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Abstract. Existing approaches to temporal verification have either sac-
rificed compositionality in favor of achieving automation or vice-versa.
To exploit the best of both worlds, we present a new solution to en-
sure temporal properties via a Hoare-style verifier and a term rewriting
system (T.r.s) on Integrated Dependent Effects. The first contribution
is a novel effects logic capable of integrating value-dependent finite and
infinite traces into a single disjunctive form, resulting in more concise
and expressive specifications. As a second contribution, by avoiding the
complex translation into automata, our purely algebraic T.r.s efficiently
checks the language inclusion, relying on both inductive and coinductive
definitions. We demonstrate the feasibility of our method using a pro-
totype system and a number of case studies. Our experimental results
show that our implementation outperforms the automata-based model
checker PAT by 31.7% of the average computation time.

1 Introduction

We are interested in automatic verification using finite-state, yet possibly non-
terminating models of systems, with the underlying assumption that linear-time
system behavior can be represented as a set of traces representing all the possible
histories. In this model, verification consists of checking for language inclusion:
the implementation describes a set of actual traces, in an automaton A; and the
specification gives the set of allowed traces, in an automaton B; the implemen-
tation meets the specification if every actual trace is allowed, i.e., L(A) ⊆ L(B).

In this paper, we specify system behaviors in the form of Integrated Dependent
Effects, which integrates the basic and ω-regular expressions with dependent
values and arithmetic constraints, gaining the expressive power beyond finite-
state machines. Specifically, our novel effects provide insights of: (i) Definite
finite traces: we use symbolic values to present finite repetitions, which can
be dependent on program inputs; (ii) Definite infinite traces constructed by
infinity operator (ω); (iii) Possibly finite and possibly infinite traces constructed
by Kleene star (?). For example, we express, the effects of method send(n) as:

Φsend(n) , (n≥0 ∧ Sendn ·Done) ∨ (n<0 ∧ Sendω)

The send method takes a parameter n, and recursively sends out n messages. The
above specification of send(n) indicates the fact that for non-negative values of
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the parameter n, the send method generates a finite trace comprising a sequence
with n times of event Send, followed by a final event Done. For the case when
the parameter is negative, it generates an infinite trace of event Send. Note that
(i) the integrated effects can express both finite traces and infinite traces in one
single formula, separated by arithmetic constraints, and (ii) n is a parameter to
send, making the effects dependent w.r.t the value of send’s parameter. Further-
more, by allowing events to be parametrised with symbolic values, the effects
are defined as languages over potentially infinite alphabets of the form Σ × Z,
where Σ is a finite event set, and Z is the infinite integer set.

Deciding the inclusion between two regular sets is PSPACE-complete.The
standard approaches to the problem are based on the following steps: (i) trans-
late each regular expression into an equivalent NFA, (ii) convert those NFAs to
equivalent DFAs and finally (iii) minimize those DFAs to MA and MB, and
then check emptiness of MA ∩ ¬MB. However, any efficient algorithm[9] based
on such translation potentially gives rise to an exponential blow-up.

As an alternative approach, Antimirov and Mosses[5] presented a term rewrit-
ing system (T.r.s) for deciding the inclusion of regular expressions based on a
complete axiomatic algorithm of the algebra of regular sets. A T.r.s is a refu-
tation method that normalizes regular expressions in such a way that checking
their inclusion corresponds to an iterated process of checking the inclusion of
their partial derivatives[4]. Works based on such a T.r.s[5,3,12,11] show its fea-
sibility and suggest that this method is a better average-case algorithm than
those based on the comparison of minimal DFAs.

In this paper, we present a new solution of extensive temporal verification,
which deploys a decision procedure inspired by Antimirov and Mosses’ algo-
rithm but solving the language inclusions between more expressive Integrated
Dependent Effects. Our main contributions are:

1. Temporal Effects Specification: We define the syntax and semantics of
our novel effects, which escapes LTL, µ-calculus and prior effects (Sec. 3).

2. Automated Verification System: Targeting a core language, we develop
a Hoare-style forward verifier to accumulate effects from the source code, as
the front-end (Sec. 4); and a sound decision procedure (our T.r.s) to solve the
effects inclusions, as the back-end (Sec. 5).

3. Implementation and Evaluation: We prototype the novel effects logic on
top of the HIP/SLEEK system[8][2]. We further provide case studies and
experimental results to show the feasibility of our method (Sec. 6).

Organization. Sec. 2 gives a straightforward motivation example to highlight
the key methodologies and contributions. Sec. 3 formally specifies the syntax
of the target language, and the syntax and semantics of our integrated depen-
dent effects. Sec. 4 presents the forward verifier for the target language. Sec. 5
illustrates the effects inclusion checking procedure, by presenting a set of infer-
ence rules, and displays the essential auxiliary functions. Sec. 6 demonstrates
the implementation, case studies and experimental results as the evaluation of
our T.r.s. We discuss related works in Sec. 7 and conclude in Sec. 8. Termination
and soundness proofs can be found in the extended technical report[2].
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2 Overview

We now give a summary of our techniques, using the example shown in Table
1.-(a). Our integrated dependent effects can be illustrated with send and server,
which simulate a server who continuously sends messages to all its clients.

Table 1. (a) Source code and (b) pre/post effects specifications for the methods.

(a) Source Code (b) Effects Specifications

1 void send ( int n){

2 i f (n==0) {

3 event["Done"];
4 } else {
5 event["Send"]; send (n-1);

6 }}

7 void server ( int n){

8 event["Ready"];
9 send(n);

10 server(n);}

Φsend(n)
pre , True ∧Ready · ?

Φ
send(n)
post , (n ≥ 0 ∧ Sendn ·Done) ∨ (n < 0 ∧ Sendω)

Φserver(n)
pre , n ≥ 0 ∧ ε

Φ
server(n)
post , n ≥ 0 ∧ (Ready · Sendn ·Done)ω

Here, event[a] is a primitive in our target language (cf. Sec. 3), used to trigger
a single event a. This method server takes an integer parameter n, triggers an
event Ready, then calls the method send, making a boolean choice depending
on input n: in one case it triggers an event Done; otherwise it triggers an event
Send, then makes a recursive call with parameter n-1. Finally server recurs.

2.1 Integrated Dependent Effects. The effects specifications for server and
send are given in Table 1.-(b). We define Hoare-triple style specifications for each
of the programs, which leads to a more compositional verification strategy, where
temporal reasoning can be done locally. Method send’s precondition, denoted by

Φ
send(n)
pre , requires the event Ready to have happened at some point of the effects

history; and it guarantees the final effects/postcondition, denoted by Φ
send(n)
post .

Method server’s precondition, Φ
server(n)
pre , requires the input value be non-

negative while the pre-trace is required to be empty (ε); its postcondition en-

sures the final effects Φ
server(n)
post – an infinite repetition of a trace consisting of

an event Ready followed by n times of Send followed by Done. Directly from
the specifications, we are aware of (i) termination properties: server must not
terminate, while send may not terminate; (ii) branching properties: different
arithmetic conditions on the input parameters lead to different temporal effects;
and (iii) required history traces: by defining the prior effects in precondition.
The examples already show that our effects provide more detail information
than classical LTL or µ-calculus, and in fact, it cannot be fully captured by any
prior works[10,13,15,17]. Nevertheless, the gain in expressive power comes at the
efforts of a more dedicated verification process, namely handled by our T.r.s.

2.2 Forward Verification. As shown in Fig. 1., we demonstrate the forward
verification process of method send. The current effects states of a program is
captured in the form of {ΦC}. We define our forward verification rules in Sec.
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4. To facilitate the illustration, we label the verification steps by 1), ..., 8). We
mark the deployed verification rules in green. The verifier invokes the T.r.s to
check language inclusions along the way.

1) void send (int n){ (– initialize the current effects state –)

{ΦC=Φ
send(n)
pre =True ∧Ready · ?} [FV-Meth]

2) if(n==0){
{n=0 ∧Ready · ?} [FV-If-Else]

3) event[Done]; }
{n=0 ∧Ready · ? ·Done} [FV-Event]

4) else{
{n6=0} [FV-If-Else]

5) event[Send];
{n6=0 ∧Ready · ? · Send} [FV-Event]

6) send(n-1); }}
rev(n6=0 ∧Ready · ? · Send) v rev(Φ

send(n-1)
pre ) (-check precondition-)

{n6=0 ∧Ready · ? · Send · Φsend(n-1)
post } [FV-Call]

7) Φ′C=(n=0 ∧Ready · ? ·Done) ∨ (n6=0 ∧Ready · ? · Send · Φsend(n-1)
post )

8) Φ′C v Φ
send(n)
pre · Φsend(n)

post ⇔ (– check postcondition –)

(n=0 ∧Done) ∨ (n 6=0 ∧ Send · Φsend(n-1)
post ) v Φ

send(n)
post

Fig. 1. The forward verification example for method send.

The effects state 1) is obtained by initialising ΦC from the precondition.
The effects states 2), 4) and 7) are obtained by [FV-If-Else], which adds the

constraints from the conditionals into the current effects state, and unions the
effects accumulated from two branches in the end. The effects states 3) and 5)
are obtained by [FV-Event], which simply concatenates the triggered singleton
event to the end of the current effects state. The effects state 6) is obtained by
[FV-Call]. Before each method call, it checks whether the current state satisfies
the precondition of the callee method. The rev function simply reverses the order
of effects sequences. If the precondition is not satisfied, then the verification fails,
otherwise it concatenates the postcondition of the callee to the current effects.

While Hoare logics based on finite traces (terminating runs)[14] and infinite
traces (non-terminating runs)[16] have been considered before, the reasoning on
properties of mixed definitions is new. Prior effects in precondition is also new,
allowing greater safety to be applied to sequential reactive controlling systems
such as web applications, communication protocols and IoT systems.

2.3 The t.r.s. Our T.r.s is designed to check the inclusion between any
two integrated dependent effects. We define its inference rules in Sec. 5. Here,
we present the rewriting process on the postcondition checking of the method
send.We mark the rules of some essential inference steps in green. Basically, our
effects rewriting system decides effects inclusion through an iterated process of
checking the inclusion of their partial derivatives. There are two important rules
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Table 2. The inclusion checking example on the postcondition of method send. I :
The main rewriting proof tree (coming from the step 8) in Fig. 1.); II : One sub-tree
of the rewriting process.

I :

(n=0)∧ε v ε [FRAME]

(n=0) ∧ Done v Done

(n=0) ∧ Done v Send
0 · Done

(n=0) ∧ Done v Φ
send(n)
post II

n<0 ∧ Send
ω v Send

ω (†) [REOCCUR]
[UNFOLD]

n<0 ∧ Send
ω v Send

ω (†)
[UNFOLD]

n<0 ∧ Send · Send
ω v Send

ω

n<0 ∧ Send · Send
ω v Φ

send(n)
post

[DISJUNCTION]

(n=0 ∧ Done) ∨ (n 6=0 ∧ Send · Φsend(n-1)
post ) v Φ

send(n)
post

II :

n1=0∧ε v ε [FRAME]

n1=0 ∧ Done v Done

(n2=n1-1∧n2≥0)∧Send
n2 · Done v Send

n2 · Done (‡) [REOCCUR]

n1>0 ∧ Send
n1-1 · Done v Send

n1-1 · Done
[UNFOLD]

n1>0 ∧ Send
n1 · Done v Send

n1 · Done
[CASESPLIT]

(n1=n-1 ∧ n1≥0) ∧ Send
n1 · Done v Send

n1 · Done (‡)
[SUBSTITUTE]

n>0 ∧ Send
n-1 · Done v Send

n-1 · Done
[UNFOLD]

n>0 ∧ Send · Send
n-1 · Done v Send

n · Done

n>0 ∧ Send · Send
n-1 · Done v Φ

send(n)
post

inherited from Antimirov and Mosses’s algorithm: [DISPROVE], which infers false
from a trivially inconsistent inclusion; and [UNFOLD], which applies Theorem 1
to generate new inclusions. Da(r) is the partial derivative of r w.r.t the event
a. Termination is guaranteed because the set of derivatives to be considered is
finite, and possible cycles are detected using memorization.

Theorem 1 (Regular Expressions Inclusion). For regular expressions r

and s, r � s⇔ (∀a ∈ Σ). Da(r) � Da(s).

Intuitively, we use [DISPROVE] wherever the left-hand side (LHS) is nullable1

while the right-hand side (RHS) is not. [DISPROVE] is essential because it is the
heuristic refutation step to disprove the inclusion early, which leads to a great
efficiency improvement compared to the standard methods.

Besides, we use symbolic values (assuming non-negative) to capture the fi-
nite traces, depended on program inputs. Whenever the symbolic value is pos-
sibly zero, we use the rule [CASESPLIT] to distinguish the zero (base) and non-
zero (inductive) cases, as shown in Table 2.-II. In addition, the T.r.s is obli-
gated to reason about mixed inductive (finite) and coinductive (infinite) defi-
nitions. We achieve these features and still guarantee the termination by using
rules: [SUBSTITUTE], which renames the symbolic terms using free variables; and
[REOCCUR], which finds the syntactic identity, as a companion, of the current open
goal, as a bud, from the internal proof tree[7]. (We use (†) and (‡) in Table 2. to
indicate the pairing of buds with companions.)

1 If the event sequence is possibly empty, i.e. contains ε, we call it nullable, formally
defined in Definition 1.
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3 Language and Specifications

In this section, we first introduce the target (sequential C-like) language and
then depict the temporal specification language which supports our effects.

3.1 Target Language. The syntax of our core imperative language is given
in Fig. 2. Here, we regard k and x are meta-variables. kτ represents a constant
of basic type τ . var represents the countably infinite set of arbitrary distinct
identifiers. a refers to a singleton event coming from the finite set of events Σ.
We assume that programs we use are well-typed conforming to basic types τ (we
take () as the void type). A program P comprises a list of method declarations
meth∗. Here, we use the ∗ superscript to denote a finite list (possibly empty) of
items, for example, x∗ refers to a list of variables, x1, ..., xn.

(Program) P ::= meth∗ (Basic Types) τ ::=int | bool | void
(Method Def .) meth ::= τ mn (τ x)∗ {requires Φpre ensures Φpost} {e}
(Expressions) e ::= () | kτ | x | τ x; e | mn(x∗) | x:=e | e1; e2| assert Φ

| e1 op e2 | event[a] | if v then e1 else e2

kτ : constant of type τ x, mn ::∈ var (Events)a ::∈ Σ

Fig. 2. A Core Imperative Language.

Each method meth has a name mn, an expression-oriented body e, also is
associated with a precondition Φpre and a postcondition Φpost (the syntax of
effects specification Φ is given in Fig. 3.). The language allows each iterative
loop to be optimized to an equivalent tail-recursive method, where mutation
on parameters is made visible to the caller. The technique of translating away
iterative loops is standard and is helpful in further minimising our core language.
Expressions comprise unit (), constants k, variables x, local variable declaration
τ x; e, method calls mn(x∗), variable assignments x:=e, expression sequences
e1; e2, binary operations represented by e1 op e2, including +, −, ==, <, etc,
event raises expression event[a], conditional expressions if v then e1 else e2,
and the assertion constructor assert, parametrized with effects Φ.

3.2 The Specification Language. We plant the effects specifications into
the Hoare-style verification system. We use {requires Φpre ensures Φpost} to
capture the precondition Φpre and the postcondition Φpost, defined in Fig. 3.

(Effects) Φ ::= π ∧ es | Φ1 ∨ Φ2 | ∃x.Φ
(Event Seq .) es ::= ⊥ | ε | | a| es1 · es2| es1 ∨ es2| es1 ∧ es2| ¬es| est| es?| esω

(Pure) π ::= True | False |A(t1, t2)|π1 ∧ π2|π1 ∨ π2|¬π|π1 ⇒ π2|∀x.π|∃x.π
(Terms) t ::= n | x | t1+t2 | t1−t2

x ::∈ var n ::∈ Z (Event) a ::∈ Σ (Infinity) ω (Kleene Star) ?

Fig. 3. Syntax of Effects.
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Effects can be a conditioned event sequence π ∧ es or a disjunction of two
effects Φ1 ∨ Φ2, or an effect Φ existentially quantified over a variable x. Event
sequences comprise false (⊥); an empty trace ε; the wild card representing
any single event; a single event a; sequences concatenation es1 · es2; disjunction
es1∨es2; conjunction es1∧es2; negation ¬es; t times repetition of a trace, est,
where t is a term; Kleene star, zero or many times (possibly infinite) repetition of
a trace; and the infinite repetition of a trace, esω. However, for now, we restrict
the nested usage of operators among ¬, t, ? and ω.

We use π to donate a pure formula which captures the (Presburger) arith-
metic conditions on program parameters. We use A(t1, t2) to represent atomic
formulas of two terms (including =, >, <, ≥ and ≤), A term can be a con-
stant integer value n, an integer variable x which is an input parameter of the
program and can be constrained by a pure formula. A term also allows simple
computations of terms, t1+t2 and t1-t2.

3.3 Semantic Model of Effects. To define the model, var is the set of
program variables, val is the set of primitive values, es is the set of event
sequences (or event multi-trees, per se), indicating the sequencing constraints
on temporal behaviour. Let s, ϕ |= Φ denote the model relation, i.e., the stack s

and linear temporal events ϕ satisfy the temporal effects Φ, with s, ϕ from the
following concrete domains: s , var→ val and ϕ , es.

As shown in Fig. 4., we define the semantics of our effects. We use ++ to
represent the append operation of two event sequences. We use [] to represent
the empty sequence, [a] to represent the sequence only contains one element a.

s, ϕ |= Φ1 ∨ Φ2 iff s, ϕ |= Φ1 or s, ϕ |= Φ2

s, ϕ |= ∃x.Φ iff (∃v ∈ val).s[x→v], ϕ |= Φ

s, ϕ |= π ∧ ε iff JπKs=True and ϕ=[]

s, ϕ |= π ∧ iff JπKs=True, ϕ ∈ {[a] | a ∈ Σ}
s, ϕ |= π ∧ a iff JπKs=True and ϕ=[a]

s, ϕ |= π ∧ (es1 · es2) iff there exist ϕ1, ϕ2 and ϕ1++ϕ2 = ϕ

and s, ϕ1 |= π ∧ es1 and s, ϕ2 |= π ∧ es2

s, ϕ |= π ∧ (es1 ∨ es2) iff s, ϕ |= π ∧ es1 or s, ϕ |= π ∧ es2

s, ϕ |= π ∧ (es1 ∧ es2) iff s, ϕ |= π ∧ es1 and s, ϕ |= π ∧ es2

s, ϕ |= π ∧ ¬es iff s, ϕ 6|= π ∧ es

s, ϕ |= π ∧ es
t iff Jπ ∧ t=0Ks=True, s, ϕ |= π ∧ ε or

Jπ ∧ t>0Ks=True, there exist ϕ1, ϕ2

and ϕ1++ϕ2=ϕ and s, ϕ1 |= π ∧ es

and s, ϕ2 |= (π ∧ t>0) ∧ es
t-1

s, ϕ |= π ∧ es
? iff s, ϕ |= ∃x.(π ∧ es

x) or s, ϕ |= π ∧ es
ω

s, ϕ |= π ∧ es
ω iff there exist ϕ1, ϕ2 and ϕ1++ϕ2=ϕ

and s, ϕ1 |= π ∧ es and s, ϕ2 |= π ∧ es
ω

s, ϕ |= false iff JπKs=False or ϕ=⊥

Fig. 4. Semantics of Effects.



8 Yahui Song and Wei-Ngan Chin

4 Automated Verification

Fig. 5. Overview of Verification.

An overview of our automated verifica-
tion system is given in Fig. 5.. It con-
sists of a standard Hoare-style forward
verifier (the front-end) and a T.r.s (the
back-end). In this section, we mainly
present the forward verifier, which in-
vokes the back-end, by introducing a set
of forward verification rules. Note that
we allow the precondition of a method

to be false. The body of any such method can always be successfully verified.
This relaxation does not affect the soundness of our verification system. The
inclusion checking process will be explained in Sec. 5.

Φ′C=ΦC · a
` {ΦC} event[a] {Φ′C}

[FV-Event]
` {ΦC} e1 {Φ′C} ` {Φ′C} e2 {Φ′′C }

` {ΦC} e1; e2 {Φ′′C }
[FV-Seq]

` {v ∧ ΦC} e1 {Φ′C} ` {¬v ∧ ΦC} e2 {Φ′′C }
` {ΦC} if v then e1 else e2 {Φ′C ∨ Φ′′C }

[FV-If-Else]

` {ΦC} e {Φ′C}
` {ΦC} τ x; e {∃x.Φ′C}

[FV-Local]
` rev(ΦC) v rev(Φ) γR
` {ΦC} assert Φ {ΦC}

[FV-Assert]

τ mn (τ x)∗ {requires Φpre ensures Φpost} {e} ∈ P
` rev(ΦC) v rev([y∗/x∗]Φpre) γR Φ′C = ΦC · [y∗/x∗]Φpost

` {ΦC} mn(y∗) {Φ′C}
[FV-Call]

` {ε} e {ΦC} ` ΦC v Φpost

` τ mn (τ x)∗ {requires Φpre ensures Φpost} {e}
[FV-Meth]

Fig. 6. Some Forward Verification Rules.

We present some of the forward verification rules in Fig. 6., which are used to
systematically accumulate the effects based on the syntax of each statement. We
use P to denote the program being checked. With pre/post conditions declared
for each method in P, we can apply modular verification to a method’s body
using Hoare-style triples ` {ΦC} e {Φ′C}, where ΦC is the current effects and Φ′C
is the resulting effects by executing e. In [FV-If-Else], (v ∧ ΦC) enforces v into
the pure constraints of every traces in ΦC, same for (¬v ∧ ΦC). In [FV-Call], we
check whether the instantiated precondition of callee, [y∗/x∗]Φpre, is satisfied by
the tail 2 of current effects state, in which we use an auxiliary function rev to
reverse the event sequences of effects. Then we obtain the next effects state by
concatenating the instantiated postcondition, [y∗/x∗]Φpost, to the current effects
state. (cf. step 6) in Fig. 1.) In [FV-Meth], we initialize the current effects state
using ε, accumulate the effects from the method body, to obtain ΦC, and check
inclusion between ΦC and the declared specifications Φpost

3.

2 We check the inclusion between the reversed current effects and precondition effects,
meaning that, before calling a method, its required effects has just happened.

3 Φpost only needs to capture the effects from the current method body, excluding the
history effects specified in Φpre.
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5 Effects Inclusion Checker (the T.r.s)

The effects inclusion checking (an extension of the T.r.s proposed from [5]) will be
triggered i) right before a method call, to check the satisfiability of the precondi-
tion; ii) after the forward verification, to check the satisfiability of the postcondi-
tion; and iii) when there is an assertion, to check the satisfiability of the asserted
effects. As shown in Sec. 4, our forward verification generates effects inclusions
of the form: Γ ` Φ1 vΦ

V Φ2  γR, a shorthand for: Γ ` Φ ·Φ1 v ∃V. (Φ ·Φ2) γR.
To prove such effects inclusions is to check whether all the possible event

traces in the antecedent Φ1 are legitimately allowed in the possible event traces
from the consequent Φ2, and (in case there are) to compute a residual effects
γR (also known as “frame” in the frame inference), which represents what was
not consumed from the antecedent after matching up with the effects from the
consequent. Γ is the proof context, i.e. a set of effects inclusions, Φ is the history
of effects from the antecedent that have been used to match the effects from
the consequent, and V is the set of existentially quantified variables from the
consequent. Note that Γ, Φ and V are derived during the inclusion proof. The
inclusion checking procedure is initially invoked with Γ=∅, Φ=True∧ ε and V=∅.
We now briefly discuss the key steps and related inference rules that we may use
in such an effects inclusion proof. Firstly, we present the reduction to eliminate
the disjunctions from the antecedents and existential quantifiers. (LHS refers to
left-hand side, and RHS refers to right-hand side.)

I. Effect Disjunction. An inclusion with a disjunctive antecedent succeeds if
both disjunctions entail the consequent.

Γ ` Φ1 v Φ γR
1 Γ ` Φ2 v Φ γR

2

Γ ` Φ1 ∨ Φ2 v Φ (γR1 ∨ γR2)
[LHS-OR]

II. Existential Quantifiers. Existentially quantified variables from the an-
tecedent are simply lifted out of the inclusion relation by replacing them with
fresh variables. On the other hand, we keep track of the existential variables
coming from the consequent by adding them to V. (u is a fresh variable)

Γ ` [u/x]Φ1 vΦ
V Φ2  γR

Γ ` ∃x. Φ1 vΦ
V Φ2  γR

[LHS-EX]
Γ ` Φ1 vΦ

V∪{u} ([u/x]Φ2) γR

Γ ` Φ1 vΦ
V (∃x. Φ2) γR

[RHS-EX]

Table 3. Some Normalization Lemmas for effects constructed by π ∧ es.

es ∨ es→ es εω → ε (es1 · es2) · es3 → es1 · (es2 · es3)
⊥ ∨ es→ es es ∧ es→ es (es1 ∨ es2) · es3 → es1 · es3 ∨ es2 · es3
es ∨ ⊥ → es es ∧ ⊥ → ⊥ es1 · (es2 ∨ es3)→ es1 · es2 ∨ es1 · es3
ε · es→ es ⊥ω → ⊥ esω · es1 → esω

es · ε→ es εt → ε False ∧ es→ False ∧ ⊥
⊥ · es→ ⊥ t=0 ∧ est → ε es ∧ ε→ ⊥ (δπ(es)=false)

es · ⊥ → ⊥ ⊥t → ⊥ es ∧ ε→ ε (δπ(es)=true)
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III. Normalization. The rewriting of an inclusion between two quantifier-free
effects starts with a general normalization for both the antecedent and the con-
sequent. We assume that the effects formulae are tailored accordingly using the
lemmas in Table 3., which are extended from the normalization rules suggested
by Antimirov and Mosses, being able to further normalize our dependent effects.

IV. Substitution. In order to guarantee the termination, for both the an-
tecedent and the consequent, a term t1⊕t2 will be substituted with a fresh
variable u constrained with u=t1⊕ t2 ∧ u≥0, where ⊕∈{+,−}. (cf. Table 2.-II)

π′=(u=t1 ⊕ t2 ∧ u≥0) Γ ` (π1 ∧ π′)∧esu1 · es v (π2∧π′) ∧ es2  γR

Γ ` π1 ∧ (es1t1⊕t2 · es) v π2 ∧ es2  γR
[LHS-SUB]

π′=(u=t1 ⊕ t2 ∧ u≥0) Γ ` (π1 ∧ π′)∧es1 v (π2∧π′) ∧ esu2 · es γR

Γ ` π1 ∧ es1 v π2 ∧ (es2t1⊕t2 · es) γR
[RHS-SUB]

V. Case Split. Based on the semantics of the symbolic integer t, whenever it
is possibly zero, we conduct a case split,

to distinguish the zero (base) case, leads to an empty trace; and the non-zero
(inductive) case. (cf. Table 2.-II)

[LHS-CASESPLIT]
Γ ` ((π1 ∧ t=0) ∧ es) ∨ ((π1 ∧ t > 0) ∧ es1 · est-11 · es) v π2 ∧ es2  γR

Γ ` π1 ∧ (est1 · es) v π2 ∧ es2  γR

[RHS-CASESPLIT]
Γ ` π1 ∧ es1 v ((π2 ∧ t=0) ∧ es) ∨ ((π2 ∧ t > 0) ∧ es2 · est-12 · es) γR

Γ ` π1 ∧ es1 v π2 ∧ (est2 · es) γR

VI. Unfolding (Induction). Here comes the key inductive step of unfolding
the inclusion. Firstly, we make use of the fst auxiliary function to get a set of
events F, which are all the possibly first event from the antecedent. Secondly, we
obtain a new proof context Γ′ by adding the current inclusion, as an inductive
hypothesis, into the current proof context Γ. Thirdly, we iterate each element
a (a ∈ F), and compute the partial derivatives (the next-state effects) of both the
antecedent and consequent w.r.t a. The proof of the original inclusion succeeds
if all the derivative inclusions succeeds.

F = fstπ1
(es1) Γ′ = Γ, (π1 ∧ es1 v π2 ∧ es2)

∀a ∈ F. (Γ′ ` Dπ1
a (es1) v Dπ2

a (es2))

Γ ` π1 ∧ es1 v π2 ∧ es2
[UNFOLD]

Next we provide the definitions and the key implementations4 of Nullable, First
and Derivative respectively. Intuitively, the Nullable function δπ(es) returns a

4 As the implementations according to basic regular expressions can be found in prior
work [12]. Here, we focus on presenting the definitions and how do we deal with
dependent values in the effects, as the key novelties of this work.
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boolean value indicating whether π ∧ es contains the empty trace; the First
function fstπ(es) computes a set of possible initial events of π ∧ es; and the
Derivative function Dπa(es) computes a next-state effects after eliminating one
event a from the current effects π ∧ es.

Definition 1 (Nullable). Given any event sequence es under condition π, we
define δπ(es) to be:

δπ(es) : bool=

{
true if ε ∈ Jπ ∧ es1Kϕ
false if ε /∈ Jπ ∧ es1Kϕ

, where δπ(est) = SAT(π ∧ (t=0))5

Definition 2 (First). Let fstπ(es):={a | a ·es′ ∈ Jπ∧esK} be the set of initial
events derivable from event sequence es w.r.t. the condition π.

fstπ(es1·es2)=

{
fstπ(es1) ∪ fstπ(es2) if δπ(es1)=true

fstπ(es1) if δπ(es1)=false

Definition 3 (Derivative). The derivative Dπa(es) of an event sequence es

w.r.t. an event a and the condition π computes the effects for the left quotient
a-1Jπ ∧ esK, where we define Dπa(est) = Dπ∧t>0

a (es) · est-1.

Dπa(es1 · es2)=

{
Dπa(es1) · es2 ∨ Dπa(es2) if δπ(es1)=true

Dπa(es1) · es2 if δπ(es1)=false

VII. Disprove (Heuristic Refutation). This rule is used to disprove the
inclusions when the antecedent is nullable, while the consequent is not nullable.
Intuitively, the antecedent contains at least one more trace (the empty trace)
than the consequent.

δπ1
(es1) ∧ ¬δπ1∧π2

(es2)

Γ ` π1 ∧ es1 6v π2 ∧ es2
[DISPROVE]

VIII. Prove. We use three rules to prove an inclusion: (i) [PROVE] is used when
there is a subset relation ⊆ between the antecedent and consequent; (ii) [FRAME]
is used when the consequent is empty, we prove this inclusion with a residue γR

6;
and (iii) [REOCCUR] is used when there exists an inclusion hypothesis in the

proof context Γ, which meets the conditions. It essentially assigns to the current
unexpanded inclusion an interior inclusion with an identical sequent labelling.

π1 ⇒ π2 es1 ⊆ es2

Γ ` π1 ∧ es1 v π2 ∧ es2
[PROVE]

π1 ⇒ π2 γR=π1 ∧ es1
Γ ` (π1∧es1 v π2∧ε) γR

[FRAME]

∃.(π′1 ∧ es′1 v π′2 ∧ es′2) ∈ Γ π1⇒π′1⇒π′2⇒π2 es1⊆es′1 es′2⊆es2
Γ ` π1 ∧ es1 v π2 ∧ es2

[REOCCUR]

5 The proof obligations are discharged using the Z3 SMT prover, while deciding the
nullability of effects constructed by symbolic terms, represented by SAT(π).

6 A residue refers to the remaining event sequences from antecedent after matching
up with the consequent. An inclusion with no residue means the antecedent com-
pletely/exactly matches with the consequent.
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6 Implementation and Evaluation

To show the feasibility of our approach, we have implemented our effects logic
using OCaml, on top of the HIP/SLEEK system[8]. The proof obligations gener-
ated by our verification are discharged using constraint solver Z3. Furthermore,
we provide a web UI[2] to present more non-trivial examples. Next, we show case
studies to demonstrate the expressive power of our integrated dependent effects.

6.1 Case Studies.

i. Encoding LTL. Classical LTL extended propositional logic with the tem-
poral operators G (“globally”) and F (“in the future”), which we also write �
and ♦, respectively; and introduced the concept of fairness, which ensures an
infinite-paths semantics. LTL was subsequently extended to include the U (“un-
til”) operator and the X (“next time”) operator. As shown in Fig. 4., we encode
these basic operators into our effects, making it more intuitive and readable,
mainly when nested operators occur. Furthermore, by putting the effects in the
precondition, our approach naturally composites past-time LTL along the way.

Table 4. Examples for converting LTL formulae into Effects. (A,B are events, n ≥0,
m ≥0 are the default constraints.)

�A ≡ A? ♦A ≡ n ·A A U B ≡ An ·B A→ ♦B ≡ ¬A ∨ n ·B
XA ≡ ·A �♦A ≡ n ·A · ( m ·A)? ♦�A ≡ n ·A? ♦A ∨ ♦B ≡ n ·A ∨ m ·B

ii. Encoding µ-calculus. µ-calculus provides a single, elegant, uniform logical
framework of great raw expressive power by using a least fixpoint (µ) and a
greatest fixpoint (v). More specifically, it can express properties such as vZ.P ∧
XXZ, which says that there exists a path where the atomic proposition P holds
at every even position, and any valuation can be used on odd positions. As
we can see, such properties already go beyond the first order logic. In fact,
analogously to our effects, the symbolic/constant values correspond to the least
fixpoint (µ), referring to finite traces, and the constructor ω corresponds to the
greatest fixpoint (v), referring to infinite traces. For example, we write ( ·A)ω,
meaning that the event A recurs at every even position in an infinite trace.

1 void send ( int n){

2 i f (...) {

3 event[Done];
4 } else {
5 event[Send];
6 send (n-1);

7 }}

Fig. 7. An unknown conditional

iii. Kleene Star. By using ?, we make an
approximation of the possible traces when the
termination is non-deterministic. As shown in
Fig. 7., a weaker specification of send(n) can
be provided as Send? ·Done, meaning that the
repetition of event Send can be both finite and
infinite, which is more concise than the prior
work, also beyond µ-calculus. By supporting a
variety of specifications, we can make a trade-
off between precision and scalability, which is
important for realistic methodology on automated verification. For example, we
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can weaken precondition of server(n) (cf. Table 1.) to Φ
server(n)
pre , True ∧ ε,

and opt for either of the following two postcondition:Φ
server(n)
post1 , n≥0∧(Ready ·

Sendn · Done)ω, or Φ
server(n)
post2 , n≥0∧(Ready · Sendn · Done)ω ∨ n<0∧Ready ·

Sendω, with the latter being more complex but more precise.

iv. Beyond Regular, Context-Free and Context-Sensitive The paradig-
matic non-regular linear language: n>0 ∧ an · bn, can be naturally expressed by
the depended effects. Besides, the effects can also express grammars such as
n>0∧an ·bn · cn, or n>0∧m>0∧an ·bm · cn, which are beyond context-free gram-
mar. Those examples show that the traces which cannot be recognized even by
push-down automata (PDA) can be represented by our effects. However, such
specifications are significant, suppose we have a traffic light control system, we
could have a specifications n>0∧m>0∧(Redn ·Yellowm ·Greenn)ω, which specifies
that (i) this is a continuous-time system which has an infinite trace, (ii) all the
colors will occur at each life circle, and (iii) the duration of the green light and the
red light is always the same. Moreover, these effects can not be translated into
linear bounded automata (LBA) either, which equivalents to context-sensitive
grammar, as LBA are only capable of expressing finite traces.

6.2 Experimental Results. We mainly compare our backend T.r.s with the
mature model checker PAT[18], which implements techniques for LTL properties
with fairness assumptions. We chose a realistic benchmark containing 16 IOT
programs implemented in C for Arduino controlling programs[1]. For each of the
programs, we (i) derive a number of temporal properties (for 16 distinct execu-
tion models, there are in total 235 properties with 124 valid and 111 invalid),
(ii) express these properties using both LTL formulae and our effects, (iii) we
record the total computation time using PAT and our T.r.s. Our test cases are
provided as a benchmark[2]. We conduct experiments on a MacBook Pro with
a 2.6 GHz Intel Core i7 processor.

As shown in Table 5., comparing the T.r.s to PAT, the total (dis-) proving
time has been reduced by 31.7%. For that, we summarize the underlying reasons
which lead to the improvement: (1)When the transition states of the models are
small, the average execution time spent by the T.r.s is even less than the NFAs
construction time, which means it is not necessary to construct the NFAs when
a T.r.s solves it faster; (2)When the total states become larger, on average, the
T.r.s outperforms automata-based algorithms, due to the significantly reduced
search branches provided by the normalization lemmas; and (3)For the invalid
cases, the T.r.s disproves them earlier without constructing the whole NFAs.

7 Related Work

Recently, temporal reasoning has garnered renewed importance for possibly non-
terminating control programs with subtle use of recursion and non-determinism,
as used in reactive or stream-based applications. In this section, we discuss the
related works in the following two perspectives: (i) temporal verification and
expressive effects; and (ii) efficient algorithms for language inclusion checking.
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Table 5. The experiments are based on 16 real world C programs, we record the lines
of code (LOC), the number of testing temporal properties (#Prop.), and the (dis-)
proving times (in milliseconds) using PAT and our T.r.s respectively.

Programs LOC #Prop. PAT(ms) T.r.s(ms)

1. Chrome Dino Game 80 12 32.09 7.66

2. Cradle with Joystick 89 12 31.22 9.85

3. Small Linear Actuator 180 12 21.65 38.68

4. Large Linear Actuator 155 12 17.41 14.66

5. Train Detect 78 12 19.50 17.35

6. Motor Control 216 15 22.89 4.71

7. Train Demo 2 133 15 49.51 59.28

8. Fridge Timer 292 15 17.05 9.11

9. Match the Light 143 15 23.34 49.65

10. Tank Control 104 15 24.96 19.39

11. Control a Solenoid 120 18 36.26 19.85

12. IoT Stepper Motor 145 18 27.75 6.74

13. Aquariumatic Manager 135 10 25.72 3.93

14. Auto Train Control 122 18 56.55 14.95

15. LED Switch Array 280 18 44.78 19.58

16. Washing Machine 419 18 33.69 9.94

Total 2546 235 446.88 305.33

7.1 Verification and Expressive Effects. A vast range of techniques has
been developed for the prediction of program temporal behaviors without actu-
ally running the system. One of the leading communities of temporal verification
is automata-based model checking, mainly for finite-state systems. Various model
checkers are based on some temporal logic specifications, such as LTL and CTL.
Such tools extract the logic design from the program using modeling languages
and verify specific assertions to guarantee various properties. However, classical
model checking techniques usually require a manual modelling stage and need
to be bounded when encountering non-terminating traces.

Meanwhile, to conduct temporal reasoning locally, there is a sub-community
whose aim is to support temporal specifications in the form of effects via the
type-and-effect system. The inspiration from this approach is that it leads to a
modular and compositional verification strategy, where temporal reasoning can
be combined together to reason about the overall program[10,13,17]. However,
the temporal effects in prior work tend to coarsely over-approximate the be-
haviours either via ω-regular expressions[10] or by büchi automata[13]. One of
the recent works[17] proposes the dependent temporal effects on program input
values, which allows the reasoning on infinite input alphabet, but still loses the
precision of the branching properties. The conventional effects have the form
(Φu,Φv), which separates the finite and infinite effects. In this work, by inte-
grating possibly finite and possibly infinite effects into a single disjunctive form
with size properties, our integrated dependent effects eliminate the finiteness
distinction, and enable an expressive modular temporal verification.
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7.2 Efficient Algorithms for Language Inclusion Checking. Generally,
it is unavoidable for any language inclusion checking solutions to have an ex-
ponential worst-case complexity. As there are no existing automata capable to
express dependent effects, neither there exist corresponding inclusion checking
algorithms. Here we reference two efficient prior works targeting basic regular
sets: Antichain-based algorithms and the traditional T.r.s, which are both avoid-
ing the explicit, complex translation from the NFAs into their minimal DFAs.

Antichain-based algorithm[9] was proposed for checking universality and lan-
guage inclusion for finite word automata. By investigating the easy-to-check
pre-order on set inclusion over the states powerset, Antichain is able to soundly
prune the search space, therefore it is more succinct than the sets of states ma-
nipulated by the classical fixpoint algorithms. It significantly outperforms the
classical subset construction, in many cases, it still suffers from the exponential
blow up problem.

The main peculiarity of a purely algebraic T.r.s[6,5,12] is that it provides a
reasoning logic for regular expression inclusions to avoid any kind of translation
aforementioned. Specifically, a T.r.s takes finite steps to reduce r � t into its
normal form r′ � t′ and the inclusion checking fails whenever r′ � t′ is not
valid. A T.r.s is shown to be feasible and, generally, faster than the standard
methods, because (i) it deploys the heuristic refutation step to disprove inclu-
sions earlier; (ii) it prunes the search space by using fine-grained normalization
lemmas. Overall, it provides a better average-case performance than those based
on the translation to minimal DFAs. More importantly, a T.r.s allows us to
accommodate infinite alphabets and capture size-dependent properties.

In this work, we choose to deploy an extended T.r.s, which composites opti-
mizations from both Antichain-based algorithm and classical T.r.s. Having such
a T.r.s as the back-end to verify temporal effects, one can benefit from the high
efficiency without translating effects into automata. We generalize the Antimirov
and Mosses’s rewriting procedure[5], to be able to further reason about infinite
traces, together with size properties and arithmetic constraints. One of the direct
benefits granted by our effects logic is that it provides the capability to check
the inclusion for possibly finite and infinite event sequences without a deliberate
distinction, which is already beyond the strength of existing T.r.s[5,3,12,11].

8 Conclusion

We devise a concise and precise characterization of temporal properties. We
propose a novel logic for effects to specify and verify the implementation of the
possibly non-terminating programs, including the use of prior effects in precon-
ditions. We implement the effects logic on top of the HIP/SLEEK system[8] and
show its feasibility. Our work is the first solution that automate modular tempo-
ral verification using an expressive effects logic, which primarily benefits modern
sequential controlling systems ranging over a variety of application domains.
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