
ORION: An Adaptive Home-based Software DSM
M.C. Ng

School of Computing
National University of Singapore

Lower Kent Ridge Road
Singapore 119620

ngmingch@comp.nus.edu.sg

W.F. Wong
School of Computing

National University of Singapore
Lower Kent Ridge Road

Singapore 119620

wongwf@comp.nus.edu.sg

ABSTRACT

As more and more software DSM systems with their unique APIs surface, it becomes
imperative for the industry to come up with a standardized API to facilitate users in
using different types of DSM systems. A multithreaded software DSM, Orion, has been
developed to provide POSIX-thread (pthread) like API which avoids creating another
unique set of API and helps in porting pthread programs to a distributed environment.
Orion implements home-based consistency model, which is a recent development in the
DSM field that has open up many areas for further research and development. In this
paper, we also present 2 adaptive schemes for home-based DSM systems: home
migration and dynamic adaptation between write-invalidation and write-update
protocols. The two fully automatic schemes aim to involve minimal user intervention
and yet deliver good performances with some speedups ranging from 2% to 79%
observed in some 8 benchmarks tested.

Keywords

Distributed shared memory, virtual shared memory, release consistency, home-based
release consistency and multithreading.

1. INTRODUCTION
It would not be an exaggeration to say that in the software DSM community today
there are no less than 10 systems around with each bearing its own API. While a fair
proportion of the functions in these APIs are by and large the same in functionality,
conformity is still lacked in them. Though this problem is not new, it was not brought
up openly for more attentions to be given to until recently when OpenMP is speculated
to be the API for software DSM in the future. A closely related effort, which started 2
years ago, was undertaken by us to develop an API that conforms to the POSIX-thread
(pthread) standard. The reason for selecting pthread, apart from avoiding creating yet
another unique set of API, was the multithread trend that was going through the
industry. Pthread, unlike HPF and other highly specialized languages, is used in more
varieties of software that are not necessarily scientific in nature, such as a web server
running on a dual-processor system. The net result is thus a multithreaded software
DSM system that provides pthread-like API which we dubbed it Orion. As of now, we
had implemented about 50% of the complete repertoire of pthread functions that are
the commonly used and essential ones.

In the course of development we had also focused on building 2 adaptive schemes for
home-based software DSM systems because Orion implemented home-based eager
release consistency. One of the major challenges persistently faced by the community

is the cost of network communication necessitated by the protocol as well as induced
by false sharing. Basically, the cost of network communication can be broken down
into two factors:

• the number of messages transacted;

• the amount of data transferred

The advent of the release consistency (RC) was a major milestone in the history of
software distributed shared memory. It reduces the network data and its natural support
for multiple writer protocol mitigates the problem of write false sharing. Of the two,
the former is more costly in terms of performance loss. To these we can add a third –
the timeliness of data . Software DSMs rely on the use of signal handling mechanisms
that are costly. If the data is available when it is needed, this can be reduced. This
probably explains why in certain applications, the write update protocol will perform
better than the write-invalidate protocol even if more data is transferred. We shall see
how timeliness of data can be improved in the later part of the paper.

One of the important variant of RC is the home-based release consistency model
(HRC). Unlike in the traditional RC model, each page in a HRC has an assigned home.
It should be noted that the discussion of RC here is limited to the write-invalidate RC
models. The main advantage of HRC over RC is that after communicating diffs to the
homes, they can be discarded. In contrast, RC needs to use an aging mechanism to
ensure that diffs do not occupy too much storage. However in HRC, sending diffs
home is mandatory which can be a performance-loss factor. Published data have shown
that for certain applications lazy release consistency model (LRC) performs better than
home-based lazy release consistency model (HLRC) [4], while for some other
applications the reverse is true [2]. The main cause for this difference is the choice of
the home for a page, which varies from application to application. This points to the
need for the system to dynamically adapt to the needs of the applications in order to
achieve better performances.

The idea of automatic adaptive protocol is not new. As a matter of fact, many
automatic adaptive schemes [5,6,7,8,9,10,11] have been proposed. These include
adaptation between the single-writer and multiple-writer protocols, adaptation between
the write-invalidate and write-update protocols, and even process/thread migration. In
this paper, besides introducing our software DSM system, we have also proposed 2
adaptive schemes for home-based software DSM. We have identified that HRC
exhibits an important feature that aids adaptation. The home of a page serve as a
natural point from which the data access pattern information for that page can be
collected. The adaptive schemes that we are proposing take advantage of this feature.
A minor enhancement called the partial page update is also proposed in the bid to
reduce sending unnecessary network data as a result of the typical entire page transfer
upon receiving a page request at the home node. In the rest of the paper, we shall
outline our proposals and present some experiment data on their effectiveness.

2. ORION
This section briefly introduces our software DSM system, Orion, which is designed to
provide a pthread-like API. It currently implements home-based eager release

consistency (HERC) supporting the multiple writer, write-invalidate and write-update
protocols. Typically in an Orion application, user codes interfaces with the Orion API,
which in turn makes use of functions from pthread and data passing interface (DPI)
libraries.

An Orion program typically starts with a number of nodes or hosts specified by the
user. Depending on the number of nodes specified, the master node that is ranked 0
remotely spawns the same program on other nodes and assigns them a different rank
each. The DPI library undertakes the task of automatic remote process spawning
during startup. Previously, message-passing interface (MPI) was used but it was
eventually discarded for its lack of multithread support and significant loss of
performance due to its internal overhead. DPI is a separate network communications
library written to provide the basic send, buffered send and receive functions found in
MPI. Some group communication functions like barrier, all-gather and other functions
are provided too. Each message carries a tag that is also the thread id of the receiving
thread. Most DPI functions use TCP/IP (i.e. Transport Control Protocol/Internet
Protocol) to ensure reliable and ordered delivery of large data. Since TCP is a point-to-
point communication protocol, a TCP link from one node to another is being set up
during startup. UDP/IP (i.e. User Datagram Protocol/Internet Protocol) is mainly used
for multicasting in situations where it is critical to send one short message through the
network to inform all remote nodes to proceed with some tasks simultaneously.

User Codes

Orion Layer

Data Passing Interface

Transport Control
Protocol (TCP)

Layer

Universal Datagram
Protocol (UDP) Layer

POSIX-Thread
(Pthread)
Library

Internet Protocol (IP) Layer

Figure 1: The software layers of Orion

Currently, Orion allows user to use up to 20000 of virtual pages for shared memory
that is equivalent to 157MB on machine that has page size of 8192 bytes. Internally,
another 20000 are reserved for twins that are necessary for supporting multiple-writer
in the system.

2.1 Overview of the Internals of Orion

Orion has one functional unit that is actively running in background as a daemon
thread. It is responsible for maintaining memory consistency, managing distributed
threads and many others. Each node has a separate running copy of this thread termed
as the service thread (ST). Generally, server-client architecture is adopted for the
network communication model in the entire system. The servers are the STs while the
clients can either be the user threads or some remote STs. An example of a user thread
communicating with an ST is lock acquisition. In Orion, a mutex (i.e. lock) has a
designated ST that is responsible for managing it. When a client wishes to lock or

release a mutex, a message must be sent to the ST. On the other hand, ST-ST type of
communication is usually oblivious to the users. An example of it is home migration of
a page. When an ST decides to shift the home of a page to another node, it will inform
the latter’s ST of the change.

Node 0

ST
daemon

Node 1

ST
daemon

Node n-1

ST
daemon

Figure 2: The ST daemon

Some services provided by ST include

1. Thread management (spawning and joining),

2. Mutex management (creation, locking and unlocking),

3. Condition variable management (creation, waiting and signalling),

4. Barrier management,

5. Page management (page request, home migration of page, write protocol
adaptation of page), and

6. Page statistics collection (remote diffs update monitoring and page request
monitoring).

2.2 Maintaining Shared Memory Consistency

In simple terms, maintaining shard memory consistency is about delivering the correct
data (i.e. changes) to the correct place at the correct point of time. Changes are write
operations. In page-based software DSM systems, a change really means a
modification of a page. To detect whether a page has been modified, shared pages are
initially write protected so that a page fault signal can be caught when an initial write is
performed on it.

Since Orion implements HERC, every page has a globally appointed home. If a write
fault is detected, the page index is added to orion_modified_page, a list of modified
pages, and a twin of the page is created and kept. Write permission is granted to this
page so that any subsequent write to the same page will not generate any page fault.

When a thread performs mutex operation or barrier rendezvous, some actions are taken
to maintain shared memory consistency. These are essentially the synchronization
points. Firstly, diffs are identified or extracted by doing a word-by-word comparison
between the modified page and its corresponding twin. Diffs are sent back to the
designated home where they are applied. The ST of the home receives the diffs,

decodes and applies them to the correct position in the shared memory. If the home of
a page is the node itself, then diffs extraction for the page is skipped.

The second step to be performed when a synchronization point is reached is the
dissemination of invalidation messages (a.k.a write notices). Invalidation messages can
only be sent when the diffs are successfully been applied. Thus in this respect, all the
homes that receive diffs must acknowledge when they have applied. This must be
observed to avoid possible data race conditions. Invalidation messages can be
dispatched once acknowledgements have been received. The ST of each process is
responsible for receiving the invalidation messages and making those pages specified
in the invalidation message invalid if they are not based locally.

Reading an invalid page will cause the page fault handler to send a request to the home
of the page. The ST of the home then responds by sending only the modified region of
the requested page over to the requester since Orion implements partial page update
enhancement, which will be explained later. Upon receiving the update, read
permission is then granted to the page. A write operation performed on a write-
protected page involves adding an entry to the list of modified pages, twin creation and
making the page write-permissible. A write to an invalid page is treated as a read to an
invalid page and then a write to a write-protected page. Hence, it involves 2 page
faults.

2.3 Relative Performance of Orion

This section accesses the performance of Orion in comparison to Treadmarks [12]
which implements lazy release consistency. A total of six benchmarks from
Treadmarks and NAS [15] were executed on 4 nodes of the 32-node Fujitsu AP3000.
They are the successive-over-relaxation (SOR), Gauss Elimination (GAUSS), 3D Fast
Fourier Transform (3D-FFT), integer sorting (IS), conjugate gradient (CG) and
multigrid (MG). Each node in the experiment featured an UltraSparc 143-MH z

processor and 128MB of physical memory. The nodes were connected via a high-speed
network capable of delivering data at 200MB/sec. Table 1 shows some micro-
benchmarks and the costs of some basic operations in Orion.

Micro-benchmark Min. cost (usec) Basic operation Cost (usec)

Page transfer bandwidth 18 MB/sec mprotect (8192) 49

Page fetch 2456 memcpy (8192) 58

Barrier

(12 nodes)

7098 Thread suspension 628

Remote lock acquire 625 Thread
continuation

28

Read fault 250

Write fault 250

Table 1: Micro-benchmarks and costs of basic operations in Orion

Table 2 shows the problem sizes used and the execution times during the comparison. The
initial home assignment in this experiment was round robin.

Applications Sizes/iterations Treadmarks

(sec)

Orion

(sec)

SOR 1024X2048, 100 108.520 111.560

GAUSS 512X512, 512 5.664 7.181

3DFFT 32x32x32, 100 25.090 25.600

IS 22x16, 50 30.986 31.021

MG 32x32x32, 5 1.46 1.58

CG 14000x14000 45.168 45.820

Table 2: Relative performance of Orion

3. ADAPTIVE PROTOCOLS FOR HRC SOFTWARE DSM
In one of the study conducted by the Treadmarks team [4], it was pointed out that the
choice of home was a crucial performance-determining factor. Some HRC systems
allow the users to specify how the homes should be distributed before execution. This
strategy depends on the user 's expertise and will continue to work satisfactorily if the
nature of the application 's memory references remains unchanged or static. However,
in designing an efficient HRC, there are 2 things that should be avoided. They are
firstly improper initial home assignment, and secondly static home assignment. Hence,
if the application’s memory access pattern changes, regardless of how perfect the
initial home placement may be, performance will be dented.

There are three possible ways to improve the initial home assignment, as listed below:

1. User intervention. User provides information on home assignment prior to
execution.

2. First touch home assignment . Whichever is the first node to write to a
page during execution will automatically be the home of that page.

3. Compiler inference . A modified compiler, after analyzing the access
pattern of an application, instructs the software DSM system on how to
assign home prior to execution.

Intervention from the user and first touch home assignment method are well
understood, while compiler inference technique remains an area for active research.
However, a good initial home assignment is not sufficient to promise good
performance in applications with dynamic access patterns. Therefore, it is the issue of
automatic adaptation that we wish to explore.

The basis upon which our adaptive schemes work is none other than identification of
certain memory access patterns (MAP). In most modern scientific applications,
repetitions or loops of codes are common. This makes the MAP fairly predictable.
Hence, knowing when and which process will need the data will contribute to better
data distribution and better performance. For shared pages, there can be multiple
producers that produce some data shared by either zero, one or many consumers (i.e.

demand). We limit our discussion here to one producer. If this supply-and-demand
MAP is kept stable, adaptive schemes can easily be formulated. We have categorized
the MAP of an application from the producer's point of view into 4 main groups:

i) zero consumer,

ii) one persistent consumer,

iii) multiple persistent consumers, and

iv) non persistent consumer

Based on these 4 groups of MAPs, we have developed 2 adaptive schemes for HRC.

3.1 System Statistics and Parameters

The MAP monitoring procedure, performed at the home node, primarily involves
keeping track of some system statistics. This MAP monitoring is performed on every
node to keep track of some statistics of pages that based locally (i.e. the home of this
page is the node itself). The statistical information involved on the adaptive actions
triggering procedures are:

• Remote update count (RUC) for each memory page. It is an array with each
element, k, keeping track of the number of times updates/ diffs from node k
have been received since the last local access at home (i.e. the page has been
accessed by the home node itself).

• Page access count (PAC) for each memory page. PAC includes both the local
and external access. An external access refers to the remote request for a fresh
copy of a page from the home. It is an array with each element referring to a
remote node.

To capture absolute and accurate local access pattern at home, read accesses need to be
detected as well. This is not required in a traditional DSM system. Typically in a
home-based DSM system, pages based locally are either write-protected or read/write
accessible. However, to detect the initial local access to an updated page, pages that are
based locally have to be made write/read inaccessible. This incurs additional page
faults that are serious detriments to performance. The alternative is thus to capture only
initial write access which does not incur additional page faults and helps in providing
hints to the DSM system on the local access pattern, which may not be absolute but
sufficient for adaptation schemes to work with. Our software DSM system adopts the
second approach.

The system parameters include:

• Page request sampling period for each memory page. Within this sampling period,
the PAC of each page is accumulated upon each page request. If the period is set as
Y, then the Yth page request is considered the end of a period and the PAC is reset
after appropriate adaptive actions have been taken, if necessary. Local access is
also considered a page request.

E
ve

nt
s

R
U

C
 o

f
pa

ge
k

PA
C

 o
f

pa
ge

 k
Pa

ge
 k

 a
cc

es
s

pe
rm

is
si

on
Pa

ge
 r

eq
ue

st
sa

m
pl

in
g

pe
ri

od

C
on

di
tio

ns
 &

 a
ct

io
ns

1
L

oc
al

 a
cc

es
s

de
te

ct
io

n
(n

od
e

0)

R
es

et
 a

ll
el

em
en

ts
 to

 0
In

cr
em

en
t

PA
C

[0
] b

y
1

C
ha

ng
e

pa
ge

ac
ce

ss
pe

rm
is

si
on

In
cr

em
en

t b
y

1
N

A

2
R

em
ot

e
di

ff
s

up
da

te
 b

y
no

de
 M

 (
M

0)

In
cr

em
en

t
R

U
C

[M
]
by

 1
N

A
Se

t p
ag

e
ac

ce
ss

pe
rm

is
si

on
 to

in
ac

ce
ss

ib
le

 (
to

de
te

ct
 lo

ca
l

ac
ce

ss
)

N
A

If
 R

U
C

[M
] e

xc
ee

ds
 H

M
T

L
 a

nd
 w

ri
te

 p
ol

ic
y

is
 w

ri
te

-i
nv

al
id

at
e

pr
ot

oc
ol

,
ev

en
t 4

 is
 tr

ig
ge

re
d

of
f.

3
Pa

ge
 r

eq
ue

st
by

 n
od

e
M

(M
0)

N
A

In
cr

em
en

t
PA

C
[M

] b
y

1
N

A
In

cr
em

en
t b

y
1

If
 p

ag
e

re
qu

es
t s

am
pl

in
g

pe
ri

od
 f

or
 p

ag
e

k
en

ds
, e

ve
nt

 5
 is

 tr
ig

ge
re

d
of

f.

4
H

om
e

m
ig

ra
tio

n
R

es
et

 a
ll

el
em

en
ts

 to
 0

N
A

R
em

ov
e

re
ad

pr
ot

ec
tio

n
N

A
H

om
e

is
 m

ig
ra

te
d

to
 n

od
e

M

5
W

ri
te

 p
ro

to
co

l
sw

itc
h

an
d

ho
m

e
m

ig
ra

tio
n

ev
al

ua
tio

n

N
A

R
es

et
s

al
l

el
em

en
ts

 to
0

af
te

r
ev

al
ua

tio
n

N
A

R
es

et
 p

ag
e

re
qu

es
t

sa
m

pl
in

g
pe

ri
od

 to
 0

af
te

r
ev

al
ua

tio
n

If
 P

A
C

[0
] i

s
no

n-
ze

ro
 a

nd
 P

A
C

[M
]/s

am
pl

in
g

pe
ri

od
 e

xc
ee

ds
 W

PT
L

,
in

cl
ud

e
no

de
 M

 is
 p

ar
tia

l u
pd

at
e

lis
t.

If
 P

A
C

[0
]=

0
an

d
PA

C
[M

]/s
am

pl
in

g
pe

ri
od

 e
xc

ee
ds

 H
M

T
L

, m
ig

ra
te

 h
om

e
to

 n
od

e
M

(o
nl

y
on

e
no

n-
ze

ro
 P

A
C

 v
al

ue
).

T
ab

le
 3

: S
ys

te
m

 s
ta

tis
tic

s
an

d
ev

en
ts

• Home migration triggering limit (HMTL). This is the limit set to activate the home
migration adaptive action.

• Write protocol switch triggering limit (WPTL). This is the limit set to activate the
write protocol switch adaptive action.

Assuming that the events are happening to page k whose home is node 0, Table 3
shows a tabular summary on the collection of system information and the conditions
that trigger off the adaptive actions.

3.2 Home Migration
It is quite obvious that the HLRC has one serious shortcoming. That is the choice of
home for a page. Home migration is an adaptive scheme we propose to reduce
unnecessary network traffic. By monitoring the MAP, we can make intelligent guess of
which pages are frequently or seldom fetched by other processes.

3.3 Dynamic Adaptation Between WI and Partial WU protocols
Write protocol switch is an adaptive scheme that improves the timeliness of data or
data availability. Typically, a page fault involves a round-trip to the home that is
expensive. This scheme aims to improve performance through cutting down the time
spent on handling page fault and the half round-trip time during which a page request
message is sent to the home.

HRC sends out invalidation messages after diffs have settled at their homes. Note that
diffs are simply updates and it is just a convenient extension to the consistency model
by sending diffs to all nodes to implement write-update (WU) protocol. Subsequent
invalidation messages should therefore exclude pages that are maintained by WU
protocol. Our scheme switches the write protocol of a page between write-invalidate
and partial write-update (PWU) that allows only selective nodes to be updated
simultaneously with the home. A switch occurs when the percentage of PAC of one
node within the page request sampling period exceeds the threshold level. This node
will be included in an update list that is replicated on every node. This approach also
eliminates sending unnecessary page updates to nodes that may not require them, as
would happen in full WU protocol. Note that full WU protocol is actually a subset of
partial WU protocol and hence, if the page is not maintained in full WU protocol, it
should be included in the invalidation messages as well.

Switching the write protocol of a page from PWU protocol back to WI protocol is
easy. The non-trivial part is deciding when to do it. When a page is in partial WU
protocol, nodes in the update list do not go to the home to fetch the page anymore, and
as such the home does not have enough information to decide if the write protocol of
the page should revert to WI. One possible way is the nodes that are receiving updates,
apart from the home, can voluntarily request the home to drop itself from the update
list if the node sees that it is unproductive for diffs to be sent to itself. The way to
determine if such an action is necessary is described as follows. Suppose node M is
listed in the update list for a page X. Each time node M (i.e. not the home) receives

diffs from node N, it keeps track of the RUC[N] value of the page, which reflects the
number of times a page has been updated by node N since the last local access. If this
counter exceeds a certain threshold level, the node can request the home node to drop
itself (i.e. node M) from the update list. All nodes will be informed of the change in the
write policy change initiated by the home node later. If a local access is made on node
M, the entire array of RUC counters should be reset to zero.

3.4 One Producer-Zero Consumer MAP
Next we shall see how the different adaptive schemes relate to the different MAPs. As
an illustration, suppose there are 4 nodes as shown in figure 3. Node 0 is actively
writing to page X that is home-based at node 2. Each time it reaches a synchronization
point, diffs are sent to node 2 but page X is never or seldom fetched by other nodes
(including node 2 itself).

Node
0

Node
1

Node
3

Node
2

Diffs

Shift home to node 0

Figure 3: One producer-zero consumer MAP

Clearly, sending diffs of page X from node 0 to node 2 is unproductive, and shifting the
home to node 0 will definitely result in lesser redundant network communication. In
such a case, node 2 can unilaterally decide to shift the home for page X to node 0 when
it finds that the RUC[0] of page X exceeds HMTL. This MAP is commonly found in
applications like a benchmark called SOR in which one node only uses some 'edge'
values among the blocks of values computed by other nodes. Those non-'edge' values
are produced by one node, but useless to the others.

Node
0

Node
1

Node
3

Node
2

Diffs

Shift home
to node 3

Fresh
copy

Figure 4: One producer-one persistent consumer MAP

3.5 One Producer-One Persistent Consumer MAP
Consider a slightly different scenario in which node 3 persistently requests for fresh
copies of page X from node 2. Node 2, which does not need diffs from node 0, acts as a
buffering zone. Based on the high PAC[3] (i.e. page access count value for node 3) and
zero PAC[home] (i.e. the PAC value for home) for page X, node 2 can shift the home of
node 3.

3.6 One Producer-Multiple Persistent Consumers MAP
The one producer-multiple persistent consumers (i.e. more than 1 persistent
consumers) MAP should be tackled by dynamic adaptation between WI and partial
WU protocols since home migration is not suitable in this case. Figure 5 shows the
scenario where node 0 is the producer while the other nodes are consumers. In this
case, we make a switch to full WU based on the heuristics described earlier.

3.7 One Producer-Non Persistent Consumer MAP
Lastly, the recommended approach for dealing with the situation of one producer-non
persistent consumer is not to do anything, i.e. maintain the page in WI protocol. In fact,
this approach is inherently built-in when the system periodically evaluates whether the
page should be maintained in WI or partial WU protocol based on the PAC elements of
the remote nodes. Since most consumers or nodes do not consistently request for the
page, the average PAC elements will be low. Therefore, no change of write protocol is
required.

Node
0

Node
1

Node
3

Node
2

Diffs

Switch to
write update

Fresh
copy

Figure 5: One producer-multiple persistent consumers MAP

3.8 Partial Page Update
Presently, a page request results in a transfer of one physical memory page size of data
across the network. In some cases, differences between the present and previous
versions of a page are minor. In view of this shortfall, the HRC DSM system may be
designed to send the modified region of a page instead of the entire page upon request.
However, there are some additional trivial steps involved during diffs reception and
page retrieval procedures. For a start, each page will have 2 associated indices
pertaining to each foreign node. One index called the start index points to the start of a
modified region, while the other one called the end index points to the last byte of the
modified region. The start and end indices are initialized to some values such that the

latter is greater than the former. This means that no change has been made to the page
and therefore, if a page request for this page is received, the page content is not sent.

There are 2 situations in which the indices will be modified. The first situation is
during diffs reception. When the home decodes the diffs and applies them to the
respective page, it will know the starting and ending points of the modified region
specified by the diffs. Note that the diffs are arranged in the order of address. If the
starting point is address-wise lower than the start index, then start index is set to the
starting point of the modified region. If the end index is address-wise lower than the
ending point, then the end index is also changed. Hence, the start and end indices grow
upward and downward respectively to the top and bottom of a page, but never exceed
them. Note that the same procedure is repeated for the pair of indices of each foreign
node entry pertaining to the page.

The second situation is when a write fault is detected on a page that is based locally. In
this case, the start and end indices are set to 0 and the standard page size minus 1 (i.e.
entire page is modified). This is done for efficiency reason. Since the page is based
locally, there is no need to extract diffs during synchronization, which is otherwise
performed on other nodes. If diffs extraction is performed on pages that are based
locally just to update the start and end indices, time will be wasted. Hence, it is
recommended that if a page is modified by the home node, then the entire page is sent
as in a standard home-based consistency model. Again the same procedure is repeated
for the pair of indices of each foreign node entry pertaining to the page.

During page retrieval, the home picks out the pair of indices belonging to the
requesting node. It only sends the offset and the content of the modified region as
hoarded by the start and end indices, which are then reset to values such that end index
is greater than the start index if the access permission of the page is not read/write
acccessible.

This technique involves little overheads such as updating the array of start and end
indices of a page during diffs reception. In terms of network transferred data, 2 more
bytes of overhead necessitated by the offset indication per respond to page request will
be incurred in exchange for the benefit of sending only the modified region that is
always smaller or equal to the size of a page.

4. PERFORMANCE OF THE 2 ADAPTIVE SCHEMES
We had tested the proposed schemes using Orion. Eight benchmarks were used this
time round. The 2 additional benchmarks were Barnes-Hut, and Water from the
SPLASH [16] suite. The data sizes used and execution statistics of the benchmarks
under the no adaptive scheme influences are shown in Tables 4 and 5 respectively.

The hardware and OS platforms remain the same as in the comparison experiment
between Orion and Treadmarks. The main objective of this benchmarking process is to
verify and to show how well the two adaptive schemes can improve the performance.

The process does not involve any user intervention in providing clues for the DSM
system in initial home assignment. The initial home assignment is round-robin
assignment.

Applications Size (# of iterations) Synchronization point

SOR 1024X2048 (100) 201 barriers

GAUSS 1024X1024 (1024) 1026 barriers

FFT 128X128X128 (10) 24 barriers

IS 22X17 (50) 252 barriers

WATER 512 (10) 73 barriers, 3860 locks

BARNES-HUT 65536 20 barriers

MG 128X128X128 (5) 124 barriers

CG 14KX14K (10) 792 barriers

Table 4: Problem sizes and iterations of benchmarks

Applications Execution
time (sec)

Amount of data
transferred (MB)

No. of msg No. of page
request

SOR 334.008 59 175762 1824

GAUSS 2083.563 670 225399 5513

FFT 133.220 112 18951 4898

IS 201.966 108 24992 8698

WATER 332.490 27 152138 2998

BARNES-HUT 52.760 32 12733 4227

MG 80.250 50 13729 1477

CG 259.877 90 30779 10615

Table 5: Statistics of benchmarks executed without adaptive actions

4.1 Results
Table 6 summarizes the main performance results of the proposed scheme. It has been
observed that, compared to the basic home-based DSM system without adaptive
action, a speedup ranging from 2% to 79% was observed.

In the case of SOR, GAUSS and MG, reductions in the overall network traffic brought
upon the expected speedups. Interestingly, in some applications like FFT and IS,
increment in amount of data transferred or number of transacted messages did not
cause them to perform any worse. In general, a reduction in network traffic should give
rise to better performance, but the converse may not be true. Consider the time spent
on waiting for diffs or pages can substantially be reduced if they are already available
when they are needed. This is the key rationale to page and diffs prefetching

techniques. The dynamic write protocol adaptation scheme we proposed can
potentially increase network traffic in Orion. The reason is in Orion the size of the diffs
extracted from a modified page can be greater than the page size since the diff
granularity is set at 2 bytes. If a page contains a part of a large array of 4-byte integers,
and the changes to the elements are small, the problem of large amount of diffs can
very well arise. Suppose a page frequently accessed by some nodes is maintained under
write-update protocol, more data is thus sent. The primary aim of this adaptation is to
reduce external page request.

It has also been noted that the adaptive schemes in Orion could not effectively handle
applications with migratory memory access pattern as exhibited in IS and WATER.
The reason is the schemes could not react fast enough to take appropriate actions such
as home migration. Suppose in one phase a page is only exclusive accessed by one
node and in the next phase which is only one synchronization point away, it will be
accessed by another node. Collection of access pattern at the home node cannot
pinpoint the best home for that page. Hence, more often than not, the write policy
adaptation scheme eventually kicks in and results in maintaining partial write-update
protocol for the page that is not entirely appropriate. Admittedly, our adaptive schemes
in Orion are by no means complete to cover all types of access patterns. One of the
future work will be to handle migratory data through adaptation between home and
homeless protocol or between single- and multiple-writer.

Applications

(executed with
adaptive actions)

Speedup
(%)

Reduction
in data

transacted(
%)

Reduction
in no. of
msg (%)

Reduction
in external

page
request (%)

No. of
home

migration

No of
write

protocol
change

SOR 42 87 36 44 775 9

GAUSS 79 96 83 24 387 7

FFT 6 7 -7 47 5291 2033

IS 9 -63 -6 94 65 187

WATER 4 17 -17 80 142 78

BARNES-HUT 2 -27 -9 60 763 2842

MG 40 50 23 40 3719 400

CG 11 12 2 92 13 40

Table 6: Performance results of benchmarks executed with 2 adaptive actions

5. CONCLUSION
In this paper, we presented two dynamic adaptive schemes for home-based software
distributed shared memory system. They take advantage of the fact that the home of a
page is a natural point to maintain memory access pattern information regarding
individual pages. Using this information, pages can migrate to new homes
dynamically. The second scheme supports partial write-update protocol. For the same
page, on those nodes where the page is accessed frequently, the write-update protocol
is used, whereas on the others the initial write-invalidate protocol is maintained. Our

experiments showed that the proposed schemes could effectively reduce the number of
external page requests, as shown in table 6, thereby reducing the network
communication overheads. The proposed schemes are general and can be implemented
on any home-based software DSM.

6. REFERENCES
[1] R. Samantha, A. Bilas, L. Iftode, and J. P. Singh. “Home-based SVM Protocols for SMP

Clusters: Design and Performance.” Fourth Internal Symposium on High Performance
Computer Architecture, February 1998.

[2] Y. Zhou, L. Iftode, and K. Li. “Performance Evaluation of Two Home-based Lazy Release
Consistency Protocols for Shared Virtual Memory Systems.” In Proceedings of the
Second USENIX Symposium on Operating System Design and Implementation, pages 75-
88, November 1996.

[3] P. Keleher. “Lazy Release Consistency for Distributed Shared Memory.” Ph.D thesis,
Rice University, 1994.

[4] A.L. Cox, E. Lara, C. Hu, and W. Zwaenepoel. “A Performance Comparison of Homeless
and Home-based Lazy Release Consistency Protocols in Software Shared Memory.” In
Proceedings of the Fifth High Performance Computer Architecture Conference, January
1999.

[5] S. Dwarkadas, H.H. Lu, A.L. Cox, R. Rajamony, and W. Zwaenepoel. “Combining
Compile-time and Run-time Support for Efficient Software Distributed Shared Memory.”
In Proceedings of IEEE, Special Issue on Distributed Shared Memory, pages 476-486,
March 1999.

[6] J.H. Kim, and N.H. Vaidya. “Adaptive Migratory Scheme for Distributed Shared
Memory.” Technical report 96-023, November 1996.

[7] C. Amza, A.L. Cox, S. Dwarkadas, L.J. Jin, K. Rajamani, and W. Zwaenepoel. “Adaptive
Protocols for Software Distributed Shared Memory.” In Proceedings of IEEE, Special
Issue on Distributed Shared Memory, pages 467-475, March 1999.

[8] L.R. Monnerat, and R. Bianchini. “Efficiently Adapting to Sharing Patterns in Software
DSMs.” In Proceedings of the 4 th International Symposium on High Performance
Computer Architecture, February 1998.

[9] J.H. Kim, and N.H. Vaidya. “Towards an Adaptive Distributed Shared Memory.”
Technical report 95-037, September 1995.

[10] K. Thitikamol and P. Keleher. “Thread Migration and Communication Minimization
in DSM Systems.” In The Proceedings of the IEEE, March 1999.

[11] S.J. Eggers, and R.H. Katz. “A Characterization of Sharing in Parallel Programs and
its Application to Coherency Protocol Evaluation.” In Proceedings of the 15 th Annual
International Symposium on Computer Architecture, pages 373-383, May 1998.

[12] C. Amza, A. Cox, S. Dwarkadas, H.H. Lu, R. Rajamony, W.M. Yu, and W.
Zwaenepoel. “ TreadMarks: Shared Memory Computing on Networks of Workstations.”
IEEE Computer, vol. 29 no. 2, pages 18-28, February 1996.

[13] W.W Hu, W.S. Shi, and Z.M. Tang. “JIAJIA: An SVM System Based on A New
Cache Coherence Protocol.” In Proceedings of the High Performance Computing and
Networking (HPCN'99), April 1999.

[14] M.R. Eskiciogiu, T.A. Marsiand, W.W. Hu, and W.S Shi. “Evaluation of JIAJIA
Software DSM System on High Performance Architectures.” In Proceedings of the 12th
Annual International Symposium on High Performance Computer Systems and
Applications, page 76,May 1998.

[15] D.H. Bailey, J. Barton, T.A. Lansinski, and H. Simon. “The NAS Parallel
Benchmark.” RNR technical report RNR-91-002, Januray 1991.

[16] J.P. Singh, W-D Weber, and A. Gupta. “SPLASH: Standford Parallel Applications
for Shared Memory.” Standard University CSL-TR-92-626, June 1992.

