
February 21, 2025 (Get the Latest Version ¬)

RESEARCH STATEMENT

Yahui Song
Research Fellow at National University of Singapore (NUS), Singapore

https://www.comp.nus.edu.sg/~yahuis/

My research focuses on Programming Languages and Formal Methods, emphasizing Specification, Compositional
Verification, and Logic – particularly temporal and separation logic. In general, "compositional verification" refers
to the capability of proving a program’s correctness or incorrectness in a modular manner, which decomposes the
reasoning about a whole, complex program into an analysis of its simpler, reusable components.

I am especially interested in leveraging formal reasoning techniques for establishing program correctness, bug detec-
tion, and automated program repair. These methods complement traditional approaches like testing, which often fail
to provide comprehensive coverage of all possible scenarios. For the future of program analysis and software rea-
soning, I believe the focus should be on the following key areas: (I) Advanced Logic for Specification: Developing
sophisticated logical frameworks to enhance specification capabilities; (II) Practical Inference Mechanisms: Creating
effective methods for generating modular specifications; (III) Automated Formal Verification Framework: Streamlining
the process of proving software correctness through automation; and (IV) Scalability: Ensuring that systems support
automated, incremental reasoning and promote the reuse of effort.

Past Research and Ongoing Work

Modular & Expressive Temporal Verification. The predominant technique in temporal verification, automata-based
model checking, has several limitations: it requires a manual modelling phase, is constrained by bounded analysis
due to the lack of symbolic reasoning, and is restricted in expressiveness by finite-state automata. To address these
challenges and combine the advantages of both modularity and automation, I explore a more precise and extensive
solution for temporal verification. More specifically, it deploys Hoare-style forward verifiers as the front end and term
rewriting systems (TRSs) as the back end. Forward verifiers compute the actual temporal behaviours from the source
code based on the formally defined execution semantics of the target languages. TRSs are decision procedures inspired
by Antimirov and Mosses’s algorithm [14] but solving the language inclusions between expressive symbolic linear tem-
poral properties, which are used to represent program behaviours and specifications. In this approach, the temporal
constraints can be dependent on program variables, allowing for more expressive and precise verification. My PhD
thesis demonstrates the applications of this framework across various domains, including event-based reactive sys-
tems [1], synchronous languages like Esterel [2], user-defined algebraic effects and handlers [3], real-time systems [4],
and preemptive asynchronous programs [5].

Program Repair guided by Linear Temporal Properties. As a
postdoctoral fellow, I expanded my research into bug detection
and automated program repair. To enable a more flexible speci-
fication style on top of the classic pre/post-conditions, our recent
work [6] allows users to write a “future condition” to modularly
express the expected behaviours after function calls, which pro-
vides the guideline for automatically detecting and repairing tem-
poral bugs. Our tool, ProveNFix, is configured with 17 pre-defined
specifications for primitive APIs and detects 515 bugs from over 1
million lines of code spanning ten real-world C projects. The benefit of our approach is that a small set of properties
can be specified once and used to analyze a large number of programs. The novel analysis contributes to an effi-
cient repair strategy that generates patches symbolically. This work has been recognized with a Distinguished Paper

https://www.comp.nus.edu.sg/~yahuis/Job/Yahui_Song_Research_Statement.pdf
https://www.comp.nus.edu.sg/~yahuis/


Award at FSE 2024 for its advancements in automated specification inference and its broad applicability across diverse
types of bugs. The powerful specification inference techniques help understand complex stateful implementations, for
which often no formal specification may be available in real life - partially addressing a long-standing issue in software
engineering.

Staged Specification Logic. I am broadly interested in language features such as higher-order imperative program-
ming, which promotes reusable code and design patterns, and algebraic effects, which provide a monadic framework
for handling non-determinism and probabilistic programming. To verify such essential language features, one inherent
limitation of existing specification mechanisms is their reliance on only two stages: an initial stage to denote the precon-
dition at the start of the method and a final stage to capture the postcondition.

Such two-stage specifications force abstract properties to be imposed on un-
known function parameters, leading to less precise specifications for higher-
order methods. To overcome this limitation, we introduce a novel extension to
Hoare logic that supports multiple staged specifications with a separation logic
instantiation. Multiple stages allow the behaviour of unknown function-type pa-

rameters/unhandled effects to be captured abstractly as uninterpreted relations. Staged logic is supported by a set of
bi-abduction-based normalization, which allows a mostly automated specifications inference, requiring only auxiliary
lemmas to be provided. Our “staged specification” has proven effective in verifying higher-order imperative programs
[7], heap-manipulating algebraic effects and handlers [8], and shift/reset control operators [9].

Incorrectness Proofs for Object-Oriented Programs. In addition to sound reasoning principles that overapproximate,
recently, incorrectness logic (IL) for completeness has gained more attention. However, techniques for reasoning about
the incorrectness in object-oriented (OO) languages remain unexplored. The main challenge is integrating IL with OO
concepts like inheritance and method overriding, which are crucial for supporting class hierarchies that facilitate the
reuse of common data and methods. We present a mechanism [13] for specifying normal and abnormal executions
of OO programs using ok and err. Our approach introduces subclass reflection with dynamic views and an adapted
subtyping relation for under-approximation, addressing both OOP aspects (e.g., behavioral subtyping and casting) and
under-approximation (e.g., dropping paths). Subsequently, we present an IL specification inference system [10] that
automatically generates specifications and supports a push-button bug detection tool. By encoding type information
into bi-abductive reasoning and propagating type constraints, our system efficiently identifies bugs from improper
casting usage, which existing techniques cannot address. Additionally, it reduces false positives while uncovering
more true bugs by retaining OO-type information. Experimental results indicate that our approach detects 400% more
class-cast exceptions compared to Error Prone (by Google) and improves null-pointer exception precision by 24.4% over
Pulse (by Meta).

Program Repair guided by CTL Properties. My interests also encompass Computational Tree Logic (CTL), which is
founded on a branching concept of time, i.e., at each moment, there may be several different possible futures. Many
CTL properties, such as reachability, termination, invariants, and responsiveness, are commonly specified in infinite-
state programs. We suggest a mechanism for the automated repair of real-world programs guided by CTL properties.
Our repair framework [11] is based on Datalog, a widely used logical inference language for program analysis, which
readily supports nested CTL via stratified negation. Specifically, we encode the program and CTL properties into
Datalog facts and rules and perform the repair by modifying the facts to pass the analysis rules. The repair is dis-
charged by an extended Symbolic Execution of Datalog (SEDL). This work focuses on proving both safety and liveness
properties where loops are handled via a novel summarization, represented by a guarded ω-regular language. Unlike
existing loop summaries, which do not explicitly capture non-terminating behaviours, we capture both terminating
and non-terminating behaviours in a (guarded) disjunctive form. Given the undecidable nature of termination anal-
ysis, it outputs "Unknown" when there exists a path for which we cannot conclusively prove either termination or
non-termination. This work advances existing repair techniques to encompass analyses defined by both least-fixpoint

2



and greatest-fixpoint semantics.

Detecting and Reducing Hallucinations in LLMs Through Logical Reasoning. It is known that LLMs struggle with
generating hallucinations. A major concern is fact-conflicting hallucination (FCH), where LLMs produce content con-
tradicting ground truth facts. The existing work [15] addresses this issue by creating a testing framework that builds
a factual knowledge base from sources like Wikipedia. It uses logical reasoning rules to transform and augment this
knowledge into a large set of test cases with ground truth answers. However, its capability to evaluate the complex log-
ical reasoning of LLMs is limited, as its rules only cover simple relations like negation and symmetry, etc. Meanwhile,
LLMs still struggle with more complex logical reasoning, such as temporal reasoning, due to the lack of understanding
of time and the semantics of temporal operators. To detect such temporal hallucinations, I propose to automatically
generate test cases that effectively ensure a more robust evaluation of the LLMs’ ability to handle reasoning tasks and
identify factual inconsistencies [12]. By applying reasoning rules derived from temporal logic, one can mutate and
expand the initial seed data from the knowledge base, enhancing the diversity and complexity of the test scenarios.

Plans for Future Research

I envision several key directions for future work that will enhance the capabilities of program analysis and automated
reasoning. These directions align with the overarching goal of improving software correctness and reliability in com-
plex systems, as well as advancing logic-augmented generation for large language models (LLMs).

Large Scale Temporal Verification via Precise Loop Summaries. Termination is a sub-problem of temporal properties
because it directly influences the ability to ensure that a program eventually reaches a desired state or outcome. I
propose several concrete directions for achieving scalable temporal verification via loop summaries.

(1) Large Scale (Non-) Termination Analysis. Many real-world programs still suffer from vast consequences caused by
non-termination bugs. While various termination-checking tools have proven effective on well-established bench-
marks, recent studies [16] indicate that these tools must be more effective with real-world projects and benchmarks.
Therefore, existing termination analysis tools must be enhanced to improve their scalability and applicability to
real-world projects. Furthermore, errors in general programming features, such as bit-level arithmetic, heap usage
and recursive functions, etc., should be paid more attention to in future termination analysis research. A combina-
tion of my existing research on compositional verification and effective loop summarization — for both terminating
and non-terminating behaviours — can help overcome the limitations of existing tools and contribute to a more ro-
bust termination analysis.

(2) More Precise Safety Checking. My previous work introduced ProveNFix, the first compositional temporal analysis
tool designed for large scale programs [6]. It detects general safety property violations, including null pointer
dereferences, resource leaks, and memory leaks. However, similar to many analysis tools that rely on incorrectness
logic [17] [13], ProveNFix handles loops via unrolling. Such a design choice results in many false negatives, i.e.,
undetected bugs, in both theory and practice, as it under-approximates loop behaviour by considering only a finite
number of execution instances. I believe these false negatives can be significantly reduced by employing more
accurate loop summaries derived from the methods in (1).

(3) Large Scale Liveness Checking. Verifying liveness properties in protocol implementations is essential for ensuring
progress, avoiding starvation, verifying interactions, etc. Existing works for capturing liveness bugs are based on
grey-box fuzzing [18]. While testing-based approaches like fuzzing are effective, they often struggle to prove the
absence of bugs. Therefore, I plan to pursue the first modular liveness-checking tool for protocol implementations.
The key insight is that most liveness properties can be reduced to a set of safety properties with the help of ranking
functions [19]. More specifically, given any global liveness property and a large codebase that contains many func-
tion definitions, a specification inference process projects the global (liveness) requirement to individual functions,

3



and such a projection creates modular (safety) specifications for each function. These generated specifications can
be further used for bug detection/repair.

Advanced Logic for Specification and Practical Inference Mechanisms. Staged specification [7, 8, 9] involves decom-
posing a program’s specification into multiple stages, each focusing on different aspects or levels of abstraction. This
approach allows for more granular and modular reasoning about different components or phases of the program’s
execution. The capabilities of staged specifications have the potential to benefit more language features such as asyn-
chronous/concurrent programs, other implementations for effects handlers, etc.

(1) Staged Specification for Concurrency. Asynchronous programs involve cooperative concurrent operations, such
as pausing/resuming, event-driven programming, parallel tasks, and switching between multiple execution paths.
Managing the interplay between these operations presents significant challenges in specification and verification
due to their inherent complexity and non-deterministic nature. The staged specification approach offers a viable so-
lution by dividing the specification into distinct stages, each targeting specific segments of the program’s behaviour.
This method is advantageous for verifying preemptive asynchronous programs with complex execution semantics.
Breaking down the specification into manageable stages provides a structured framework for navigating intricate
interactions and ensuring correctness.

(2) Staged Specification for Low-level Code. WebAssembly (Wasm) is a low-level, portable code format that delivers
near-native performance and serves as a compilation target for various source languages. Previously, Wasm lacked
direct support for non-local control flow features like async/await, generators, and lightweight threads. How-
ever, recent advancements introduced WasmFX [20], which provides a universal target for these features through
effect handlers, enabling compilers to translate them directly into Wasm. Notably, the use of staged specifications
could aid in verifying low-level abstractions in WebAssembly, necessitating a deeper understanding of its execution
model, including stack operations and memory management.

(3) Lemma Synthesis for Staged Specification. As previously noted, staged specifications benefit from automated
inference, requiring only minimal specifications such as auxiliary lemmas. However, crafting these lemmas can be
challenging due to their complexity and the nuanced understanding needed to ensure correctness. To address this
issue, employing a search-based or data-driven approach that utilizes input-output examples could significantly
enhance the automation of the verification process. These methods streamline lemma generation by leveraging
existing data and patterns, thereby reducing the need for manual effort.

Expressiveness & Modularity of Future Conditions. The existing application for future conditions has demonstrated
its effectiveness in specification inference and bug detection, guided by temporal logic properties such as "eventually,
the allocated memory will be freed" and "always, there is no null pointer dereference" [6]. Although it holds potential
for various contexts in program analysis, several fundamental directions could enhance the usability of future condi-
tions. Firstly, its dependence on pure arithmetic and temporal constraints represented as regular expressions restricts
its capability to analyze dynamic resource management scenarios, including aliasing and reassignment operations. To
address this issue, I plan to enhance the expressiveness of future conditions by incorporating separation logic. This
approach will enable better tracking of mutations to local and global variables as well as the aliasing relationships
among these variables. Secondly, the existing reasoning system of future conditions has not achieved full modularity.
Whenever there is a function call, the remainder of the code must be analyzed to verify the future condition. As a
result, certain parts of the code are subjected to multiple analyses, leading to inefficiencies and potential redundancy.
To address this issue, I plan to extend the existing Hoare-style reasoning rules by associating future conditions with the
postconditions. This enhancement will facilitate a compositional reasoning system that aims to achieve full modularity,
ensuring that each line of code is analyzed only once and can be replaced by its verified specification.

4



References

[1] Yahui Song and Wei-Ngan Chin. Automated temporal verification of integrated dependent effects. In Formal
Methods and Software Engineering: 22nd International Conference on Formal Engineering Methods, ICFEM 2020, pages
73–90. Springer, 2020.

[2] Yahui Song and Wei-Ngan Chin. A synchronous effects logic for temporal verification of pure esterel. In Ver-
ification, Model Checking, and Abstract Interpretation: 22nd International Conference, VMCAI 2021, pages 417–440.
Springer, 2021.

[3] Yahui Song, Darius Foo, and Wei-Ngan Chin. Automated temporal verification for algebraic effects. In Program-
ming Languages and Systems - 20th Asian Symposium, APLAS 2022, Proceedings, volume 13658 of Lecture Notes in
Computer Science, pages 88–109. Springer, 2022.

[4] Yahui Song and Wei-Ngan Chin. Automated verification for real-time systems - via implicit clocks and an ex-
tended antimirov algorithm. In Tools and Algorithms for the Construction and Analysis of Systems - 29th International
Conference, TACAS 2023, Proceedings, Part I, volume 13993 of Lecture Notes in Computer Science, pages 569–587.
Springer, 2023.

[5] Yahui Song and Wei-Ngan Chin. Automated temporal verification for preemptive asynchronous programs (on-
going work).

[6] Yahui Song, Xiang Gao, Wenhua Li, Wei-Ngan Chin, and Abhik Roychoudhury. ProveNFix: Temporal property-
guided program repair. Proc. ACM Softw. Eng., 1(FSE):226–248, 2024. Distinguished Paper Award.

[7] Darius Foo, Yahui Song, and Wei-Ngan Chin. Staged specifications for automated verification of higher-order
imperative programs. FM 2024.

[8] Yahui Song, Darius Foo, and Wei-Ngan Chin. Specification and verification for unrestricted algebraic effects and
handling. Proc. ACM Program. Lang., 8(ICFP):909–937, 2024.

[9] Darius Foo, Yahui Song, and Wei-Ngan Chin. A typed and cps-enabled hoare logic for shift/reset (ongoing work).

[10] Wenhua Li, Quang Loc Le, Yahui Song, and Wei-Ngan Chin. Inferring incorrectness specifications for object-
oriented programs. In Tools and Algorithms for the Construction and Analysis of Systems - 31st International Conference,
TACAS 2025.

[11] Yu Liu*, Yahui Song*, Martin Mirchev, Sergey Mechtaev, and Abhik Roychoudhury. Computation tree logic
guided program repair with precise loop summaries (under submission). 2025.

[12] Ningke Li*, Yahui Song*, Kailong Wang, Yuekang Li, Ling Shi, Yi Liu, and Haoyu Wang. Detecting llm fact-
conflicting hallucinations enhanced by temporal-logic-based reasoning (under submission), 2025.

[13] Wenhua Li, Quang Loc Le, Yahui Song, and Wei-Ngan Chin. Incorrectness proofs for object-oriented programs
via subclass reflection. In Programming Languages and Systems - 21st Asian Symposium, APLAS 2023, volume 14405
of Lecture Notes in Computer Science, pages 269–289. Springer, 2023.

Supplementary References

[14] Valentin Antimirov. Partial derivatives of regular expressions and finite automaton constructions. Theoretical
Computer Science, 155(2):291–319, 1996.

5



[15] Ningke Li, Yuekang Li, Yi Liu, Ling Shi, Kailong Wang, and Haoyu Wang. Drowzee: Metamorphic testing for fact-
conflicting hallucination detection in large language models. Proceedings of the ACM on Programming Languages,
8(OOPSLA2):1843–1872, 2024.

[16] Xiuhan Shi, Xiaofei Xie, Yi Li, Yao Zhang, Sen Chen, and Xiaohong Li. Large-scale analysis of non-termination
bugs in real-world OSS projects. In Proceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE 2022, pages 256–268. ACM, 2022.

[17] Quang Loc Le, Azalea Raad, Jules Villard, Josh Berdine, Derek Dreyer, and Peter W. O’Hearn. Finding real bugs
in big programs with incorrectness logic. Proc. ACM Program. Lang., 6(OOPSLA1):1–27, 2022.

[18] Ruijie Meng, Zhen Dong, Jialin Li, Ivan Beschastnikh, and Abhik Roychoudhury. Linear-time temporal logic
guided greybox fuzzing. In 44th IEEE/ACM 44th International Conference on Software Engineering, ICSE 2022, pages
1343–1355. ACM, 2022.

[19] Jianan Yao, Runzhou Tao, Ronghui Gu, and Jason Nieh. Mostly automated verification of liveness properties for
distributed protocols with ranking functions. Proc. ACM Program. Lang., 8(POPL):1028–1059, 2024.

[20] Luna Phipps-Costin, Andreas Rossberg, Arjun Guha, Daan Leijen, Daniel Hillerström, K. C. Sivaramakrishnan,
Matija Pretnar, and Sam Lindley. Continuing webassembly with effect handlers. Proc. ACM Program. Lang.,
7(OOPSLA2):460–485, 2023.

6


