be customized for specific applications. The proposed in-
struction memory hierarchy consists of an instruction cache
and a scratchpad memory (SPM).

We propose an algorithm to manage this instruction mem-
ory hierarchy and optimize its performance. Given a fixed
amount of reconfigurable on-chip storage resources and an
application, our algorithm determines the sizes of the SPM
and the instruction cache to best suit the application. It an-
alyzes the application, partitions the available storage re-
sources into SPM and cache, and assigns instructions to
them. Our algorithm aims to reduce the instruction fetch
miss rate, improve the system performance, and reduce the
energy consumption.

We have implemented this reconfigurable instruction mem-
ory hierarchy on the Altera Nios II FPGA platform. Our
experimental results using five benchmarks from the Medi-
aBench and the MiBench suites show that our proposed ar-
chitecture provides significant performance improvements
and energy reduction.

1. INTRODUCTION

The memory hierarchy is the main bottleneck in mod-
ern computer systems, due to the ever increasing gap be-
tween the speed of the processor and that of the memory.
This problem becomes even worse in embedded systems, as
designers not only need to consider performance, but also
energy consumption. The memory hierarchy consumes a
large amount of chip area and energy, which are precious
resources in embedded systems.

† This research was partially funded under the Singapore Agency for
Science, Technology and Research (A*STAR) Project 022/106/0043.

Customizing the memory hierarchy [1, 2] for specific ap-
plications is an important way to fully exploit the limited
resources to maximize the performance. Reconfigurable
logic resources are being used for customizing the hardware
platform for specific applications. In traditional hardware-
software co-design methodologies, much of the work have
focused on utilizing reconfigurable logic to partition the com-
putation. However, utilizing reconfigurable logic in mem-
ory hierarchy design is seldom addressed.

The density and complexity of reconfigurable devices
have been increasing dramatically. With the large amount
of resources available, it is possible to design an embedded
system using single FPGA chip. Software-core processors
have been developed for FPGAs, such as the Altera Nios II
and the Xilinx MicroBlaze.

Our work focuses on exploiting reconfigurable logic to
improve the performance of the instruction memory hierar-
chy for specific applications. We propose a reconfigurable
instruction memory hierarchy consisting of an instruction
cache and a scratchpad memory. The concept ofscratchpad
memory(SPM) [3] is an important consideration in embed-
ded systems. Unlike the cache where the data replacement
is controlled by hardware, the SPM is controlled by appli-
cations. Using SPM has the following advantages. First,
the software-controlled SPM is more flexible and is able to
avoid many cache conflicts. Second, since the SPM does
not have tag, it consumes less hardware resource and en-
ergy than a cache.

Given a fixed amount of reconfigurable on-chip logic re-
sources and a specific application, we address the problem
of partitioning the available resources into a SPM and an in-
struction cache, whose sizes depend on the application. Our
goal is to lower the instruction fetch miss rate, improve the
system performance, and to conserve energy.

In this paper, we propose a reconfigurable instruction
memory hierarchy for FPGA-based systems and an algo-
rithm to explore the design space as well as perform in-
struction partitioning. To our knowledge, the design space
exploration problem of partitioning a fixed amount of re-
configurable resources into an instruction memory hierar-



chy consisting of a SPM and a cache has not been addressed
in the literature. Second, we have completed a prototype
implementation of the proposed instruction memory hierar-
chy using actual FPGA hardware; namely, the Altera Nios
II platform.

We evaluated the performance of our proposed instruc-
tion memory hierarchy compared to one that consists of
only an instruction cache. Using five benchmarks from the
MediaBench and MiBench suites as workload, the experi-
mental results show that our architecture provides signifi-
cant performance improvements and energy reduction.

The rest of the paper is organized as follows. In Section
2, we will discuss the related works and our contributions.
Section 3 introduces the architecture of our proposed in-
struction memory hierarchy. We present the algorithm for
design space exploration and instruction partitioning in Sec-
tion 4. In Section 5, we discuss our prototype implemen-
tation using the Altera Nios II platform, the experimental
methodology, and the results. We conclude this paper in
Section 6.

2. RELATED WORK AND CONTRIBUTIONS

The rationale and benefits of reconfigurable cache mem-
ory architectures have been well studied by previous re-
searchers [4, 5]. There were also previous work to study
the benefits of the SPM and to develop techniques to man-
age the SPM.

Several researchers [6, 7, 8, 9] designed algorithms to
partition instructions or data into the SPM, with the goal of
reducing the conflict misses and the energy consumption.
However, most of them assumed that the memory hierarchy
has a fixed-size cache and a SPM, and they did not optimize
the architectural parameters of the memory hierarchy. For
example, Panda [8] partitioned the data objects in an appli-
cation into the SPM and the cache to reduce the amount of
cache conflicts. But he only considered two fixed memory
hierarchy configurations; namely, a 2 KByte cache com-
pared with a combination of 1 KByte cache plus 1 KByte
SPM. Kandemir’s algorithm [9] can tune the size of the
SPM, but it was designed for data references instead of in-
struction accesses. Vander et al [10] focused on adjusting
the size of the instruction loop buffer for specific applica-
tions to maximize the energy savings. However, the cache
is fixed and the problem they studied is different with ours.

Apart from partitioning instructions into the SPM, some
complementary techniques to optimize the performance of
the instruction memory hierarchy are code positioning and
mapping [11, 12, 13]. These techniques were developed
to decrease the instruction cache miss rate by repositioning
instruction blocks or procedures in the main memory.

Our work differs from the previous work and is novel in
two important ways. First, we focus not only on partition-

ing the instructions into the SPM, but also also on tuning
the parameters of the memory hierarchy for specific appli-
cations. For a given amount of hardware resource budget
for the instruction memory hierarchy, our algorithm parti-
tions it into a SPM and an instruction cache. Our algorithm
also assigns the instructions into the SPM by analyzing the
instruction access characteristics of the specific application.

Second, unlike previous work which rely mainly on sim-
ulations to evaluate the techniques for improving the per-
formance of reconfigurable architectures, we have actually
implemented our reconfigurable instruction memory hierar-
chy using real FPGA hardware.

3. DESIGN FLOW AND HARDWARE
ARCHITECTURE

3.1. Design Flow

The design flow for our reconfigurable memory hierar-
chy is shown in Figure 1. The inputs are the application and
the hardware resource budget for the instruction memory
hierarchy. The outputs are the transformed binary code, and
the parameterized instruction memory hierarchy consisting
of a SPM and an instruction cache of a certain size.

Program

 profile program

Perform partitioning on-chip storage
resources into instruction cache and scratch memory and

assign the instructions into the scratch and the cache

On-chip storage
resource size

Transformed Program Instruction memory hierarchy with
certain size of scratch and cache

Fig. 1. Design flow for the reconfigurable in-
struction memory hierarchy

The design process is as follows. First, we profile the
application using the GCC compiler. Then, we compile the
application into assembly code using the GCC cross com-
piler for the Nios II processor. From the assembly code, we
build the data structure representations for our algorithm.
These are then analyzed to determine the sizes of the SPM
and the cache, as well as to partition the instructions into
the SPM and the cache. We then patch the code that are
allocated to the SPM to get the transformed assembly code.

The transformed assembly code will be compiled us-
ing the GCC cross compiler for the Nios II to generate the
binary executable. Finally, the parameterized instruction
memory hieararchy coupled with the Nios II based system
is compiled into FPGA using the Altera QuartusII tool.
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instruction memory hierarchy

3.2. Instruction Memory Hierarchy Architecture

The architecture of our reconfigurable memory hierarchy
is shown in Figure 2. The memory hierarchy consists of
an instruction cache, a SPM, a SPM controller (SPMC), an
address lookup function unit (ALFU) and some other logic
components.

The ALFU is responsible for deciding whether an in-
struction resides in the SPM or not. It consists of two ad-
dress registers and two parallel comparators. The two reg-
isters store the upperbound and the lowerbound addresses
for the instruction block to be stored in the SPM. The high-
est and lowest instruction addresses of the block are stored
in the upperbound and lowerbound register respectively. If
the address of an instruction to be fetched falls within the
range of these two registers, the ALFU will generate the
signal SPMhit, which is used to control the selection and
the switching of the cache and the SPM.

The SPMC is used to load the instructions from the main
memory into the SPM, and updating the values of the up-
perbound and lowerbound registers. Since the instructions
are statically assigned into the SPM, the SPMC is actually
optional. We can remove the SPMC from the memory hier-
archy to save the resource usage.

The instruction memory hierarchy is integrated in the
Nios II processor. It is implemented in the form of a Ver-
ilog description. The sizes of the SPM and the cache are
parameterized, and the parameters can be easily changed in
the Verilog source code.

4. DESIGN SPACE EXPLORATION AND
INSTRUCTION PARTITIONING

A key aspect of our proposed instruction memory hier-
archy is our algorithm for design space exploration and in-
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struction partitioning. The design space exploration is to
decide the sizes of the SPM and the instruction cache for an
application, while the instruction partitioning is to assign
the instructions into the SPM and the cache to maximize
the performance and minimize the energy consumption.

4.1. Loop-Procedure Hierarchy Graph

Our algorithm uses the Loop-Procedure Hierarchy Graph
(LPHG) [14] to represent a program. Figure 3 shows the
LPHG representation of a key portion of the mpeg2decode
benchmark from the MediaBench suite. For simplicity, not
all of the procedures and loops in mpeg2decode are shown.
In this graph, the rectangular nodes represent the proce-
dures, while the elliptical nodes represent the loops. The
arrows (or edges) between the nodes denote the relation-
ship between them. We call the node pointed to by an arrow
a successor, while the node that points to another node is a
predecessor. The numerical value associated with each ar-
row is the number times the successor is entered from the
predecessor.

4.2. Proposed Algorithm

The proposed algorithm is shown in Algorithm 1. We as-
sume that most of the instruction cache conflicts are caused
by the loops. The intuition is to put as many instructions
from the frequently executed loop kernels into the SPM
without causing severe cache conflicts for each important
loop. We assume partitioning instructions is beneficial un-
less severe cache misses are incurred within one of those
important loops. Starting with a storage resource of sizeM
to be partitioned into the SPM and the cache, we divide this
partitionable storage into two portions of sizeM/2 each. We
will try to fill up one of these portions with instructions for



the SPM. Then, we recursively partition the other portion
until the size of the remaining storage is so small that if it
were to be further partitioned, there will be a large amount
of cache conflicts when executing a kernel.

Definition 1: a subgraph spanned by the loopL, denoted
by SubG(L), is the subgraph consisting of all the nodes that
are reachable from the loop nodeL. The size of aSubG(L),
denoted bySizeof(SubG(L)), is the number of instructions in
theSubG(L)whose execution frequency in the loop exceed
a certain threshold value, denoted asExFreqTh.

The idea is that within theSubG(L), there are certain in-
structions that are executed more frequently than others, and
will be considered for placement in the SPM. In this paper,
we set theExFreqTh value to be 1/3 of the number of
iterations in loopL.

The algorithm starts from the leaf loops of the LPHG
and work upwards during the course of its execution. This
is because the deeper the loops are in the LPHG, the more
frequently their instructions are executed. So, these loops
should be assigned to the SPM. However, as we move to
the upper levels of the LPHG, two or moreSubGsat the
level might be in conflict.

Definition 2: Two SubG(L1)and SubG(L2)are in po-
tential conflict if L1 and L2 are not a successor of each
other. Given a partitionable storage of sizeM, SubG(L1)
andSubG(L2)are inconflict if

• SubG(L1)andSubG(L2)are in potential conflict

• Sizeof(SubG(L1))> M/2andSizeof(SubG(L2))> M/2

At a particular level ofSubGs, if no pair of SubGsare
in conflict, then half of the partitionable storage should be
added to the SPM. The instructions are then assigned to the
SPM according to a calculated heuristic value. This process
is repeated recursively with the remaining storage as the al-
gorithm moves up the LPHG, until at least twoSubGsat a
particular level are in conflict.

The instruction partitioning granularity is at the loop and
procedure level. In line 8 of Algorithm 1, in aSubG, the
frequently executed instructions in the loops and procedures
will be selected to form the instruction blocks. The criteria
to select the instructions is that the execution frequency of
the instructions should be larger thanExFreqTh.

The heuristic value for the selection of instruction blocks
is computed in line 9 of Algorithm 1. We set the heuristic
value as:Vh = Eavg + 5∗Number of times called in this
paper.Eavg is the average instruction execution frequency
of a selected block, whileNumber of times called stands
for the number of the times the procedure containing the in-
struction block is called. Next, in line 10, the unimportant
SubGswill be pruned from the list ofSubGs. If a SubG’s
Eavg is less than 1/20 of the average execution frequency of
all the selected instruction blocks, we regard it to be unim-
portant and will not consider it in the current iteration.

Algorithm 1 Design space exploration and instruction partition-
ing

1: INPUT: Assembly code and source code profiling in-
formation, storage sizeM

2: OUTPUT: The SPM size and the assignment of instruc-
tions into SPM

3:

4: VariablePM : current partitionable storage size
5: Build Loop-Procedure Hierarchy Graph(LPHG)
6: PM = M ;
7: while (PM > Lower Bound of Cache Size) do
8: Select the instruction blocks for loops and proce-

dures in SubGslist;
9: Calculate the heuristic value,Vh, for all the se-

lected instruction blocks;
10: Prune the non-important SubGs;
11: if (!two SubGsconflict(SubGslist, PM) then
12: Select instruction blocks from SubGs until

PM/2 amount of storage is filled;
13: PM = PM/2;
14: goto Update;
15: else
16: // there is a conflict between at least two SubGs.
17: break; // break the while loop
18: end if
19: Update: Update SubGslist;
20: end while
21: Cache size =PM , SPM size =M - Cache Size;
22: Pack all the extracted instruction blocks into the

SPM with the determined size;
23: return;

Procedure two SubGsconflict(SubGs list, PM)
24: if (size of all SubGs in the SubGslist is smaller than

PM/2) then
25: return false
26: else if (size of only one graph in the SubGslist is larger

than PM/2) then
27: return twoSubGsconflict(list of all the child SubGs

in the current SubG, PM);
28: else
29: return true;
30: end if

In our algorithm, the proceduretwo SubGs conflict is
used to determine whether there exists twoSubGsin the list
of SubGswhich are in conflict. If twoSubGsare in conflict,
which means their sizes are larger thanPM/2, further par-
titioning the current partitionable storage into the SPM and
the cache is likely to cause more cache conflicts. Thus, we
stop the partitioning process.

On the other hand, if none of theSubGsare in conflict,
we can assignPM/2 amount of storage to the SPM. Then,



we select the instruction blocks from the list ofSubGsto
fill the PM/2 amount of storage in the SPM according to
the heuristic value,Vh. Once the SPM is filled, the list of
SubGswill be updated and the process repeats.

Apart from the detection of conflicts betweenSubGs, an-
other termination criteria of the algorithm is that the remain-
ing storage for the cache should not be lower than a thresh-
old value,Lower Bound of Cache Size.

In the mpeg2decode example in Figure 3, theSubGlist
initially contains all the leafSubGsin the LPHG. From the
figure, all theSubGsin dashed boxes are in theSubGslist
of the first iteration, while theSubGsin the hemispheres are
in theSubGslist of the second iteration. For mpeg2decode,
the given on-chip storage is 2048 bytes. The size of every
SubGin the first iteration is less than 1024 bytes. Thus
we can partition the half the storage into the SPM. After
assigning the instructions into the SPM, theSubGslist will
be updated and the second iteration starts. However, the
algorithm terminates at the second iteration because the size
of both the SubGs (shown in the hemispheres in Figure 3)
in theSubGslist are larger than 512 bytes. Thus, the final
memory hierarchy configuration consists of 1024 bytes of
instruction cache and 1024 bytes of SPM.

5. PERFORMANCE EVALUATION

5.1. Experimental Methodology

We used the Nios II Development Kit (Stratix Edition)
as our development platform. We implemented the recon-
figurable memory hierarchy shown in Figure 2 by modify-
ing the Nios II Verilog source code. The cache is direct-
mapped, with line size of 32 bytes. Hardware counters are
added to the system to collect the program execution statis-
tics, such as the number of cache misses, the number of
instruction fetches, the number of issued instructions, and
the total number of cycles taken. We then synthesized the
system using the QuartusII tool.

In our experiments, we used five application benchmarks
from the MediaBench and the MiBench suites. We com-
pared the performance and the energy consumption of ex-
ecuting each benchmark on two different instruction mem-
ory hierarchies: (1) a baseline instruction memory hierarchy
with only an instruction cache, and (2) our instruction mem-
ory hierarchy combining a SPM and an instruction cache.

We executed these benchmarks and collected the per-
formance statistics from the hardware counters. We mod-
elled the energy consumption using the CACTI [15] model
for 0.5 µm technology. In the calculation of the energy
consumption of our instruction memory hierarchy, we in-
cluded the logic elements connecting the instruction cache
and the SPM to the Nios II processor. However, we ex-
cluded the SPMC from the energy consumption calculation

Table 1. Performance results
Benchmk Configs Nf (K) RS(%) miss(%) Te(sec)

g721- 2048C 195,124 − 3.09 6.14
encode 512C+1536S 196,057 82.2 1.93 5.45
Improv − − − 37.5% 11.2%

g721- 2048C 293,637 − 2.51 9.16
decode 512C+1536S 299,005 86.0 1.35 8.15
Improv − − − 46.2% 11.0%

Dijkstra 256C 48,582 − 2.06 2.24
64C+192S 49,789 73.2 1.93 2.24

Improv − − − 6.3% 0.0%

Blowfish 2048C 25,617 − 2.21 0.85
64C+1984S 25,621 94.6 0.67 0.74

Improv − − − 69.7% 12.9%

mpeg2- 2048C 38,532 − 1.44 1.46
decode 1024C+1024S38,567 51.9 1.35 1.45
Improv − − − 6.3% 0.7%

Avg Impr − − − 33.2% 7.2%

since it is not active once instructions are loaded, as we ex-
plained in Section 3.2. We assume that the row activation
and precharge of the SDRAM consumes 20nJ, while col-
umn access consumes 26nJ [16].

5.2. Performance Improvements and Energy Savings

Performance: The performance results are shown in Ta-
ble 1. Nf (K) is the total number of instructions fetched
(in thousands), andRS(%) stands for the percentage of the
number of instruction fetches from the SPM out of the to-
tal number of instruction fetched. The miss(%) is the miss
rate of the instruction fetching.Te(sec) is the application
execution time in seconds. The baseline configuration of
”2048C” is an 2048-byte instruction cache. For our instruc-
tion memory hierarchy, ”1024C+1024S” in mpeg2decode
means a 1024-byte cache and a 1024-byte SPM.

From the results, the decrease in the instruction fetch
miss rate for the benchmarks studied ranges from 6.3% to
69.7%. The average improvement in the miss rate is 33.2%.
This improvement in the instruction fetch miss rate for our
instruction memory hierarchy over the baseline cache con-
figuration comes from the mapping of the frequently exe-
cuted instructions into the SPM.

As a result of the improvement in miss rate, the execu-
tion times of the applications are decreased by an average
of 7.2% for the benchmarks studied. The improvement in
execution time is not as impressive as the improvement in
miss rate. A possible reason is that due to the low clock fre-
quency (50MHz) of the hardware platform, the cache miss
penalty becomes less important.



Table 2. Energy consumption
Benchmk Configs EC EC ES ETot(µJ) Rd(%)

(nJ) (nJ) (nJ)

g721- 2048C 1.51 − − 1,669,325
encode 512C+1536S − 1.33 1.12 1,089,642 34.7%
g721- 2048C 1.51 − − 2,123,818
decode 512C+1536S − 1.33 1.12 1,264,014 40.5%
Dijkstra 256C 1.09 − − 281,134

64C+192S − 1.10 0.83 258,543 8.0%
Blowfish 2048C 1.51 − − 161,386

64C+1984S − 1.10 1.19 69,534 56.9%
mpeg2- 2048C 1.51 − − 184,691
decode 1024C+1024S− 1.41 1.04 165,683 10.3%

Avg Rd − − − − − 30.1%

Energy consumption: The energy consumption results
are shown in Table 2.EC(nJ) represents the energy con-
sumption per access to the instruction cache, whileES(nJ)
is the energy consumption per access to the SPM. We com-
puted the total energy consumption (ETot(µJ)) during the
execution of the benchmark for the two instruction memory
hierarchies, as well as the reduction in the energy consump-
tion (Rd(%)) due to our instruction memory hierarchy.

From the results, the reduction in the energy consump-
tion for the benchmarks studied ranges from 8.0% to 56.9%.
The average reduction in the energy consumption is 30.1%.
A major contribution to the energy reduction is the decrease
in miss rate since SDRAM accesses consume a lot of en-
ergy. The other factor that results in the energy reduction is
the lower energy consumption per access to the SPM com-
pared to that of the cache, and most instruction fetches are
from the SPM.

6. CONCLUSION

We have designed a reconfigurable instruction memory
hierarchy for embedded systems. Given a fixed amount of
on-chip storage and a specific application, our algorithm
partitions the storage into a SPM and an instruction cache,
and assigns instructions to the SPM and the cache to maxi-
mize the performance and reduce the energy consumption.

We believe that our approach is novel because previous
work are not as flexible in their design space exploration
of the instruction memory hierarchy. Experimental results
show that our proposed architecture can achieve significant
performance improvements and energy reduction.
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