Discrete Factorization Machines for Fast Feature-based Recommendation

Han Liu1, Xiangnan He2, Fuli Feng2, Liqiang Nie1, Rui Liu3, Hanwang Zhang4

1. Shandong University
2. National University of Singapore
3. University of Electronic Science and Technology of China
4. Nanyang Technological University
Motivation

Accurate Recommender System

Quality of Service & Profit of the Service Provider

side information

ccontent-based: e.g., item descriptions

ccontext-based: e.g., when and where a purchase is made

csession-based: e.g., recent browsing history of users

user

item
Factorization Machines (FM)

FM is a score prediction function for a (user, item) pair feature \mathbf{x}.

$x \in \mathbb{R}^n$ is a feature representation of the side-information, concatenated one-hot user ID one-hot item ID side-information

Model bias parameter w_0 + $\sum_{i=1}^{n} w_i x_i$ + $\sum_{i=1}^{n} \sum_{j=i+1}^{n} \langle v_i, v_j \rangle x_i x_j$

$\langle v_i, v_j \rangle$ models the interaction between the i-th and j-th feature dimensions.

FM models the interaction between each pair of nonzero features.
Motivation

Existing FM framework is not suitable for fast recommendation, especially for mobile users.
Discrete Factorization Machines

Storing:
- Easily Store: binary codes
- Impossible: real-valued vector

Computing:
- XOR Bit Operations: \(DFM(x) := w_0 + \sum_{i=1}^{n} w_i x_i + \sum_{i=1}^{n} \sum_{j=i+1}^{n} \langle b_i, b_j \rangle x_i x_j. \)
Solution with the Constraints

Observed score

$$\arg\min_{w_0, \mathbf{w}, \mathbf{B}} \sum_{(x, y) \in \mathcal{V}} y - w_0 - \sum_{i=1}^{n} w_i x_i - \sum_{i=1}^{n} \sum_{j=i+1}^{n} (b_i, b_j) x_i x_j$$

$$+ \alpha \sum_{i=1}^{n} w_i^2,$$ s.t. $\mathbf{B} \in \{\pm 1\}^{k \times n}$, $\mathbf{B} \mathbf{1} = 0$, $\mathbf{B} \mathbf{B}^T = n \mathbf{I}$

Binary codes

Balance Constraint: each bit should split the dataset evenly

De-Correlation Constraint: each bit should be as independent as possible

However, the hard constraints of zero-mean and orthogonality may not be satisfied in Hamming space!
Our DFM Formulation

Objective Function:

\[
\arg \min_{w_0, w, B} \sum_{(x, y) \in \mathcal{V}} \left(y - w_0 - \sum_{i=1}^{n} w_i x_i - \sum_{i=1}^{n} \sum_{j=i+1}^{n} \langle b_i, b_j \rangle x_i x_j \right)^2 + \alpha \sum_{i=1}^{n} w_i^2 + \beta \| B - D \|^2
\]

Score Prediction

Constraint Trade-off

Binary Constraint:

\[
B \in \{ \pm 1 \}^{k \times n}
\]

Delegate Code

\[
D1 = 0, \quad DD^T = nI
\]

Quality Constraint:

Balance Constraint

De-correlation Constraint
Our Solution: Alternating Optimization

Alternative Procedure

B-Subproblem

\[
\arg \min_{\mathbf{B}} \sum_{(x,y) \in \mathcal{V}} (y - w_0 - \sum_{i=1}^{n} w_i x_i - \sum_{i=1}^{n} \sum_{j=i+1}^{n} \langle \mathbf{b}_i, \mathbf{b}_j \rangle x_i x_j)^2 - 2\beta tr(\mathbf{B}^T \mathbf{D}), \text{ s.t. } \mathbf{B} \in \{\pm 1\}^{k \times n}
\]

D-Subproblem

\[
\arg \max_{\mathbf{D}} tr(\mathbf{B}^T \mathbf{D}), \text{ s.t. } \mathbf{D} \mathbf{1} = 0, \mathbf{D} \mathbf{D}^T = m \mathbf{I}.
\]

w-Subproblem

\[
\arg \min_{w_0, \mathbf{w}} \sum_{(x,y) \in \mathcal{V}} (\phi - w_0 - \sum_{i=1}^{n} w_i x_i)^2 + \alpha \sum_{i=1}^{n} w_i^2, \quad \phi = y - \sum_{i=1}^{n} \sum_{j=i+1}^{n} \langle \mathbf{b}_i, \mathbf{b}_j \rangle x_i x_j
\]
B-Subproblem for Binary Codes

Objective Function

\[
\arg \min_B \sum_{(x,y) \in \mathcal{V}} (y - w_0 - \sum_{i=1}^{n} w_i x_i - \sum_{i=1}^{n} \sum_{j=i+1}^{n} \langle b_i, b_j \rangle x_i x_j)^2 - 2\beta tr(B^T D), \quad \text{s.t. } B \in \{\pm 1\}^{k \times n}
\]

For each feature code \(b \downarrow i \), optimize bit by bit

\[
\text{for } r = 1 \text{ to } n \text{ do } \\
\quad \text{repeat } \\
\quad \quad \text{for } t = 1 \text{ to } k \text{ do } \\
\quad \quad \quad \hat{b}_{rt} = \sum_{r} (x_r \psi - x_r^2 \hat{x}^T Z_t b_{rt}) \hat{x}^T z_t + \beta d_{rt}; \\
\quad \quad \quad b_{rt} \leftarrow \text{sgn}(K(\hat{b}_{rt}, b_{rt})) \\
\quad \text{end } \\
\quad \text{until converge; } \\
\text{end }
\]
D-Subproblem for Code Delegate

Objective Function

$$\arg\max_D tr(B^T D), \text{ s.t. } D1 = 0, DD^T = nI$$

Small SVD $k \times n$

$$([\hat{P}\hat{P}], Q) \leftarrow \text{SVD}([\overline{B}])$$

Orthogonalization

$$\hat{Q} \leftarrow \text{GramSchmidt}([Q1])$$

$$D \leftarrow \sqrt{n} [P \hat{P}] [Q \hat{Q}]^T$$

$k \times n$ row-centered code matrix
w-Subproblem for Bias

Objective Function

\[
\arg\min_{\mathbf{w}, w_0} \sum_{(x, y) \in \mathcal{V}} \left(\phi - w_0 - \sum_{i=1}^{n} w_i x_i \right)^2 + \alpha \sum_{i=1}^{n} w_i^2, \quad \phi = y - \sum_{i=1}^{n} \sum_{j=i+1}^{n} \langle \mathbf{b}_i, \mathbf{b}_j \rangle x_i x_j
\]

It is the standard multivariate linear regression problem, use Coordinate Descent algorithm
Experiment Settings

• Datasets:

<table>
<thead>
<tr>
<th>Datasets</th>
<th>#users</th>
<th>#items</th>
<th>#ratings</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yelp</td>
<td>13,679</td>
<td>12,922</td>
<td>640,143</td>
<td>0.36%</td>
</tr>
<tr>
<td>Amazon</td>
<td>35,151</td>
<td>33,195</td>
<td>1,732,060</td>
<td>0.15%</td>
</tr>
</tbody>
</table>

• Split: randomly split 50% training and 50% testing move items in the testing set that haven’t occurred in the training set to the training set.

• Evaluation Protocol: rank the testing items of a user and evaluate the ranked list with **NDCG@K**
Compared to the state-of-the-art

- **libFM**: Factorization Machines with *libFM* [Rendle et al., TIST’12] original implementation of FM
- **DCF**: Discrete Collaborative Filtering [Zhang et al., SIGIR’16] CF+binarization+direct optimization
- **DCMF**: Discrete Content-aware Matrix Factorization [Lian et al., KDD’17] CF+binarization+direct optimization+constraint
- **BCCF**: Binary Code learning for Collaborative Filtering [Zhou&Zha, KDD’12] MF+binarization+two-stage optimization
Performance Comparison

In figure, we show the recommendation performance (NDCG@1 to NDCG@10) of DFM and the baseline methods on the two datasets. The code length varies from 8 to 64.
Efficiency Study

Efficiency comparison between DFM and libFM regarding Testing Time Cost (TTC) on the two datasets.

Yelp

<table>
<thead>
<tr>
<th>Code Length</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>libFM (TTC)</td>
<td>27.18</td>
<td>56.77</td>
<td>114.10</td>
<td>217.64</td>
</tr>
<tr>
<td>DFM (TTC)</td>
<td>2.06</td>
<td>3.56</td>
<td>6.60</td>
<td>12.43</td>
</tr>
<tr>
<td>Acceleration Ratio</td>
<td>13.19</td>
<td>15.95</td>
<td>17.29</td>
<td>17.51</td>
</tr>
</tbody>
</table>

Amazon

<table>
<thead>
<tr>
<th>Code Length</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>libFM (TTC)</td>
<td>177.03</td>
<td>357.46</td>
<td>716.83</td>
<td>1,414.67</td>
</tr>
<tr>
<td>DFM (TTC)</td>
<td>12.67</td>
<td>22.50</td>
<td>42.56</td>
<td>81.04</td>
</tr>
<tr>
<td>Acceleration Ratio</td>
<td>13.97</td>
<td>15.89</td>
<td>16.84</td>
<td>17.46</td>
</tr>
</tbody>
</table>

DFM is an operable solution for many large-scale Web service to reduce the computation cost of their recommender systems.
Conclusion & Future Work

• We propose DFM to enable fast feature-based recommendation.
• We develop an efficient algorithm to address the challenging optimization problem of DFM.
• We will extend binary technique to neural recommender models such as Neural FM.
Thank you.

https://github.com/hanliu95/DFM