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ProveNFix: Temporal Property guided Program Repair
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Specification inference via bi-abduction

Failed entailment: true ∧ Ɛ ⊑ ptr≠null ∧ 𝓕 (free(ptr))
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Term rewriting system for regular expressions
• Flexible specifications, which can be combined with other logic;

• Efficient entailment checker with inductive proofs.  

Examples:

x>2 ∧ E ⊑ x>1 ∧ (E ∨ F)

x>0 ∧ E ⊑ x>1 ∧ (E ∨ F)

true ∧ E ⊑ true ∧ (E . F)

(a ∨ b)★⊑ (a ∨ b ∨ bb)★ [Reoccur]

ɛ ⋅ (a ∨ b)★⊑ ɛ ⋅ (a ∨ b ∨ bb)★

a ⋅ (a ∨ b)★⊑ (a ∨ b ∨ bb)★ b ⋅ (a ∨ b)★ ⊑ …

(a ∨ b)★⊑ (a ∨ b ∨ bb)★

[Reoccur]
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Experiment 1: detecting bugs
v 17 predefined primitive specs.

v ProveNFix is finding 72.2%

more true bugs, with a 17% 

loss of missing true bugs.
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Automated repair via deductive synthesis

⇒ synthesis( ptr≠null ∧ _^* . (free(ptr)) )       ⇒

Example: true ∧ Ɛ ⊑ ptr≠null ∧ _^* . (free(ptr))

vOnly supporting inserting/deleting calls.

vDo need re-analysis.



Experiment 2: Repairing bugs

v 90% fix - null pointer dereferences, 

v 79% fix - memory leaks

v 100% fix - resource leaks. 

SAVER’s pre-analysis time:
26.3 seconds for the flex project
39.5 minutes for the snort-2.9.13 project



Experiment 4: usefulness of spec inference

Zuxing Gu, Jiecheng Wu, Chi Li, Min Zhou, and Ming Gu. 2019. SSLDoc: Automatically Diagnosing Incorrect SSL API Usages in C Programs.

v 2 predefined primitive specs, OpenSSL-3.1.2, 556.3 kLoC,

v 143.11 seconds to generate future-conditions for 128 OpenSSL APIs

v Example: SSL_CTX_new (meth) ; // future : ((ret=0) /\ return (ret))



vCompositional static analyzer via temporal properties.

vSpecified 17 APIs; found 515 vulnerabilities from 1 million LOC; with a 90% fix rate.

vSpecification: a novel future-condition.

vSpecification inference via bi-abduction.

vThe inferred spec can be used to analysis protocol applications, e.g., OpenSSL.

Conclusion Thanks!


