
Exploiting half precision arithmetic in Nvidia GPUs
N.M Ho and W.F. Wong

Department of Computer Science
National University of Singapore

Singapore
minhho@u.nus.edu

Abstract—With the growing importance of deep learning and
energy-saving approximate computing, half precision floating
point arithmetic (FP16) is fast gaining popularity. Nvidia’s recent
Pascal architecture was the first GPU that offered FP16 support.
However, when actual products were shipped, programmers soon
realized that a naı̈ve replacement of single precision (FP32) code
with half precision led to disappointing performance results, even
if they are willing to tolerate the increase in error precision
reduction brings. In this paper, we developed an automated
conversion framework to help users migrate their CUDA code
to better exploit Pascal’s half precision capability. Using our
tools and techniques, we successfully convert many benchmarks
from single precision arithmetic to half precision equivalent, and
achieved significant speedup improvement in many cases. In the
best case, a 3× speedup over the FP32 version was achieved.
We shall also discuss some new issues and opportunities that the
Pascal GPUs brought.

I. INTRODUCTION

Nvidia recently introduced native half precision floating
point support (FP16) into their Pascal GPUs1. This was
mainly motivated by the possibility that this will speed up
data intensive and error tolerant applications in GPUs. Nvidia
GPUs support half precision as storage format starting from
CUDA 7.5 reduce the burden of data intensive application
on GPUs. Applications such as deep learning training and
inference that can take advantage of FP16 as a storage format
enjoyed a reduction in the data transfer time from the host
(CPU side) to device (GPU side). However, the half precision
floating point operations in the older architectures had to be
promoted to float (FP32) inside the floating point compute
units as they did not support half precision arithmetic in
hardware. Rather than introducing new FP16 arithmetic units,
Nvidia modified the single precision floating point unit (FPU)
inside the CUDA cores such that it can either perform a single
float operation, or two FP16 operations. In this paper we
use the term ‘FPU’ to refer to the unit inside CUDA cores that
performs both FP16 and FP32 operations while the unit that
performs double precision floating (FP64) point operations as
the ‘DPU’. The arithmetic and representations of these data
types follows the IEEE 754 standard [1]. However, this cost-
effective implementation meant that the throughput for FP16
operations can be up to twice that for FP32 operations – but
only if we use half2 datatype [2]. For optimal utilization

1To be more exact, the Pascal GPU is not the first to introduce half
precision computation natively in hardware. Jetson TX1 with Maxwell cores
also provided support for FP16. However, Pascal is the first architecture that
supports FP16 natively in the whole product line.

of the FPU, FP16 data must be paired and packed into 32
bit registers as a new half2 (FP16x2) datatype. In other
words, Pascal’s new FPU has the capability of executing
one single precision floating point instruction, or one 2-way
SIMD (Single instruction, multiple data) instruction of the
type half2 in the same amount of time. With this design,
the performance advantage of FP16 is twofold: reduced data
transfer times, and parallel computation. The support for half
precision in CUDA is summarized in Figure 1.

FP32

FP16	data

FP16	data

FP16	data FP16x2	data

FP16	data FP16x2	data

FP16	to	FP32	conversion

FP32	to	FP16	conversion

(a) (b) (c)

FP32 FP32

Fig. 1. Evolution of FPU’s support for half precision. The blue boxes represent
CUDA cores.
(a) Older architectures where FP16 is only a storage type, and all computation
are promoted to FP32.
(b) Pascal FPU, FP16 is natively supported with the same throughput as FP32.
(c) Pascal FPU, FPU16x2 can execute two FP16 instructions at a time.

There are two approaches of using half precision in Pascal:

• When the half datatype (Figure 1b) is used, the FPU
takes the same amount of time to execute both FP16
and FP32 instructions. This approach is simple for code
migration, but it fails to take full advantage of the new
FPU. The performance gain is slightly better than when
half is used merely as a storage datatype because the
data is not implicitly converted to and from float
during each operation as in Figure 1a. We will show
in Section V that the majority of programs showed
only marginal speedup, sometimes even slow down when
using this approach.

• FP16 hardware is fully exploited using the half2
datatype (Figure 1c) as the FPU runs in SIMD mode that

can execute two identical operations on a half2 value
in register. In theory, the program can be twice as fast.

Unfortunately, for the latter, users must rewrite their code.
NVIDIA provides minimal guidelines to doing this. The
process of migrating one’s code from using float to half,
or half2, with the purpose of achieving better performance
is tedious and error prone. The problem mainly comes from
(a) half precision data type is not a primitive data type in both
sides, GPU and CPU and (b) marshalling of data into half2.

The process of converting CUDA program from using
float to half2 is equivalent to vectorizing a program to a
2-way SIMD version. However, most vectorizing techniques
are for CPU code, and targets the inner most loops, with no
guarantee of always being successful. The structure of CUDA
makes the situation worse. In this paper, we shall describe sim-
ple yet powerful techniques to deal with this code migrating
problem in CUDA by attempting to vectorize the outermost
loop of CUDA threads. The method achieves a speedup of
approximately 2× compared to the FP32 versions when most
of the code is amenable to our techniques. Interestingly, when
we count in other empirical factors in hardwares and cache
effects, the speedup can be over 2× in some benchmarks.
In fact, our techniques maybe the only simple way to relieve
nvcc from vectorizing workload at the time being. To the best
of our knowledge, we are the first to study the performance
of half precision in GPU, and provide conversion solutions to
enable the use of half2 instructions in CUDA threads.

A. Related Work

Our work is related to vectorization. Since it is a new
problem in the context of CUDA, we review some of the
techniques for vectorizing code on other architectures, which,
unfortunately, are not suitable for CUDA code. Vectorization is
a well-known technique that is implemented in gcc and icc
compiler [3], [4], [5] targeting SIMD instructions sets such
as AVX-512, SSE. Apart from what is implemented in the
popular compilers, there are advanced vectorization methods
to deal with difficult-to-analyze code [6], [7], [8].

The large body of works on vectorization target sequential
code with loops running on general CPU as well as some
specialized architectures. They try to find steady-state access
patterns in inner loops [9], [10], [11], [12] with some tech-
niques applicable also to outer loop [13], [14], [12]. The
techniques cannot be applied to CUDA code because they
work mainly on loops in sequential programs, and CUDA is
naturally parallelized in a single instruction, multiple thread
manner. Some of the techniques were used to convert sequen-
tial code to CUDA code [15], [16]. However, in practice, most
programmers choose to develop and optimize CUDA code
manually. Given that the code is already written in CUDA,
attempting to reuse such vectorization-based tools may end up
complicating the workflow. For example, the CUDA code may
have to be re-transformed back into CPU code, with the loops
regenerated before such an existing CPU vectorization tool can
go to work regenerating the CUDA version that uses half2.
Furthermore, with the vector size of 2, it may not be easy

to amortize the cost of the scatter-gather operations needed
for SIMDization. In our approach, we maximize performance
gain by vectorizing the entire program, thereby avoiding the
data marshalling overhead of transiting between vectorized and
unvectorized portions of the code.

For performance analysis, there are works targeting CUDA
which explore GPU architecture via microbenchmarking for
older architectures [17], [18]. Part of our work uses mi-
crobenchmark to pinpoint performance bottlenecks, with so-
lutions given for some of the problems that arise in the use
of the Pascal GPU. With the introduction of half2, nvcc
has been extended to optimize for the half2 API. However,
this requires half2 code to be present in the first place, thus
motivating our work.

The paper is organized as follows. Following the intro-
duction, Section II will give details about the challenges of
migrating FP32 code to FP16x2. Section III gives an overview
of our conversion tool, while Section IV will describe other
problems associated with the use of half precision in the
Pascal architecture. Section V evaluates the effectiveness of
our proposed techniques. This is followed by a conclusion.

II. CODE MIGRATION TO PASCAL: THE CHALLENGES

In this section, we will briefly introduce CUDA, and discuss
the challenges of converting CUDA program from using FP32
to FP16 and FP16x2. Note that we assume the user is fully
aware of the increase in error due to precision reduction, which
falls outside the scope of this work.

A. CUDA programming model

CUDA has been used extensively for parallel program in the
last decade. The fine-grain parallel threads executed in single
instruction, multiple thread (SIMT) model of GPU achieving
massive speedup over conventional CPU code [19]. When a
program is executed in GPU, it will launch many threads that
are be grouped into a hierarchy of warps, blocks and grids. A
warp is the smallest unit that GPU will issue instructions from.
Inside a warp, every thread will execute identical sequence
of instructions on different data. If there is a branch, at each
branch some threads in a warp that has the branching condition
satisfied will execute while the rest will be inactive. Multiple
warps will form a block, in which they share the streaming
multiprocessors’ (SM) shared memory. Multiple blocks then
form a grid which share the global memory of the GPU.
The SIMT model is somewhat similar to SIMD with lesser
restrictions on data location (where data can be scattered, and
not strictly in vector form) and branching.

B. Pascal 2-way FP16 SIMD FPU

In the Pascal architecture, the FPU is capable of execut-
ing 2-way SIMD instruction of the half2 (FP16x2) data
type. Figure 2 shows the example for adding two values in
half2 using API from cuda_fp16.h provided starting
from CUDA 7.5.

The API for the current half precision data type is not user
friendly. Since it is not primitive data type, every arithmetic

__half2	a	=	__floats2half2_rn(1.0,2.0);
__half2	b	=	__float2half2_rn(1.0);
__half2	c	=	__hadd2(a,b);

b1 =	1.0 b2 =	1.0a1 =	1.0 a2 =	2.0

c1 =	2.0 c2 =	3.0

SIMD add 16x2

Fig. 2. An example of executing 2-way SIMD instruction in a CUDA thread

operator must be explicitly called as in Figure 2. This reduces
the readability of converted code, and also makes the con-
version prone to error. The conversion to use the half data
type is fairly straightforward. It is not necessary to change
the original CUDA code extensively other than the data type
and conversion at host (CPU) side and device (GPU) side. In
contrast, half2 requires vectorizing the code so that each
thread will execute 2-way SIMD code. To issue a half2
instruction, both halves must be located in the same 32 bit
register. This means that they must already be adjacent in
memory before they are fetched into the register. Any data
movement before issuing half2 instructions will only reduce
the potential performance gain from using half2 instructions.

C. Threads pairing and array access rewriting

There are many techniques to convert code for SIMD
execution. Most of them targeting loops and similar code
sequences. The input data needs to be coalesced to enable
SIMD instructions because of the high cost for data movement.
Thus, many CPU techniques try to analyze memory access
pattern of array inside loops so as to vectorize the code.
Although these techniques can generalize well to any vector
length, they cannot fully vectorize a full function if there are
no loops in the function. In case of nested loop, they will try
to process the innermost loop. These vectorizing techniques
have limited efficacy on CUDA code since CUDA function
body does not always have loop inside.

CUDA code is executed by all threads with the only differ-
ence being their thread indexes at runtime. CUDA programs
are mostly compatible to SIMD processor with vector width
equals warp size (usually 32) with the exception that branches
and memory operations are handled differently. The memory
hierarchy is also different. Based on these observations, we
develop a technique to integrate 2-way SIMD into the SIMT
execution model of CUDA, thereby helping programmers to
quickly convert their code for the half2 datatype correctly,
and with little effort.

We chose to target the implicit outermost loop that is
always present in any CUDA program - the ‘loop’ over all
the CUDA threads. This way, we can take advantage of any
CUDA optimization that can be applied inside the code. By
observing that most of CUDA programs are already optimized
to use coalesced memory accessing, we fuse the two adjacent
CUDA threads into one single thread. Using this method,
the number of threads is reduced to half that of the original
programs. All other things being equal, the new SIMD thread
will take approximately the same amount of time to execute
as the original thread. Therefore, a potential 2× speedup can
be expected.

The process is straight-forward when threads perform mem-
ory read and write into array element using their thread ID as
index. However, we will face problems when threads access
multi-dimensional array, strided access, or when the array
index is determined during runtime. The latter is hard to
solve, and one can always find degenerate inputs to defeat
any scheme. We therefore provide the solution for the first two
access patterns which in any case accounts for the majority of
CUDA programs.

1) Array access rewriting: On CPU side, the data is pre-
pared in exactly the same way for both half and half2
versions if the original data is a floating point array. In the
case of an array of structures, we would group two adjacent
data elements of the same field from two structures into a new
structure with our helper functions.

On GPU side, suppose the thread index of CUDA code
is T_x after translating from higher dimension into one
dimension. The access pattern for an array M is M [f(Tx)],
where f(Tx) is a function of thread’s index. We can rewrite
the array reference f(Tx) to reflect our thread pairing decision.
To fully exploit the half2 type, there is one condition that
the old threads before fusing into SIMD threads must satisfy,
namely that f(Tx) must be in form of A · Tx + B where A
and B are constants. The following forms the basis of our
conversion algorithm:

• If A = 1: we can do a straight-forward conversion where
we can leave the array access as it is in the original
version, and run the program with half2 data type, and
half number of threads.

• If A = 0: one element is accessed by all threads, so
we need to convert that value which is in half type
to half2. This is done automatically in our function
overload header for operators between half and half2.

• If A 6= 1: here we have strided access. We can transpose
M before copying it to the GPU so that f(Tx) becomes:
Tx +A ·B, which reduced to the first case.

For higher dimensional space, we can always translate the
accessing address into one dimension. In fact, most CUDA
programs use M [row · i + j] to access the element M [i][j].
These techniques are applicable to most CUDA programs.
All the program we tested on from Rodinia benchmarks use
these access patterns for their floating point array. This is to
be expected since other, especially more complicated, access

patterns are not easily parallelizable in the CUDA execution
model, and will not perform well as CUDA code.

III. OVERVIEW OF THE TOOL

We developed a tool built on LLVM Clang’s LibTooling [20]
that rewrites CUDA code. For now, it is one of the few choices
available to parse CUDA code. The tool can work in two
modes: (1) calling the original API provided by Nvidia for
some specific functions, or (2) using our operator overload
headers for the majority of operators and functions to improve
readability. On the CPU side, data is converted into half
precision using an open source half math library from [21].

On the GPU side, our tool is fully automatic for half
type, and semi-automatic for half2. The workflow is divided
into two phases. The first phase will run through the original
CUDA code to identify all floating point variables, and list
them in a configuration file. The second phase will read
variable listed in the configuration file and change their types,
calling the APIs of the floating point variables and function
accordingly. This will allow user to recover some accuracy
in the program by deleting some variables that are critical to
output accuracy in the configuration file. By default, however,
we will convert all floating point variables from float or double
to half and half2 versions. Our tool outputs two versions
for the original CUDA kernel, one uses half without SIMD
support, and the other that uses half2.

 0

 0.5

 1

 1.5

 2

 2.5

sq
rt

ex
p

lo
g

co
s

ar
cc

os
co

sh

ar
cc

os
h

lg
am

m
a j0

f

cy
l_b

es
se

l
y1

f

er
fc
in
vf

no
rm

cd
ff

R
a

ti
o

 o
f

n
u

m
b

e
r

o
f

cy
cl

e
s

to
 e

x
e

cu
te

 o
n

e
 t

e
x
tu

re
 l
o

o
k
u

p

 t
o

 t
h

e
 n

u
m

b
e

r
o

f
cy

cl
e

s
to

 e
x
e

cu
te

 o
n

e
 c

o
rr

e
sp

o
n

d
in

g
 S

F
U

 c
a

ll

Mathematical functions

Tex1DFetch latency versus mathematical functions in half precision

TX1
P100

Fig. 3. Relative latency for accessing global memory randomly compared to
calling half precision mathematics functions.

IV. NEW ISSUES WITH USING HALF PRECISION

The use of half2 data type leads to some issues when
migrating application from old architecture using our thread
pairing method, and other vectorizing techniques in general.
First, by grouping threads together, the branching condition
now will be more complex in each thread as it introduces
a new 2-way SIMD thread divergence problem. Second, on
applications that extensively use the mathematics library of
CUDA, the Pascal GPU will promote these values to single
precision before calling the Special Function Units (SFU) to
compute the result. In other words, the SFU of Pascal supports
neither half precision nor SIMD natively. Third, there is no

support for half precision immediate values at the source
code level and ptx levels. We had to add immediate value
conversion support to our tool. Lastly, there will be address
misalignment error when we convert an array of half into
half2 by the method of grouping adjacent values. This only
happens in a few of the benchmarks, but it requires careful
processing at the array boundaries. We shall now tackle each
of these problems in turn.

A. Thread divergence

Thread divergence is a significant concern when writing a
CUDA program. Any CUDA developer will strive to avoid
it. Considering a program with two branches. Each thread in
a warp will have to wait the same amount of time as both
branches will be executed. Our techniques of threads pairing
will have doubled the branches. For each 2-way SIMD thread,
there will be two similar conditional statements, each of them
for one of the old thread before fusion. By replacing any value
changed inside each condition with their masked variable,
we can remove all the branching instructions. This masking
technique is similar to masking in SIMD used in AVX or SSE
instruction sets which is not available in CUDA.

1) Code rewrite solution: We rewrite the code to mitigate
the thread divergence problem. The trick is to keep the code
region that need to be in branch as smallest as possible. All
the code in branches will be converted to simple predicated
instructions by nvcc instead of a branch instruction. To do
so, we keep masked values for each branch of the conditional
statements, and execute instruction of the SIMD version on
the masked values. All the instructions in branches can be
converted to simple SIMD instructions, and reduce the number
of predicated instructions to the smallest set needed to copy
the value of masked values back to the original variables. This
technique is extremely effective when the body of conditional
statement contains read and write operations to the global
memory since nvcc does not optimize half precision memory
access as we will discuss in Section V.

B. SFU Performance

The special functional unit (SFU) is used to quickly com-
pute complex functions from the CUDA mathematical function
library much like libm on the CPU side [22]. The SFU of
previous architecture operates on single precision and double
precision values, with support for approximate version invoked
by means of the "--use_fast_math" compiler flag. There
is barely any mention about support of SFU in the Nvidia
architecture for FP16. We had to investigate this issue for the
Pascal GPUs.

Listing 1. Math functions in half precision
LDG.E.U16 R2, [R2]; //load from memory
F2F.F32.F16 R0, R2; //promoted to float
....
RRO.EX2 R4, R0; //range reduction
MUFU.EX2 R0, R4; //compute exp()
....
F2F.F16.F32 R0, R0; //convert back to half
....
STG.E.U16 [R2], R0; //store result to memory

Listing 1 shows the SASS (assembly code that is dis-
assembled from binary file after all optimization done by
nvcc) version of the device function to compute exp(x).
We can clearly see that the data will be promoted to float
before a call is made to the SFU functions. For half2
version of the code, the subroutine simply duplicates the half
version, except that the epilogue and prologue will use SIMD
instructions. Based on the above observation, we can conclude
that the throughput of FP16 mathematics functions will be
less than float with "fast_math" in general, and the
latency of half2 mathematics functions is nearly 2× that of
the half version.

2) Simple lookup table for complex math functions: The
SFU can be a bottleneck for some applications if complex
mathematics functions are called extensively. We tackle this
problem with the use of table lookup. Full table lookup is
not possible for float functions because the table size will
simply be too large. This is not the case for FP16. Due to
the shorter length of 16 bits, table lookup is feasible and
potentially yields better performance compared to the SFU
hardware. In half precision, it is possible to store a table for
each half precision math function (without any optimization)
in the global memory: 2 bytes per entry × 216 = 131 kilo-
bytes. We used texture lookup to implement this. To test the
feasible of this technique, we measure the clock cycle latency
of both using "fast-math" SFU, and a single texture
lookup at a random index. For functions that are not currently
available in CUDA, we use the fastest version of the equivalent
in float, and simulate the same procedure that that were
used for available half math functions in CUDA. For texture
read, we precompute the outputs of the function for all 216

possible half numbers and make it available for lookup at
runtime. The latency measured for table lookup in the worst
case when the data is completely random with no locality or
cache to help to improve the performance. Figure 3 estimates
the relative speedup if we replace a function call to the SFU
by a texture fetch from global memory on two different GPUs
that support FP16 natively. When the speedup is less than 1 in
simple math functions, it is still useful to use table lookup if
we precompute the whole expression contains a chain of them,
and the result only depends on one variable. For example, the
FP16 computation of exp(2x) + sin(3x2) − 3 cos(x) can be
done using a single table lookup.

C. Floating point constant

Floating point constants are used widely in programs, and
CUDA code is not an exception. The PTX instruction set
allows user to load immediate value to floating point register
(32 bits) easily. Furthermore, it also supports immediate values
as operands for basic operators. In contrast, half operators
currently do not enjoy such support. To mitigate this, we
added function calls for direct data conversion when one of the
operands is constant. When both of the operands are constant,
we optimize the code by computing the results, and combining
them into a single 32-bit value.

D. Address misalignment

Data types require address alignment because of caching,
atomic and memory operations. half2 datatype is aligned
by 4 bytes, i.e., the starting address of any array must be
divisible by 4. When we convert an array pointer of type
half into half2, this alignment constraint must be met. A
problem arises when the original program access an element
starting at odd index in the array. The starting address if we
reuse that array for half2 computation will cause an address
misalignment error. We solve this problem by making the first
thread of the entire program do some extra work if the starting
index is not aligned. In particular, it needs to compute on the
first element of the array in FP16 without SIMD support. Then
the rest of the code will be converted smoothly as the addresses
are aligned. We implemented this solution in gaussian.

 0

 0.5

 1

 1.5

 2

 2.5

 3

bla
cks

cho
les

matm
ul_

sim
ple

matm
ul_

shr
dm

em
ve

cad
d

lav
am

d

lav
am

d_t
un

ed nn

ho
tsp

ot3
d

ba
ckp

rop

km
ea

ns cfd

ga
uss

ian

str
ea

mclu
ste

r

Sp
ee

du
p

co
m

pa
re

d
to

 fl
oa

t v
er

si
on

Jetson TX1 half
half2

Benchmarks
CUDA sample Rodinia

Fig. 4. Performance comparison on the Jetson TX1.

V. EXPERIMENTS

We implemented our proposed techniques, and evaluated
them on two different Nvidia GPUs that support half precision
floating point arithmetic natively:

1) Jetson TX1, with compute capability 5.3. The TX1
fully supports half2 instructions with 2× throughput
compared to float. Although TX1 belongs to Maxwell
architecture, its FPUs supports half2 as in Pascal.

2) Tesla P100, with compute capability 6.0, P100 is similar
to TX1 for half2 support.

Comparison using two different architectures that support half
precision floating point arithmetic allows us to somewhat
control for idiosyncrasies of these architecture that may be
orthogonal to half precision.

The experiment result reported in this section are obtained
from GPUs in which, all things being equal, half2 operations
in hardware can achieve 2× speedup compared to float
throughput. We do not consider GPUs that only support half
precision as storage type, or the Pascal GP104 (GTX1080)
where the hardware support for half precision is slow and
incomplete, and mainly for the compatibility purposes [23].
We ran our tool to convert 12 benchmarks with 4 of them from

the Nvidia sample code, and the rest being the Rodinia bench-
mark suite [24]. We use the original makefiles and compiler
flags of these benchmarks, except adding "-arch=sm_xx"
flag where "xx" is the compute capability of the target
GPU. The execution times were measured by running the
programs with data set provided five times, and then taking
the average value. For benchmarks that required more memory
than is available on our Jetson TX1 development board (which
is 4GB), we reduced the problem size to fit TX1 memory
accordingly. The speedup reported are for the CUDA kernels
execution time. We did not include the time for memory
transfer between host and device since it is obvious that either
half or half2 will enjoy lower data transfer times compared
to float when the size of the array is large enough. We also
carefully checked the output values to ensure that the programs
executed correctly. The amount of error that comes from using
half precision floating point depends on the problem size at
runtime and algorithms in the programs. For small problem
sizes, the relative output error of half version is usually
within 1% of the original. However, for larger problem sizes,
and if the algorithm uses accumulators repeatedly, the output
may completely different from the float version because of
accumulated error, value overflow and underflow. This is an
inherent problem of using lower precision. The impact of using
half precision on the error of the output is an issue beyond
the scope of this paper. We only used the smaller size inputs
to check the correctness of our conversion technique.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

bla
cks

cho
les

matm
ul_

sim
ple

matm
ul_

shr
dm

em
ve

cad
d

lav
am

d

lav
am

d_t
un

ed nn

ho
tsp

ot3
d

ba
ckp

rop

km
ea

ns cfd

ga
uss

ian

str
ea

mclu
ste

r

Sp
ee

du
p

co
m

pa
re

d
to

 fl
oa

t v
er

si
on

Tesla P100 half
half2

Benchmarks
CUDA sample Rodinia

Fig. 5. Performance comparison on the Tesla P100.

A. Discussion

As we can see from Figures 5 and 4, most applications
achieved more than 1.5× speedup when using the half2
datatype via our code rewriting techniques. For the half
type, when the code conversion is simple, the gain in speedup
is rather marginal, or even worse than float in some
benchmarks. Interestingly, some benchmarks can gain above
2× speedup. We attribute this to (1) the original version using
non-optimized mathematics functions extensively, such as the
case in nn, (2) the internal optimizations done by nvcc,
and/or (3) cache effects and increased memory throughput.

The latter was observed in kmeans, and verified by profiling
using the Nvidia tool Nsight. The conversion produced a new
program with a different memory requirement, cache usage
pattern, and instruction schedule.

By inspecting the ptx and cubin code generated, we
found that nvcc does a good job optimizing memory access
on memory intensive applications by introducing temporary
variables for accessing and writing to the same location in
memory over several loops inside each thread. The same
optimization is not available to half precision instructions.
This is the cause of the slowdown observed in lavamd. We
improve memory access in lavamd by rewriting (by hand) the
code using the nvcc optimization technique, and the speedup
became significant in lavamd_tuned.

In streamcluster, both the half and half2 versions
took much longer to complete because the algorithm converges
on a value that need to be correct by more than the third digit
after the decimal point. Both versions were unable to reach
this condition, and had to stop after being timed out. For the
sake of comparison, we relaxed the convergence condition in
such a way that all versions of the code converge, and took
the same number of iterations to do so.

Not all applications will benefit from full half2 support.
These include:

• Applications that have irregular access pattern or runtime
index reference that require marshalling data at runtime
for half2 execution.

• Applications that converge on some amount of error (e.g.
streamcluster), or in other ways are very sensitive to
the potential error in the computation. Some algorithmic
adjustments, such as tweaking the convergence condition,
may save the situation.

Fortunately, these are the minority of CUDA applications. The
former, for example, would not perform well in CUDA using
any precision.

VI. CONCLUSION

Support for half precision floating point arithmetic in
Nvidia’s Pascal paves the way for further research and appli-
cation in error tolerant and data intensive algorithms on GPUs.
However, naı̈ve replacement of FP32 with FP16 will not
yield good performance. To exploit FP16x2 well, developers
must significantly rewrite the code. To ease this burden, we
proposed techniques to automate the conversion process. The
conversion takes into consideration the structure of CUDA and
the entirely new demands of the half2 datatype. While our
tool may not be able to always convert any FP32 code to
FP16x2, it is usable on many benchmarks, including those
from Rodina. In the best case, a 3× speedup was achieved.
Developers must still make the decision of whether or not
to trade accuracy for performance by using FP16 instead of
FP32 or FP64. Our tool will make the conversion task effective
and easy if they decide to do so. But even without the tool,
we believe the insights and techniques on using half2 we
described in this paper will enable them to rewrite their code
more effectively. The tool is available at [25].

REFERENCES

[1] IEEE Standards Committee, “754-2008 IEEE standard for floating-point
arithmetic,” IEEE Computer Society Std, vol. 2008, 2008.

[2] “NVIDIA Tesla P100 whitepaper,” https://images.nvidia.com/content/
pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf, accessed:
2017-05-10.

[3] “Auto-vectorization in GCC,” https://gcc.gnu.org/projects/tree-ssa/
vectorization.html, accessed: 2017-05-10.

[4] “A guide to vectorization with Intel C++ compilers,”
https://software.intel.com/sites/default/files/m/4/8/8/2/a/
31848-CompilerAutovectorizationGuide.pdf, accessed: 2017-05-10.

[5] C. Garcı́a, R. Lario, M. Prieto, L. Piñuel, and F. Tirado, “Vectorization of
multigrid codes using SIMD ISA extensions,” in Parallel and Distributed
Processing Symposium, 2003. Proceedings. International. IEEE, 2003,
pp. 8–pp.

[6] H. Chang and W. Sung, “Efficient vectorization of SIMD programs with
non-aligned and irregular data access hardware,” in Proceedings of the
2008 international conference on Compilers, architectures and synthesis
for embedded systems. ACM, 2008, pp. 167–176.

[7] S. Kim and H. Han, “Efficient SIMD code generation for irregular
kernels,” in ACM Sigplan Notices, vol. 47, no. 8. ACM, 2012, pp.
55–64.

[8] A. Shahbahrami, B. Juurlink, and S. Vassiliadis, “SIMD vectorization of
histogram functions,” in Application-specific Systems, Architectures and
Processors, 2007. ASAP. IEEE International Conf. on. IEEE, 2007,
pp. 174–179.

[9] A. E. Eichenberger, P. Wu, and K. O’brien, “Vectorization for SIMD ar-
chitectures with alignment constraints,” in Acm Sigplan Notices, vol. 39,
no. 6. ACM, 2004, pp. 82–93.

[10] D. Nuzman, I. Rosen, and A. Zaks, “Auto-vectorization of interleaved
data for SIMD,” ACM SIGPLAN Notices, vol. 41, no. 6, pp. 132–143,
2006.

[11] N. Sreraman and R. Govindarajan, “A vectorizing compiler for multime-
dia extensions,” International Journal of Parallel Programming, vol. 28,
no. 4, pp. 363–400, 2000.

[12] K. Trifunovic, D. Nuzman, A. Cohen, A. Zaks, and I. Rosen,
“Polyhedral-model guided loop-nest auto-vectorization,” in Parallel Ar-
chitectures and Compilation Techniques, 2009. PACT’09. 18th Interna-
tional Conference on. IEEE, 2009, pp. 327–337.

[13] D. Nuzman and A. Zaks, “Outer-loop vectorization: revisited for short
SIMD architectures,” in Proceedings of the 17th international conference
on Parallel architectures and compilation techniques. ACM, 2008, pp.
2–11.

[14] R. Karrenberg, “Whole-function vectorization,” in Automatic SIMD
Vectorization of SSA-based Control Flow Graphs. Springer, 2015, pp.
85–125.

[15] S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio Gomez, C. Tenl-
lado, and F. Catthoor, “Polyhedral parallel code generation for CUDA,”
ACM Transactions on Architecture and Code Optimization (TACO),
vol. 9, no. 4, p. 54, 2013.

[16] M. M. Baskaran, J. Ramanujam, and P. Sadayappan, “Automatic C-to-
CUDA code generation for affine programs,” in International Conference
on Compiler Construction. Springer, 2010, pp. 244–263.

[17] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and
A. Moshovos, “Demystifying GPU microarchitecture through
microbenchmarking,” in Performance Analysis of Systems & Software
(ISPASS), 2010 IEEE International Symposium on. IEEE, 2010, pp.
235–246.

[18] A. Li, S. L. Song, M. Wijtvliet, A. Kumar, and H. Corporaal, “SFU-
driven transparent approximation acceleration on GPUs,” in Proceedings
of the 2016 International Conference on Supercomputing. ACM, 2016,
p. 15.

[19] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with CUDA,” Queue, vol. 6, no. 2, pp. 40–53, 2008.

[20] “Clang LibTooling,” https://clang.llvm.org/docs/LibTooling.html, ac-
cessed: 2017-05-10.

[21] “IEEE 754-based half-precision floating point library,” http://half.
sourceforge.net/half 8hpp.html, accessed: 2017-05-10.

[22] S. F. Oberman and M. Y. Siu, “A high-performance area-efficient
multifunction interpolator,” in Computer Arithmetic, 2005. ARITH-17
2005. 17th IEEE Symposium on. IEEE, 2005, pp. 272–279.

[23] “FP16 throughput on GP104,” http://www.anandtech.com/show/10325/
the-nvidia-geforce-gtx-1080-and-1070-founders-edition-review/5,
accessed: 2017-05-10.

[24] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in Workload Characterization, 2009. IISWC 2009. IEEE International
Symposium on, 2009, pp. 44–54.

[25] “removed for blind review.”

