
Yahui Song, Xiang Gao, Wenhua Li, Wei-Ngan Chin, Abhik Roychoudhury

17th July @ FSE 2024, Porto de Galinhas, Brazil

ProveNFix: Temporal Property guided Program Repair

Can temporal property analysis be modular?
“Each function is analysed only once and

can be replaced by their verified properties.”

Can temporal property analysis be modular?
“Each function is analysed only once and

can be replaced by their verified properties.”

Three main difficulties：

1. Temporal logic property entailment checker.

2. Writing temporal specifications for each function is tedious and challenging.

3. The classic pre/post-conditions is not enough, e.g.,

“some meaningful operations can only happen if the return value of loading the certificate is positive”

Future-condition

Future-condition Future-condition

Future-condition

Future-condition based modular analysis

A collection of
specifications

Entailment Checking

Future-condition based modular analysis

A collection of
specifications

Entailment Checking

Can temporal property analysis be modular?
“Each function is analysed only once and

can be replaced by their verified properties.”

Three main difficulties：

1. Temporal logic property entailment checker.

2. Writing temporal specifications for each function is tedious and challenging.

3. The classic pre/post-conditions is not enough, e.g.,

“some meaningful operations can only happen if the return value of loading the certificate is positive”

Future-condition!

Specification inference via bi-abduction

Specification inference via bi-abduction

Specification inference via bi-abduction

Failed entailment: true ∧ Ɛ ⊑ ptr≠null ∧ 𝓕 (free(ptr))

Can temporal property analysis be modular?

1. Temporal logic property entailment checker.

2. Writing temporal specifications for each function is tedious and challenging.

3. The classic pre/post-conditions is not enough, e.g.,

“some meaningful operations can only happen if the return value of loading the certificate is positive”

Primitive spec + spec inference!

“Each function is analysed only once and

can be replaced by their verified properties.”

Three main difficulties：

Future-condition!

Term rewriting system for regular expressions
• Flexible specifications, which can be combined with other logic;

• Efficient entailment checker with inductive proofs.

Term rewriting system for regular expressions
• Flexible specifications, which can be combined with other logic;

• Efficient entailment checker with inductive proofs.

Examples:

x>2 ∧ E ⊑ x>1 ∧ (E ∨ F)

x>0 ∧ E ⊑ x>1 ∧ (E ∨ F)

true ∧ E ⊑ true ∧ (E . F)

(a ∨ b)★⊑ (a ∨ b ∨ bb)★ [Reoccur]

ɛ ⋅ (a ∨ b)★⊑ ɛ ⋅ (a ∨ b ∨ bb)★

a ⋅ (a ∨ b)★⊑ (a ∨ b ∨ bb)★ b ⋅ (a ∨ b)★ ⊑ …

(a ∨ b)★⊑ (a ∨ b ∨ bb)★

[Reoccur]

Can temporal property analysis be modular?

A term rewriting system for regular expressions

“Each function is analysed only once and

can be replaced by their verified properties.”

1. Temporal logic property entailment checker.

2. Writing temporal specifications for each function is tedious and challenging.

3. The classic pre/post-conditions is not enough, e.g.,

“some meaningful operations can only happen if the return value of loading the certificate is positive”

Primitive spec + spec inference!

Three main difficulties：

Future-condition!

Can temporal property analysis be modular?

A term rewriting system for regular expressions

Can!
“Each function is analysed only once and

can be replaced by their verified properties.”

1. Temporal logic property entailment checker.

2. Writing temporal specifications for each function is tedious and challenging.

3. The classic pre/post-conditions is not enough, e.g.,

“some meaningful operations can only happen if the return value of loading the certificate is positive”

Primitive spec + spec inference!

Three main difficulties：

Future-condition!

Experiment 1: detecting bugs
v 17 predefined primitive specs.

v ProveNFix is finding 72.2%

more true bugs, with a 17%

loss of missing true bugs.

Automated repair via deductive synthesis

⇒ synthesis(ptr≠null ∧ _^* . (free(ptr))) ⇒

Example: true ∧ Ɛ ⊑ ptr≠null ∧ _^* . (free(ptr))

Automated repair via deductive synthesis

⇒ synthesis(ptr≠null ∧ _^* . (free(ptr))) ⇒

Example: true ∧ Ɛ ⊑ ptr≠null ∧ _^* . (free(ptr))

Automated repair via deductive synthesis

⇒ synthesis(ptr≠null ∧ _^* . (free(ptr))) ⇒

Example: true ∧ Ɛ ⊑ ptr≠null ∧ _^* . (free(ptr))

Automated repair via deductive synthesis

⇒ synthesis(ptr≠null ∧ _^* . (free(ptr))) ⇒

Example: true ∧ Ɛ ⊑ ptr≠null ∧ _^* . (free(ptr))

vOnly supporting inserting/deleting calls.

vDo need re-analysis.

Experiment 2: Repairing bugs

v 90% fix - null pointer dereferences,

v 79% fix - memory leaks

v 100% fix - resource leaks.

SAVER’s pre-analysis time:
26.3 seconds for the flex project
39.5 minutes for the snort-2.9.13 project

Experiment 4: usefulness of spec inference

Zuxing Gu, Jiecheng Wu, Chi Li, Min Zhou, and Ming Gu. 2019. SSLDoc: Automatically Diagnosing Incorrect SSL API Usages in C Programs.

v 2 predefined primitive specs, OpenSSL-3.1.2, 556.3 kLoC,

v 143.11 seconds to generate future-conditions for 128 OpenSSL APIs

v Example: SSL_CTX_new (meth) ; // future : ((ret=0) /\ return (ret))

vCompositional static analyzer via temporal properties.

vSpecified 17 APIs; found 515 vulnerabilities from 1 million LOC; with a 90% fix rate.

vSpecification: a novel future-condition.

vSpecification inference via bi-abduction.

vThe inferred spec can be used to analysis protocol applications, e.g., OpenSSL.

Conclusion Thanks!

