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Abstract
Field Programmable Gate Arrays (FPGAs) holds the pos-
sibility of dynamic reconfiguration. The key advantages of
dynamic reconfiguration are the ability to rapidly adapt to
dynamic changes and better utilization of the programmable
hardware resources for multiple applications. However, with
the advent of multi-million gate equivalent FPGAs, config-
uration time is increasingly becoming a concern. High re-
configuration cost can potentially wipe out any gains from
dynamic reconfiguration. One solution to alleviate this prob-
lem is to exploit the high levels of redundancy in the configu-
ration bitstream by compression. In this paper, we propose a
novel configuration compression technique that exploits re-
dundancies both within a configuration’s bitstream as well
as between bitstreams of multiple configurations. By maxi-
mizing reuse, our results show that the proposed technique
performs 26.5–75.8% better than the previously proposed
techniques. To the best of our knowledge, ours is the first
work that performs inter-configuration compression.

INTRODUCTION
Field Programmable Gate Arrays(FPGAs) offer a generic
platform for hardware realization of application specific al-
gorithms. There is an increasing interest in using them as
alternative computing platforms. FPGAs are particularly
suited for accelerating compute intensive algorithms that can
take advantage of massive hardware parallelism.
Today’s FPGAs are dynamically reconfigurable. At any time
after an FPGA has been powered up, it is possible to suspend
its operations, load in a completely new configuration, and
restart its operation using the newly loaded configuration.
This has the effect of virtualizing the hardware by allowing
one to context switch between hardware implementations
realized on the same set of reconfigurable resources. By vir-
tualizing the hardware, a better utilization can be achieved,
especially if the computation involves some form of multi-
tasking. An application that exhibits major phase transitions
in its execution may also be able to use dynamic reconfig-
uration to accelerate its operations over its entire execution.
Dynamic reconfiguration also opens up the possibility of hav-
ing a system that can actively adapt its hardware to errors,
failures, or changing operating environments.
Computing with FPGAs by means of dynamic reconfigu-
ration is not without its challenges. Multi-million gate-
equivalent FPGAs are now available off the shelf. However,

such FPGAs take a considerable amount of time to configure.
This can potentially wipe out any advantages of dynamic re-
configuration. Compression of the configuration bitstream
has been suggested as a means to alleviate configuration la-
tency. A major component of configuration time is the time
it takes to transfer a configuration bitstream to the FPGA.
Reducing the size of the configuration bitstream will reduce
the configuration transfer time.
All techniques of data compression seek to minimize the
amount of data redundancies present. For a given applica-
tion, a subset of operations may be found consistently across
successive configurations. This translates into configuration
data that may be repeated across multiple bitstreams. The re-
configuration process of an FPGA provides opportunities to
exploit these redundancies through data reuse between suc-
cessive configuration bitstreams. Existing work in configura-
tion compression has demonstrated effective exploitation of
the high degree of redundancies present within a bitstream.
However, the exploitation of redundancies between succes-
sive configurations remains largely unexplored.
In this paper, we first propose a new intra-bitstream compres-
sion technique. Our results show that this technique com-
petes favorably with the best known previous technique[5].
We then extend the technique to take advantage of inter-
bitstream redundancies as well aspartial reconfigurability
supported by modern FPGAs such as Xilinx Virtex family.
To the best of our knowledge, ours is the first work to do so.

CONFIGURATION ARCHITECTURE
Virtex is a family of partially reconfigurable SRAM-based
FPGAs from Xilinx Inc. Each Virtex device comprises of
an array of configurable logic blocks (CLBs). Also present
on each device are blocks of random access memory known
as SelectRAMs, input-output blocks (IOBs) clock resources,
programmable routing, and configuration circuitry. The de-
vice is configured by loading a bitstream into configuration
memory comprising of the SRAM cells, whose outputs con-
trol the FPGA logic and interconnect resources.
The Virtex configuration memory is organized into a series of
one-bit wideframes, each spanning from the top of the array
to the bottom [9]. A frame is the smallest unit of memory
that can be written to or read from the device. Frames are
aggregated to formcolumns, which are of several types. A
center column configures the four global clock pins, while
two IOB columns configure the IOBs present on the left and
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In addition, frames can be read back by loading a frame from configuration memory onto a shift 

parallel-to-serial register, the Frame Data Output Register (FDRO), before the frame is shifted 

out onto the host process. Figure 4 shows the writes to and reads from the configuration memory 

involving the FDRI and FDRO respectively. 

 

 

 

 

 

 

 

 

 

 
Figure 4 Virtex Configuration and Readback Mechanism 

 

3 Existing Configuration Compression Techniques 
 
Reducing reconfiguration overhead has the potential for improving the performance of 

reconfigurable systems. Research has been carried out targeting FPGAs with various 

configuration architectures. Wildcard and Runlength Compression  and Configuration Cloning 

techniques have been investigated targeting FPGA architectures where the configuration 

granularity (smallest unit of configuration) is a single logic cell; dictionary-based techniques 

however, provide extensibility for configurations of coarser-granularity. 

 

3.1 Logic-Cell based Compression Techniques 
 
The Wildcard Compression technique (Hauck, Li and Schwabe, 1999), targets the Xilinx 

XC6200 series FPGA architecture, where logic cells can be addressed individually. By utilizing 

the wildcard address registers inherent in the architecture, logic cells sharing the the same 

configuration can be addressed and configured with a single write operation, achieving faster 

configuration. Despite demonstrating a compression ratio (compressed bitstream bit count over 

original bitstream word count) as low as 25%, this architecture-specific algorithm exhibits poor 

extensibility. Furthermore, in the absence of repetitive structures that gives rise to logic cells 

Figure 1. Virtex Configuration and Readback

right sides of the device. CLBs and SelectRAM are rep-
resented by multiple CLB and RAM columns respectively.
Each CLB column is configured by 48 frames. The first and
last 18 bits of each of these frames configure the IOBs lo-
cated at the top and bottom of the device, respectively. Each
18-bit group found between the first and last 18 bits in turn
configures part of a CLB row found in that column.
The device is configured by loading in a configuration bit-
stream, consisting of a series of commands and frame data.
To configure a frame, the frame address must be provided,
followed by the frame data. The configuration mechanism
consists of a serial-to-parallel register, theFrame Data Input
Register(FDRI) (see Figure 1). Every frame is first shifted
into the FDRI before it is written to the configuration mem-
ory. Data is shifted into the bottom of the FDRI. Once the
FDRI is filled up with a new frame, it is written into mem-
ory. In addition, a frame can be read back by loading it from
configuration memory into a parallel-to-serial register called
theFrame Data Output Register(FDRO).

RELATED WORK
A number of compression techniques have been proposed for
FPGA architectures. The wildcard compression scheme [6]
targets the Xilinx XC6200 series FPGA architecture which
supported this feature. By utilizing the wildcard address reg-
isters present in the architecture, logic cells sharing the same
configuration can be addressed and configured with a single
write operation, speeding up configuration. Despite demon-
strating a compression ratio as low as 25%, this architecture-
specific algorithm exhibits poor extensibility. Furthermore,
in the absence of repetitive structures that give rise to logic
cells sharing common configurations, the regularities upon
which the algorithm leverages upon may not be present. Run-
length encoding techniques have also been proposed for this
type of architecture [7]. On the whole, however, this archi-
tecture is clearly not appropriate for large FPGAs, bringing
into question this entire class of methods.
Configuration cloning [11] exploits regularity and locality in
bitstreams by copying configuration data from one region of
the FPGA to several other regions. Without loading the en-
tire bitstream, the whole FPGA can be configured, reducing
configuration latency. However, for this method to work, a
large amount of complex circuitry is needed.
It was found that bitstream regularities can be effectively
encoded by dictionary-based methods. Dictionary-based al-
gorithms depend less on specific features of the FPGA con-

figuration architecture, providing for greater flexibility. Con-
figuration compression [5] based on the Lempel-Ziv-Storer-
Szymanski (LZSS) [1] compression scheme has been shown
to be effective for the Xilinx Virtex family of FPGAs. These
algorithms require that an extended version of the FDRI be
used as a sliding window, such that a frame present in the
upper half of the FDRI will act as the dictionary for the next
frame to be configured. By deriving a suitable sequence of
frame configuration, inter- and intra-frame regularities can be
leveraged. This is the best configuration compression method
known to date. Besides LZSS, other dictionary compression
schemes such as the Lempel-Ziv-Welch (LZW) method [4],
and LZ77 [10] were also reported in the literature. However,
they tend to fair less well.

DIFFERENCE VECTOR (DV) COMPRESSION
An analysis of configuration bitstreams reveals a high de-
gree of regularity among the frames configuring the CLB
array. Recall that each CLB column is configured by a series
of frames. Frames configuring common structures among
different CLBs may share high regularity. Between such
frames, one frame may be converted into another simply by
flipping a few bits. LZSS compression produces good results
in highly regular bitstreams [5]. However, when the lengths
of the matches are small, LZSS compression proves to be less
effective as the savings is offset by the encoding overhead.
An analysis of our benchmark bitstreams reveals that bit-
stream regularities may be too fine-grained to be effectively
captured by the LZSS method. We shall now describe an
algorithm that taps into these regularities thereby achieving
better compression ratio than the LZSS method.

Compression
By encoding the bit differences between frames, we can
reduce redundancies in loading identical information repeat-
edly for similar frames. We then assign a suitablereference
frame to the frame to be compressed which we call theben-
eficiary frame. We then construct adifference vector:

DV (F1, F2) = F1⊕ F2

where F1, F2 are the reference and beneficiary frames re-
spectively and⊕ is the bitwise exclusive OR operator.
Given that the bit-flips obtained between two frames tend to
be either few in number and scattered or clustered in bands,
we observe long sequences of 0s in the difference vector,
with 1s occurring in shorter sequences. Therefore, runlength
encoding (RLE) can be used to effectively compress run-
ning sequences in the difference vectors. In our scheme, we
first determine the runlengths of 0s and 1s before employing
Huffman [8] encoding for the runlengths. Given that the run-
lengths of sequences of 1s exhibit vastly different entropies
from that of sequences of 0s (with 1s occurring in short se-
quences and 0s in very long sequences), we use separate set
of encodings for sequences of 1s and 0s.



Decompression
Decompression occurs at runtime. Decoding the runlengths
reveals the bit locations where flips are to be performed to
transform the reference frame into the beneficiary one. The
FDRI register in Xilinx Virtex devices can be effectively
used for decompression. Initially, it contains the reference
frame. A decoder circuit is added before the FDRI register
(see Figure 1). As runlength decoding proceeds, the relevant
bits in FDRI are flipped. When all the code words have been
decoded, the contents of the FDRI represents the beneficiary
frame and it is written to the configuration array.

INTRA-BITSTREAM COMPRESSION
The similarity between the reference frame and the benefi-
ciary frame is the key to achieving good compression ratio.
Both LZSS and DV compression require a suitable configu-
ration sequence of frames such that similar frames are next to
each other thereby improving the compression ratio. We use
the algorithms presented in [5] to generate the configuration
sequence for LZSS compression and modify it suitably to
adapt it to DV compression.

Inter-frame Regularity Graph (IRG)
An inter-frame regularity graph(IRG) [5] is a directed graph
where each frame is represented by a node. A directed edge
u → v between two nodesu andv represents the size of
the compressed encoding ofv by treatingu as the reference
frame. To discover inter-frame regularities, each frame is
used as a reference frame and every other frame is treated as
a beneficiary frame, i.e., IRG is a complete graph. In case
of LZSS compression, it is easy to find the size of the com-
pressed encoding for the beneficiary frame. However, for DV
compression, the Huffman codes for runlengths are designed
for the entire bitstream instead of individual frames. That is,
it depends on the configuration sequence. Therefore, we use
the number of0→ 1 and1→ 0 transitions in the difference
vector between frameu and framev as the edge weight of
u → v. We expect that minimizing the number of transi-
tions will minimize the length of the encoding. As an added
advantage, minimizing the number of runlengths reduces de-
compression time by reducing the number of Huffman table
lookups.
Given the IRG, we present two schemes for generating con-
figuration sequence: one that does not require any readback
of frames, and one that does.

Configuration WithOut Readback (CWOR)
The optimal configuration sequence that does not have read-
back corresponds to theshortestHamiltonian path (i.e., a path
that visits each vertex exactly once) in the IRG. A greedy al-
gorithm is presented in [5] that starts with the minimum cost
edge and expands its both ends to cover all the vertices. This
algorithm generates close to optimal results. For LZSS com-
pression, this scheme requires extension of the FDRI register.
However, DV compression requires minimum modification
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Figure 2. Original and Transformed MST

to the existing configuration architecture. Only a decompres-
sion unit is added before the FDRI register. Let〈f1, . . . , fn〉
be the configuration sequence of frames.fi−1 acts the refer-
ence frame forfi. Beforefi is decoded, its reference frame
fi−1 is present in the FDRI register as it was the last config-
ured frame. Therefore, FDRI register can be used as refer-
ence frame and its bits are flipped according tofi’s encoding.
The modified FDRI register represents the beneficiary frame
fi and is written to the configuration array. FDRI will now
be used as reference frame to decompress the framefi+1.

Configuration with Readback (CWR)

The configuration sequence without readback is too restric-
tive in taking full advantage of the similarity among frames.
Therefore, Li and Hauck [5] proposed another scheme where
it is allowed to readback already configured frames from the
FPGA and use them as reference frames. This corresponds
to finding the directed minimum spanning tree (MST) [3] in
the IRG. An edgeu → v in the tree indicates thatu should
be used as the reference frame forv. The configuration se-
quence is generated by a pre-order traversal of the MST. Li
and Hauck [5] propose to readback the frame in FDRI regis-
ter itself. Instead, we use the existing readback infrastructure
to read frames from configuration array into FDRO register
(see Figure 1). The contents of the FDRO register is trans-
ferred to the FDRI register and then used as the reference
frame as before.

Once we readback a frame in the FDRO register, it remains
there till another readback command is executed. Therefore,
it is possible to reuse the FDRO register. Letv be a node in
the MST with more than one childrenc1, . . . , cn and suppose
that none of the subtrees rooted at each child node is a chain
(simple path). Then the configuration sequence generated by
pre-order traversal requiresn−1 readbacks ofv to configure
c2, . . . , cn. This is because framev in FDRO is overwrit-
ten due to readbacks during the subtree traversal of a child.
However, if the subtree at childci is a chain, then the FDRO
register will still contain framev after the frames in subtree
of ci have been configured.ci+1 can simply use the FDRO
register thereby avoiding the readback ofv. We exploit this
fact by transforming the MST such that at any node, the left
children are those with “chain” subtrees as shown in Fig-
ure 2. The original MST requires three readbacks (R1, R2,
R3) while the the transformed one (obtained by moving the
subtree rooted at G to the left) requires only two readbacks.



INTER-BITSTREAM COMPRESSION
Utilizing intra-bitstream regularities, the algorithms presented
so far are effective for single bitstream compression. How-
ever, they do not take into account inter-bitstream regular-
ities inherent across multiple bitstreams in reconfigurable
systems. Regularities between configuration bitstreams may
arise due to the following reasons, and subsequently can be
exploited.

Static Kernels. The implementation of an application based
on a reconfigurable computing model may require several
runtime reconfigurations of its FPGA component. Each
configuration may consist of multiple independent compu-
tational kernels, each implementing a different part of the
application. Configurations may share static kernels (modu-
lar circuits maintained in the same position across multiple
configurations). This occurs when the application requires
some kernels persistently, whereas it dynamically swaps in
and swaps out non-persistent kernels from the remaining fab-
ric. Without partial reconfiguration, the whole FPGA has to
be reconfigured every time any part of the fabric changes.
Instead of loading in an entire bitstream, the partial recon-
figurability of the Virtex FPGA allows us to load in a partial
bitstream only for the part of the device that requires changes.

Chip Utilization. Due to the highly flexible nature of the
FPGA interconnect, only a small proportion of the configura-
tion bits in the bitstream for a given circuit may be important.
Hence, only these bits in the configuration present on-chip
may differ from those of the incoming bitstream.

In this section, we will first explore the feasibility of using
partial reconfiguration to speed up dynamic reconfiguration,
before proposing algorithms to apply Difference Vector and
LZSS compression in an inter-bitstream paradigm.

Partial Reconfiguration
With the partial reconfiguration capability present in Virtex
FPGAs, configuration time can be greatly reduced by trans-
ferring only those portions of the next bitstream that differ
from the current bitstream already in the FPGA, with no ad-
ditional hardware overhead. We have implemented a tool
targeting the Xilinx Virtex XCV1000 FPGA on the Celoxica
RC1000 board, that performs partial reconfiguration by de-
tecting the differences between two bitstreams and loading
only these differences onto the FPGA during reconfiguration.
Our experiments showed that reconfiguration time increases
nearly proportionally with the amount of data transferred,
with negligible latency in addressing the changed portions of
the bitstream.
One major drawback of partial reconfiguration is its reliance
on the appropriate placement of kernels. As mentioned pre-
viously, the smallest configuration unit is one frame, which
spans the configuration array vertically. The kernel layout
for Benchmark5 in Figure 7 allows for partial reconfiguration
of the staticidct kernel. Whereas the staticsmalldeskernel

for Benchmark2 in Figure 7 will not offer any opportunity
for partial reconfiguration as all the frames are modified.
The physical constraints and IO requirements for a kernel
may render a layout facilitating partial reconfiguration dif-
ficult. On the other hand, by detecting inter-bitstream reg-
ularities that lie within a section of a frame, the regularity
brought about by static circuitry spanning all the frames can
be captured by DV and LZSS compression.

Compression
DV and LZSS compression have been shown to be effective
on stand alone bitstreams. Given a reconfigurable computing
model, these techniques may be extended to exploit regular-
ities spanning across bitstreams.
The configuration memory on the FPGA acts as a natural
cache for storing frames in the previous configuration, which
we shall call theold frames. These frames may be very
similar to thenew frames - the incoming configuration to
be compressed. Just as intra-bitstream compression exploits
similarities among new frames, inter-bitstream compression
can readback old frames and use them to compress the new
frames. The complication here is that the reference frames
from the old bitstream cannot be overwritten prior to their
being readback for reuse. We have extended both intra-
bitstream CWOR and CWR techniques to approximate opti-
mal configuration sequences that maximize the use of refer-
ence frames within the same bitstream and across successive
bitstreams.

Inter-frame Regularity Graph (IRG)
We define a variant of the IRG graph previously utilized
in LZSS and DV schemes for stand alone bitstreams. The
IRG in this case is a multi-digraph, i.e., a directed graph
with multiple edges between vertices as well as self-loops.
Each nodeu has a pair of directed edgesIntra(u→ v) and
Inter(u→ v) to every other nodev. The weight of the edge
Intra(u→ v) is the cost of usingunew as a reference frame
for vnew. Similarly, the weight ofInter(u→ v) is the cost
of usinguold as the reference frame forvnew. In addition,
each nodeu has a self-loopInter(u → u) annotated with
the cost of usinguold as the reference frame forunew. We
now define some special nodes in the IRG.
Retained NodesA nodeu is a retained node if the content
of unew is the same as the content ofuold. These frames do
not need to be reconfigured.
Self-Referenced NodesA nodeu is a self-referenced node
if it is not a retained node, butuold is used as the reference
frame forunew.

Configuration WithOut Readback (CWOR)
The CWOR scheme for intra-bitstream compression does
not require any readback. However, for inter-bitstream com-
pression, we allow arestricted form of readback. We allow
a frameuold to be readback only for the configuration of
unew. This relaxation allows us to exploit scenarios depicted
in the Benchmark2 in Figure 7 involving the static kernel



Input : Inter-Bitstream IRGG
Output : Configuration SequenceCS
CS := φ ;
Delete Retained Nodes fromG;
Delete edgesInter(u→ v) if u 6= v;
Mark all nodes inG as unvisited;
for all nodesv ∈ G do

if Inter(v → v) < minu∈G,u 6=v (Intra(u→ v)) then
/* v is a Self-Referenced Node */
CS := CS ∪ {〈v〉};
Mark v as visited;

end
end
if CS = φ then

/* There is no self-referenced node */
Let (u→ v) be minimum cost edge inG;
CS := {〈u, v〉};
Mark u andv as visited;

end
while ∃ unvisited nodes inG do

Let u → v be the shortest edge inG s.t. v is unvisited
andu is the tail node of a sequenceS ∈ CS ;
if Inter(v → v) < Intra(u→ v) then

/* v is a Self-Referenced Node */
CS := CS ∪ {〈v〉};

else
Append nodev to S;

end
Mark v as visited;

end

Algorithm 1: Inter-Bitstream CWOR

smalldes. Algorithm 1 is a greedy algorithm for constructing
the CWOR configuration sequence.
The algorithm finds a configuration sequence (CS) for the
non-retained frames. Note that the retained frames need not
be configured. The only “Inter” edges considered are of the
form Inter(v → v). At any point of time,CS is of a set
of sequences (paths) and the algorithm tries to extend them
along the tails with shortest edges. The final configuration
sequence consists of a set of directed paths. If a sequence
contains a self-referenced node, it will be at the head of the
sequence and its configuration will require a readback.

Configuration With Readback (CWR)
The aim of the inter-bitstream CWR algorithm is to find a
configuration sequence that pairs up each new frame with the
best possible reference frame. The reference frames can be
both old and new frames. However, we need to make sure that
a old reference frame is not overwritten before it is used by
the corresponding beneficiary frame. The algorithm consists
of two phases. The first phase pairs up each non-retained
new frame with a reference frame. This phase generates a
set of directed trees. The second phase computes an efficient

Input : Rooted TreeT
Output : Configuration Sequence
mark all nodes as unvisited;
for all nodesv ∈ T in reverse level traversal orderdo

current := v;
if current is visitedthen

continue;
end
while (current has incident “Inter” edge or is self-
referenced)do

/* configure current */
markcurrent as visited;
if current is self-referencedthen

parent := φ;
compress current w.r.t. currentold;

else
parent := parent ofcurrent;
compress current w.r.t. parentold;

end
/* Traverse current’s subtree */;
PREORDER(sub-tree rooted atcurrent) ;
if (parent 6= φ andparent does not have unvisited
child with “Inter” edge) then

current := parent;
continue;

else
break;

end
end

end
PREORDER(T );

Algorithm 2: Inter-Bitstream CWR

traversal order of these trees to minimize the number of
readbacks.

Generation of Trees. First, we mark the retained nodes and
remove all their incoming edges from the IRG. All the out-
going “Intra” edges of the retained nodes are also removed.
Similarly, we find all the self-referenced nodesv in IRGG s.t.
Inter(v → v) < minu∈G,u 6=v (Intra(u→ v)). Again, we
remove all the incoming edges to the self-referenced nodes.
For the remaining set of nodesV inG, we derive a set of trees
such that each node inV appears exactly once in the trees
with in-degree equal to 1. The goal is to minimize the total
cost of all the edges in the tree. This is achieved through a
modification of the directed minimum spanning tree (MST)
algorithm [3]. The basic idea is to start with the set of best
pairing of nodes and then eliminate cycles, if any, one by
one.

1. For each node other than the retained and self-referenced
ones, select the incoming edge with the minimum cost. LetS
be the set of selected edges. If no retained or self-referenced



Benchmark Source Device Utilization
rsa Opencores XCV100 56%
idct Xilinx XCV150 93%
dctidct Xilinx XCV300 86%
des Xlinx XCV400 76%
tripdes Xilinx XCV800 82%
jpeg OpenCores XCV1000 96%

Table 1. Benchmarks for Intra-Bitstream Compression

frames exists, then select an arbitrary node and remove its
incoming edge fromS.
2. If the setS does not contain any cycle, thenS is the set of
trees. Otherwise, continue.
3. For each cycle formed, the nodes in this cycle are collapsed
into a pseudo-node (k). For each nodej in the cycle, modify
the cost all its incident edges except for the one that belongs
to the cycle as follows.

c(i→ k) = c(i→ j)−
(
c(x(j)→ j)−min

l∈G
(c(x(l)→ l)

)
wherec(i→ j) is the cost of the incident edge,c(x(j)→ j)
is the cost of the edge in the cycle incident toj. Note that
we also consider self loops (i = j) as incident edges.
4. Among the modified edges, leti → k be the edge with
minimum modified cost and leti→ k enter the cycle at node
j. If i = j, then markj as a self-referenced node and remove
x(j) → j from the setS. Otherwise, selecti → k as the
incoming edge of the pseudo-nodek and replacex(j) → j
with i→ j in the setS.
5. Delete all the incident self-loop edges, i.e., deletei → k
if i is a node in the original cycle.
6. Go to step 2 with the contracted graph.
Figure 3 shows an illustration of tree generation algorithm.
As there is no self-referenced node, node1 is chosen as the
root. The original set of edges generates a cycle which is
eliminated in the figure on the right hand side.
The result of the first phase is a set of disjoint trees. Each tree
can have at most one retained or self-referenced node. This
is because these special nodes have in-degree = 0 and all the
other nodes have in-degree = 1. Similarly, by construction,
there can be at most one node with in-degree = 0 that is not
a retained or self-referenced node (see Step 1). The number
of trees inS corresponds to the number of nodes with in-
degree = 0 inS. Each such node is made the root of the
corresponding tree.

Traversal of Trees. The second phase of the algorithm tra-
verses each rooted tree so as to minimize the number of
readbacks and to ensure that a reference frame is not over-
written before it is used. Each nodev is assigned adepth
value equal to the length of the path from root to nodev.
Algorithm 2 details the traversal. The basic idea of the algo-
rithm is to visit the nodes with incoming “Inter” edges first so
as to make sure that their reference frames are not overwrit-

ten. The algorithms traverse the nodes in reverse level-order,
i.e., its starts with the nodes of highest depth and works its
way towards the root. However, it also attempts to exploit
a frame that has just been configured (present in FDRI) or
has just been readback (present in FDRO). The first case is
taken care of through a PREORDER traversal of the subtree
rooted at a configured node (currentin Algorithm 2 which is
present in FDRI). The PREORDER traversal is similar to the
pre-order traversal described in intra-bitstream CWR scheme
(see Section ). However, it stops exploring a node further if
it has already been visited. The second case (a frame present
in FDRO) is exploited by the fact that for aparentnode (pos-
sibly present in FDRO), we visit all the children with “Inter”
edges before configuringparent(last condition in Algorithm
2). After all the “Inter” edges have been visited, the algo-
rithm performs another pre-order traversal starting from root
node to configure the unvisited nodes. Figure 4 shows an
example of a traversal of two trees. The figure on the left
represents the configuration sequence of nodes before the
final PREORDER traversal of the whole tree for unvisited
nodes is performed. The lightly shaded nodes represent the
ones that are covered by PREORDER traversal of subtrees
rooted at configured nodes. The figure on the right shows
the final configuration sequence.
Algorithm 2 generates the order in which the frames should
be configured and the reference frames to be used for their
compression. Given this order, it is easy to see that a readback
will be necessary if the reference frame is not present in FDRI
or FDRO register. Given the traversal order, a configuration
bitstream is generated that includes readback commands as
well commands to use FDRI or FDRO register as reference
frames.

EXPERIMENTAL RESULTS
In this section, we present the experimental evaluation of our
compression. We perform compression using a selection of
circuits typically implemented on FPGAs in the encryption
and image processing application domain (see Table 1).

Intra-Bitstream Compression
Figure 5 shows the intra-bitstream compression ratios for the
DV and LZSS compression. The compression ratio is de-
fined as the compressed configuration size as a percentage of
the uncompressed configuration size. We included the size of
the Huffman tables in compressed configuration size for DV.
Figure 5 shows that DV compression performs better than
LZSS irrespective of readbacks. Note that configuration with
readback (CWR) performs better than configuration without
readback (CWOR) for DV compression. Reading back sim-
ilar data allows full exploitation of inter-frame regularities.
However, LZSS fails to exploit fine-grained bitstream reg-
ularities as effectively as DV compression. Therefore, the
slight reduction in frame encoding size is insufficient to off-
set the frame addressing overheads involved in readbacks.
This led to the CWOR scheme performing better than the
CWR scheme under the LZSS compression.
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Figure 3. Tree Generation for Inter-Bitstream CWR
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Figure 5. Intra-bitstream Compression with DV and LZSS

Despite yielding better results, some issues may arise dur-
ing actual hardware implementation of DV compression.
One concern is that on-chip memory may not be sufficient
for Huffman look-up tables, although our experiments have
shown the largest of these tables to be less than 3KB.
Second, the Huffman trees to retrieve the Huffman-encoded
runlengths may be a potential bottleneck in the decompres-
sion process. Speedups can be achieved by N-Level imple-
mentation of the look-up tables, which trades off memory
requirements with speed of decompression, depending on
the number of levels used [12].

Inter-Bitstream Compression
To investigate the inter-bitstream DV and LZSS compression,
we use benchmarks consisting of a pair of bitstreams(O,N).

For each new bitstreamN , we obtain the intra-bitstream
compression as well as the inter-bitstream compression using
O as the old bitstream. The characteristics of the benchmarks
is shown in Figure 7. For each benchmark, the left one is the
old configuration and the right one is the new configuration.
The device used is mentioned next to the benchmark and
device utilization is given at the bottom of each benchmark.
Benchmarks 2 to 5 consist of bitstreams demonstrating high
correlation typical of reconfigurable systems -O andN shar-
ing static kernels. Each kernel was synthesized indepen-
dently and then hand mapped onto the assembled design to
ensure that the kernels do not overlap with each other before
being passed through place and route tools. Also different
kernel placements were experimented with to investigate the
effect of performing inter-bitstream compression with vary-
ing degrees of partial reconfiguration enabled.
Figure 6 indicates that inter-bitstream compression consis-
tently outperforms intra-bitstream compression. The best
compression ratio achieved with any inter-bitstream com-
pression is 26.5%-75.8% better than the best compression
ratio achieved with any intra-bitstream compression for our
benchmarks. Moreover, DV maintains better performance
than LZSS over both the inter- and intra-bitstream compres-
sion models. However, note that the advantage of DV over
LZSS is reduced a little bit in inter-bitstream model com-
pared to intra-bitstream model. Static kernels offer longer
symbol matches between reference and beneficiary frames,
facilitating LZSS compression.



0

10

20

30

40

50

60

70

80

90

100

C
om

pr
es

si
on

 R
at

io
 (%

)

B enchmark1 B enchmark2 B enchmark3 B enchmark4 B enchmark5

Intra DV Readback

Inter DV Readback

Intra DV w/o Readback

Inter DV w/o Readback

Intra LZSS Readback

Inter LZSS Readback

Intra LZSS w/o Readback

Inter LZSS w/o Readback

 

Figure 6. Compression Ratio for Inter-Bitstream DV and LZSS Schemes
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Figure 7. Benchmarks for Inter-Bitstream Compression.

Inter-bitstream CWOR performs better than the inter-bitstream
CWR for both DV and LZSS compression. This is because
inter-bitstream compression is enhanced with regularities of-
fered by static kernels, giving rise to the predominance of
readbacks in which each framefnew usesfold as the ref-
erence frame. Inter-bitstream CWOR achieves this without
having to mention the address of the readback frame. Inter-
bitstream CWR, on the other hand, caters for readback of
any frame, and in doing so it has to specify the address of the
readback frame, thereby incurring extra overhead.

The amount of inter-bitstream regularities present relies heav-
ily on the amount of static configuration data and placement
of static kernels [2]. For Benchmark1, which has no static
kernel, inter-bitstream techniques performs marginally bet-
ter than the corresponding intra-bitstream techniques by tak-
ing advantage only of the random regularities. Benchmarks
2 to 4 each maintains static kernels aligned horizontally
across the device. Significant reduction in compression ra-
tios is achieved with inter-bitstream compression over intra-
bitstream compression. The reduction is not proportional to
the static kernel size as it is dependent on the compression
efficiency of the intra-bitstream compression. Using partial
reconfiguration combined with DV or LZSS inter-bitstream
compression, the compression efficiency can be improved
significantly as demonstrated for Benchmark5.

CONCLUSION
In this paper, we proposed a class of configuration com-
pression techniques targeted at Xilinx Virtex devices. Our
novel compression technique for single configuration bit-
stream performs better than the best reported technique in the
literature. We then extend the scheme to inter-configuration
compression by exploiting the potential for data reuse be-
tween successive configurations. As far as we know, this is
the first such algorithm proposed and it outperforms intra-
configuration compression by a large margin.
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