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Abstract

This thesis provides a solution of abstracting the programming process on IoT (Internet of

things) devices. IoT is the network of physical devices, vehicles, home appliances and other

items embedded with electronics, software, sensors, actuators, and connectivity which enables

these things to connect and exchange data, creating opportunities for more direct integration

of the physical world into computer-based systems, resulting in efficiency improvements,

economic benefits and reduced human intervention. That is necessary to find out a neat way

to make sure the communications between those entities work smoothly and correctly, which

can also provide a better user experience and a higher security IoT system. Having a good

architecture of building such an IoT system might achieve this goal. Therefore, abstraction

aims to get a more systematic and safer approach for constructing IoT systems.

There is a simple yet powerful architecture which is brought up along with the purely func-

tional programming language called Elm which is designed for creating web browser-based

graphical user interfaces. The basic architecture of Elm is “Model-View-Update”, makes it

easy to build high performance web applications. This thesis mainly discusses how to map

this neat architecture to IoT programming.

On the other hand, in order to make sure our approach is applicable to real life devices,

this thesis also analyses several IoT programs implemented by Node.js based on Raspberry

Pi. These programs are used to manipulate several representative IoT devices such as lights,

buttons, different kins of sensors and so on. Based on this, this thesis designs a compiler which

can compile Elm programs into Node.js files which can be executed directly on Raspberry Pi.

The name of this translator is “Compiler from Elm to JavaScript(CEJ)” which is implemented

by Haskell. In this way, it is easier and more concise to produce complex and scalable IoT

applications using Elm-like code.

From another stand of point, using Elm to accomplish the simulation goal of IoT systems

is also useful. For example, in order to test the fire alarm, people do not need to set up
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a real fire. Instead, they can use the web interface constructed by Elm to simulate a fire

environment and send it to IoT systems. In this way, it becomes easy to test the different

scenarios of IoT systems. To achieve this goal, this thesis takes advantage of Raspberry Pi,

a powerful tiny Linux OS single-board computer.

All in all, the main contributions of this thesis are: abstraction of IoT programming, con-

struction of the Elm to JavaScript compiler CEJ, implementation of a simulation platform

for some IoT systems.
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Chapter 1

Introduction

“We want to do our best work, and we want the work we do to have meaning.

And, all else being equal, we prefer to enjoy ourselves along the way.”

—— Sandi Metz

1.1 Research Background

1.1.1 Programming Languages

The demand of inter-connectivity in this world is rapidly increasing. And programming

languages are the foundation of applications which can connect people together.

No matter you are using social media applications on your mobile phone or online collabo-

rating with your team, the tasks all rely on programming languages. The first programming

language was created over 100 years ago by Ada Lovelace, and her contribution on com-

puting marked the beginning of the rich history of programming languages. If we outline

the history and evolution of each programming language over these years, we can find tons

of information on what kinds of vulnerabilities are most common in programs developed in

each programming language and what kind of flaws are most seriously existing there. In the

meanwhile, we also can find out lots of outstanding advantages of each language.

Why do programmers need to learn more computer programming languages?

The answer is people should keep pace with the times and conform to the trend of the times.

The future trend of programming languages is to let each of them stand up to their core

application focuses. The designers should both learn and compete with each other, with
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the goal of gradually finding more appropriate abstractions and methods which make code

easier to write and maintain. A new language represents the understanding of the renewal of

things and the better way of elaboration. The essence of languages between human beings

and between human and computers are both to express ideas. Language is the tool of human

thinking, and people rely on programming languages to command the computer. Different

languages represent different ways of understanding the problem domain and the computer

system.

It is the change of environmental that inspires these languages and promotes their

development. The updated language often includes the advantages of the last generation

of language, adds new ideas and methods to solve new problems. Some users may find the

new language is more effective and convenient, and this language can take a firmer foothold

in some problem domains. From the single-board application to the network application,

and from the development of mobile devices to the integration with the network, there are

a variety of hardware devices, with different interconnection needs and requirements. In

existing programming languages, the original considerations may not be appropriate anymore

and new language features may be needed. The so-called “balance point” means where the

compromise point is of making design decisions for conflicting characteristics. Do we want

a static compiling language or dynamic interpretive language? Is the focus of programming

flexibility or running speed? How are security issues being considered? Do we want garbage

collection? What mechanism do we use? For example, CPU evolves from single core to multi-

core, how to make full use of such hardware during the process of designing a programming

language.

Many changes in application requirements will inevitably catalyse the production

of computer languages with different design ideas. It is impossible for a single language

to solve problems in all fields. Forcing it may only makes the developers suffer, and may

greatly reduce efficiency and quality. For example, rare people write the Web applications

with C++. One has to take into account the environment, design ideas, development patterns
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and idioms which are relied on, so as to make it easier to develop applications using the certain

chosen programming language.

1.1.2 Internet of Things

The Internet of Things, abbreviated as IoT, is not a new concept, but it is still a hot topic

in the industry. IoT refers generally to the digital interconnection of objects to the internet,

and the ability to collect and send data between devices. There are lots of definitions of

IoT, most of them focus on how computers, sensors, and objects interact with one another

and process data. There are already tons of devices and products designed under the IoT

spectrum, and the number of connected devices is increasing exponentially. By 2020, it is

predicted that there will be around 50 billion connected smart devices in the world[7][18],

as shown in Figure 1.1[10]. If we do a computation, everybody in this world will have 6.5

devices on average. It is universally known that the hype around IoT is huge, and new IoT

enabled products are being implemented quickly. Those IoT devices seem impress users with

its intelligence, and “Smart Home” stands out as the most prominent applications of IoT.

Since IoT devices step into our life deeper and deeper, it is necessary to create a safer and

more reliable IoT system.

Figure 1.1: Growth of IoT devices
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Three important elements contribute to the popularity of IoT nowadays are:

1. Hardware is becoming cheaper. Phones are mega sensors that are always with us,

but we do not treat them as a true IoT sensor device, yet. In the IoT world, a phone

is a collection of many sensors. The price of smart phones continue to drop rapidly.

2. Connectivity is necessary. Wherever we go, it is a basic expectation to have wifi

connectivity these days. Even in emerging and developing countries.

3. Development is becoming easier. While the complexity increases, the tools, li-

braries, and methodology projects, are making it easier to interact and interface with

hardware. The learning curve for development is shortening.

With the current situation of IoT, the vision should be an intelligent connectivity, precise

sensing and efficient controlling. Besides, related systems can manage a wide range of physical

“smart” devices. A meaningful use is to manage energy and power in buildings. Current

industry examples of IoT include smart cars and intelligent building systems, so called “smart

home” or “smart city”, controlling lighting, heating ventilation air conditioning systems and

security systems. Additionally, environmental monitoring of water quality, air pollution and

soil conditions are important applications of IoT. Healthcare organisations are also starting

to use smart beds, remote health and heart monitoring services and devices. Basically IoT

devices could be anywhere, and there are six growth areas, namely:

1. Household devices monitoring, such as fridges, washing machines, light or door

controllers.

2. Power management and controlling, to remotely control devices using a mobile

phone.

3. Entertainment machines, such as a Bubblino, which is a just-for-fun device can blow

bubbles when certain keywords appear on twitter.

6



4. Tracking tools, used for cars, pets, offenders, and other valuable asserts.

5. Health monitoring devices, associated with online monitoring tools.

6. Environmental monitoring tools, used by thermostats and weather stations for

collecting meteorological data.

According to the survey conducted by Eclipse Foundation[9] , the top four lan-

guages for developing IoT systems are Java, C, JavaScript, Python. Though they

look very similar when constructing either all sorts of applications or servers, there are some

differences when it comes to different parts of things which make up IoT. In general, there

are three main parts constructing an IoT architectural environment: sensors, to generate the

data; gateways, to organise the data; servers, to collect all the data and give a timely respond

to them. If it is a basic sensor, programmers typically use C since it works directly with the

hardware. For other applications, programmers may choose some other languages which best

suit the task at hand.

Currently, one of the most common features of popular languages for IoT is run-time poly-

morphism. This is an ability to have a set of heterogeneous objects which can all perform

a common action. They are popular also because they do not require much power during

processing like C. However, one of the biggest issues of IoT is any internet-enabled device

is potentially vulnerable to attack from hackers, no need to say the risks when virtually ev-

ery object and appliance we use is connected. Hackers have successfully hacked into real,

on-the-market IoT systems. In contrast, purely functional programming is mainly used on

mathematical computations. It is not as popular as imperative languages in IoT development

because of lack of good libraries, and the lack of documents and communities. However, it is

true that it makes mathematical computations easy to write and read, and makes it easy to

verify safety properties because of its syntax. Therefore, nothing should be the barrier which

can stop us from exploring more about what can be done better using functional programming

languages in an IoT system[25].
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1.2 The Current Work

The goal of this thesis is to abstract IoT programming and map it into the

architecture of functional programming language Elm[26]. Elm is chosen because of

its high level abstraction, and easy for mapping into real devices. The focus of this dissertation

is to see how to map the abstraction of IoT into an existing Elm architecture.

Currently, this thesis focuses on one specific target platform Raspberry Pi 3 Mode B and

one specific target language JavaScript. However the abstraction and the mapping would be

designed to work with all IoT devices, regardless of platform or language.

The main work of this thesis consists of two parts:

1. Construct a compiler which can compile Elm into JavaScript following the abstraction

and mapping rules we created previously.

2. Build a simulation platform using Elm for IoT systems based on Raspberry Pi.

The target audience are people who possess basic knowledge about programming and have

the interest in IoT programming.

1.3 Thesis Overview

This thesis consists of four main parts:

Firstly, Chapter 1, 2, 3 briefly introduce the research background, current situation of pro-

gramming languages and Internet of Things, explain the motivation of this thesis, list some

related work in recent years.

Secondly, Chapter 4 discusses the preliminary of constructing a compiler and understanding

basic IoT devices. Chapter 5 explains in detail on designing the compiler and the simulation

system, and it mainly consists following contents: (a) The mapping strategies from IoT
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programming to Elm architecture; (b) The abstract syntax tree(AST) of Elm and JavaScript;

(c) The translation scheme; (d) The design of the simulation system. Chapter 6 talks about

the concrete implementation of the compiler, and all the technologies used in this work.

Lastly, Chapter 7 evaluates the result of this thesis. Chapter 8 gives a summary of this work

and raise some important future work.

The Haskell implementation for Elm AST and JavaScript AST are listed in the appendixes.
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Chapter 2

Motivation

2.1 Existing Problems

As the Internet of Things is growing fast in the industry nowadays and become a commonplace

in our lives, the technology used to support IoT must be chosen reasonably and scientifically.

There are several programming languages can be used in the IoT programming, for example,

assembly, C, C++, Java, JavaScript and Python. Even though they are popular in the

industry, none of them has a considerate architecture for IoT systems. Some of them do

not have any architecture at all like assembly and C. Some of them are objected oriented

programming(OOP) languages like C++ and Java. Some of them are partially functional like

JavaScript. Some of them do not have a type system like JavaScript and python. However, in

IoT world, OOP is too complex to be managed due to the limitation both in memory capacity

and in processing power. Partially functional is not helping because few programmers are

actually taking advantages of it. Lack of type system even raises the risk on getting runtime

errors.

In the meanwhile, the large scale of data produced by IoT devices leads to great complexity

during designing systems. Due to manufactures tend to release new products to the market

as faster as possible, they often ignore these complexity concerns. This phenomenon leads to

the fact that some of those products contain severe security holes and are not scalable.

It is urgent to have a considerate programming language with a well designed architecture

which is suitable for constructing an IoT system, which may solve not only the safety problem

but also the high complexity problem.
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2.2 Existing Solutions

Facing the existing problems, there are two kinds of approaches can be considered as a

solution, building good architectures and making use of functional programming languages.

In this thesis, a new solution is proposed combining these two approaches. Let us have a look

at them one by one.

2.2.1 Build Architectures

In IoT world, the distinction between protocol architectures and system architectures is not

very clear. Often the protocol and the system architectures are co-designed. Here we take

two basic architectures as examples:

Server-Client

Most architectures proposed for the IoT obey the “Server-Client” pattern. They have a server

side. The server connects to all the interconnected components, composes the services, and

acts as a single point of service for users.

In the server side, there are typically three layers. The first layer is a database that stores

information of all the devices, their attributes and their relationships. The second layer

logically controls the interaction between the server and devices, queries their status from

the database, and uses the query result to effect a service. The topmost layer is the application

layer, which provides services to the users.

In the client side, there have two layers. The first is the object layer, which allows a device

to connect to other devices, talk to each other, and exchange information. The object layer

passes information to the social layer. The social layer manages the execution of users’

applications, executes queries, and interacts with server on the application layer.

12



Peer-to-Peer

In the IoT era, connected devices will spread sensitive personal data to centralised companies,

which represents a serious risk for user’s privacy. With the purpose of overcoming this

problem, constructing decentralised private-by-design IoT systems could be a solution. The

basic idea is that data produced by personal IoT devices are safely stored in a distributed

system whose design guarantees privacy. To achieve this goal, Peer-to-Peer architecture need

to be considered.

Peer-to-Peer network (P2P)[19] is a topology and has a permanent link between two end-

points. One example of P2P would be the connection in the game, “paper cup-and-string

telephones”, where two nodes have a dedicated channel for communication. Using switch-

ing technologies, P2P can be set up dynamically. P2P technology let nearby users directly

exchange information with one another to improve the data exchange throughout.

2.2.2 Use Functional Programming

Internet of Things appliances, such like light, thermostats or other kinds of sensors, are

sensitive to software errors. Software bugs might lead to security problems, which are not

acceptable. The increasing complexity of IoT makes it even harder to avoid potential bugs

of the system. Functional programming is well-suited to solve this concern[22]. The features

of functional programming, preference for immutability, function composition, avoiding side-

effects, less code, etc. may help to avoid many of the pitfalls in the IOT world for following

considers: (a) Using immutable data helps solve the concurrency issue as locks can be avoided;

(b) Real-time communication is also better supported by functional programming; (c) It is

of great use to program with side-effect free functions when developing IoT applications as

it makes scaling easier while making the code easier to reason about; (d) With functional

programming, there is less code to write, which leads to less bugs and a better programs.
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2.3 Proposal Solution

As mentioned previously, having a good architecture and taking advantages of functional

programming languages both help on improving the performance of IoT systems. The so-

lution proposed in this thesis is to combine these two approaches together, using a purely

functional programming language with a suitable architecture for IoT programming. Here is

a programming language meets the requirements called Elm. Elm is originally designed for

building high performance web applications with a “Model-View-Update” architecture. It is

chosen because of its high level abstraction, and feasible for mapping into real devices. This

proposal is motivated by the urgency to construct a scalable, safe IoT system.
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Chapter 3

Related Work

3.1 Elm-Related Architectures

3.1.1 MVC

The Model-View-Controller(MVC)[30] design pattern is a common way to structure systems

which need to react to events. It divides an application into three interconnected parts:

Model, View and Controller. The MVC pattern decoupled these main components allowing

for efficient code reuse and parallel development. This architecture has become popular in

not only designing web applications but also mobile apps. MVC is usually implemented in an

object-oriented style. Java, C#, Ruby, PHP and other programming languages are current

popularly being used in web application development.

The model manages the data of the application and receives user input from the controller.

The view is a presentation of the model in a particular format which could be customised by

programmers. The controller is used to respond to the user input and perform interactions

on the data model objects. The controller receives the input, validates it and then passes the

input to the model[14].

However, the MVC architecture increases the complexity of the structure and implementation

of a system, especially for some simple interfaces. Strictly following MVC, separating models

and views from controllers, will increase the complexity[24] of the structure and reduce the

performance of the system. For example, if we do not use this hierarchical structure, many

operations can directly visit the database to get the corresponding data, but now they must

be completed through the middle layer.
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3.1.2 FRP

“This is the Hollywood principle in action: do not call us, we will call you.

And it is great for loosely coupling code, allowing you to encapsulate your components.”

Functional Reactive Programming(FRP)[31] design pattern was proposed in 1997. It is a pro-

gramming paradigm for reactive programming, asynchronous data flow programming, using

functional programming. There are many interpretations of it based on different scenarios[21].

The main differences between FRP and MVC is when using the MVC design pattern, the

Model and the View never directly communicate while FRP allows the Model and the View

have a direct connection.

As it discussed in the last section, MVC is not that practical in more and more occasions due

to the redundant life circle. For example, in a web application, every single change of the

Model will push the application to render the UI view again. However, most times the UI is

not affected by the change, which means the UI may care about several specific changes of the

Model, but not all of them. That is why we need “Reactive programming” here. Back to the

example, if we implement the web application using reactive programming architecture, the

UI will subscribe some changes of the Model, only when those specific changes happen, the

View would be rendered again. This highly increases the efficiency of applications comparing

to MVC architecture.

Actually Elm is a “Event-Driven” concurrent FRP language focused on easily creating re-

sponsive GUIs[17]. Traditional FRP used sequential updates, so only one event could be

processed at a time. In Concurrent FRP, many updates can be processed at the same time.

In Elm, synchronisation is enabled by default, strictly maintaining the global order of events.

But by its very nature, synchronisation incurs a delay. It requires faster results to wait for

slower results before moving on, but in certain cases, it is acceptable to ignore the global

order of events.
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3.2 Build new Programming Languages for IoT

There are lots of options on choosing a programming language for an IoT system, and as

mentioned before, the top four languages for developing IoT systems are Java, C, JavaScript,

Python. However none of them is designed specially for IoT programming. Due to all kinds of

problems caused by these popular programming languages in IoT systems, it is indispensable

for programmers to design a language especially for IoT programming.

In the meanwhile, even though there exists open source frameworks designed for IoT which

can be used by hobbyist and professionals for the tasks on their hand, many of those tools

require the programmers to know programming languages such as C, Python and JavaScript.

Those who do not know much about programming but would like to tinker with IoT may

find it challenging to work with those tools.

There is a ongoing work[13] which focus on how to design a programming language targeted

specifically at IoT. The language is targeted at amateur programmers with the goal to make

it easy to program any IoT device. And another example, existing technologies that aim at

making embedded devices easier to be programmed, e.g. Arduino, work well for prototyping.

However, limitations are existed when trying to scale these prototypes towards real-world

deployment. Also the level of controlling over timing, memory, and behaviour that such

existing technologies provide, often do not meet the requirements of commercial IoT deploy-

ments. Eclipse Mita[6] is a new programming language for the embedded IoT. It aims to close

the gap between cloud and embedded development, brings these two communities closer.

3.3 Projects of Raspberry Pi

Since the first Raspberry Pi was released in 2012, It has captured the imaginations of enthu-

siasts and hobbyists. There are tons of outstanding Raspberry Pi projects we can find in this

community: https : //www.raspberrypi.org/community/. Here are two examples of them:
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A Weather Station

This project uses a Raspberry Pi and a Sense HAT to measure the temperature, barometric

pressure, and humidity. It then uploads all that data to Weather Underground. On the

display screen, users can see how the temperature has changed since the last reading.

A Home Surveillance System

Generally speaking, home surveillance systems are expensive. Some people build their own

small-scale system using a Raspberry Pi. For example, there is a system uses the Raspberry

Pi camera module and a few other IoT devices. After setting up, this system can detect

motion, broadcast a live stream and can provide other services. It is a surprisingly powerful

system and it’s cheap enough that everyone can try to set it up.

3.4 Security for IoT

Along with the enormous benefits, the IoT also brings up plenty of risks. In a world which

is already vulnerable to the threat of cyber attacks and data breaches[15], more connected

devices means billions of new entry points for hackers. And in many cases, these devices

are a much softer target than normal traditional computers. For example, IoT devices know

all about you and many smart devices are constantly collecting data on your movements

and habits as you spending your daily life. This is useful in one perspective because the

more the technology knows about you, the better it can respond to and work around your

needs. However, it could be used by other businesses, like selling your private information.

It could get into the hands of criminals, allowing them to steal your identity, or target your

property or belongings based on what they know about you. To avoid becoming a victim, or

inadvertently helping to cause an attack elsewhere, IoT security should be taken as seriously

as with any other computer or device. Currently, there are several technologies may help
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to prevent those security issues. In the meanwhile, to achieve those technologies is also a

challenge on preventing IoT systems from attacking:

1. IoT network security. Unlike traditional networks, it is much more challenging to

secure an IoT network. The reason is that there are wide range of communication

protocols, standards and devices involved, which makes things more complex.

2. API security. Securing API is also critical to ensure that the data transmitted through

end-point to back end system is only done by authorised persons. On the one hand, it

helps users to make sure that only authorised devices, developers and applications can

access to the APIs. On the other hand, it aids in detecting threats and attacks upon

these APIs.

3. Security analytics. From collecting to aggregating data, from monitoring to nor-

malising data from IoT devices, we need a monitoring that provides us options for

reporting as well. Security analytics act as a brilliant way to alert organisations about

any malicious activities that might be taking place in the background.
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Chapter 4

Preliminaries

This chapter summarises some of the relevant technicalities used in this thesis. In particular,

it discusses the grammar and theoretical foundation of programming languages, introduces

the language Elm, talks about Raspberry Pi single-board and several common IoT devices.

In the end of this chapter, it brings up the main research problems of this thesis.

4.1 Programming Language

4.1.1 Abstract Syntax

Programming languages express a set of instructions in a form which is comprehensible to

both human beings and machines. The syntax of a language summaries all the possible kinds

of expressions, declarations and commands might be combined to make up a program. We

know that in human language, no matter what language is, there will be a “subject”, “verb”,

“object”, “punctuation” to describe a real world event. In computer programming language,

no matter what language is, “type”, “operator”, “flow statement”, “function”, “object” and

other concepts may be needed to express the sequence of 0 and 1 in the computer memory,

and the operation and logic behind it.

In computer science, the abstract syntax tree (abbreviated AST), or the syntax tree, is a

tree representation of the abstract syntax structure of the source code, which refers specifi-

cally to the source code of the programming language. It is an order tree whose leaves are

variables and whose interior are operators whose arguments are its children. Each node in

the tree represents a structure of this programming language. The reason why syntax tree
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is “abstract” is that the grammar here does not represent every detail that appears in real

grammar. For example, nested brackets are implied in the structure of the tree and do not

appear in the form of nodes. To show the grammar details of one programming language, we

use concrete syntax tree (CST). AST and CST are two important ways to present the syntax

of one language.

An example of abstract syntax tree

Here is an expression: 1 + 3 * ( 4 - 1 ) + 2. Listing 4.1 is the data type for the AST of this

expression implemented by Haskell. The graphical representation of the abstract syntax tree

of it is shown in Figure 4.1.

1 data Expr = Number Integer

2 | Add Expr Expr

3 | Minus Expr Expr

4 | Times Expr Expr

5 | Divide Expr Expr

6 | Parens Expr

7 deriving (Eq,Show)

Listing 4.1: AST of a simple expression

Figure 4.1: A graphical representation of AST
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Abstract syntax tree is very useful and widely used in many fields such as browsers, intelligent

editors, compilers. There are many tools used to simplify the programming process and help

developers to program or debug in a easier way. In fact, the principle of these tools is to

compile the code into an abstract syntax tree first, which defines the structure of the code.

Then by manipulating the tree, we can accurately locate statements, assignments, operations

and so on. In the end, those tools can implement the analysis, optimisation, modification

and other operations of the code.

4.1.2 Inductive Definitions

Inductive definitions play a central role in the study of programming languages. They specify

the following 4 aspects of a language: concrete syntax, abstract syntax, static semantics, dy-

namic semantics. An inductive definition in computer science is used to define the elements

in a set in terms of other elements in the set. Often a set is described in the following way.

Some clauses stipulate that certain basic elements are to be in the set; then other clauses are

given to stipulate further elements of the set in terms of elements already included. Implicitly,

only elements produced in these stipulated ways are to be included in the set. Sets described

in this way are called inductively defined. So an inductive definition consists of:

1. One or more judgments, i.e., assertions.

2. A set of rules for deriving these judgments.

Inference Rule Notation

Inference rules are normally written as:

J1 ... Jn
J

where J and J1, ..., Jn are judgements.
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Examples

The set Num is defined by following rules:

1. Zero is a numeral.

2. If n is a numeral, then Succ(n) is also a numeral.

This inductive definition can be represented by notations as following:

zero numeral
zero numeral

Succ(n) numeral

Similarly, the set of binary trees defined by following rules:

1. The empty tree, Empty is a binary tree.

2. If tl and tr are binary trees, then Node(tl, tr) is a barary tree.

This inductive definition can be represented by notations as following:

Empty ∈ Tree
tl ∈ Tree tr ∈ Tree
Node(tl,tr) ∈ Tree

4.1.3 Denotational semantics

Denotational semantics, initially known as mathematical semantics, is an approach of formal-

ising the meanings of programming languages by constructing mathematical objects, called

denotations, which describe the meanings of expressions of a certain language. Other ap-

proaches to providing formal semantics of programming languages include axiomatic seman-

tics and operational semantics.

Denotations of data types

Many programming languages allow users to define recursive data types. The type of lists of

numbers can be specified by:

1 datatype list = Cons of nat * list | Empty
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4.1.4 Statics and Dynamics

Most programming languages can be divided into two phases, static and dynamic. A static

type language refers to a language that the type of data can be determined when it is compiled.

Most static type languages require that the data type must be declared before the variable is

used, and some modern languages with type derivation may be able to partially mitigate this

requirement. Dynamic type languages are languages that the type of data will be determined

while it is executed. Variables do not need type declarations before they are used. The type

of variables is usually the type of value assigned.

For the distinction between dynamic language and static language, there is a popular saying:

“Static typing when possible, dynamic typing when needed.”

Besides static and dynamic, there is another pair of terms called “strongly typed” and “weakly

typed”. In strongly typed language, the type of variables cannot be transformed once de-

termined. Conversely, in weakly typed language, the type of a variable is determined by its

application context. For example, weakly typed languages allow strings and integers to do

plus operation directly.

Many people state that static strongly typed languages are suitable for developing complex,

large-scale systems while dynamic weakly typed languages are not suitable for developing

too complex or large projects. However, there are lots of big projects developed in Google

are implemented by Python which is a weakly typed language. Actually dynamic languages

give programmers more freedom and save their energy to concentrate more on implementing

the crucial logical computations of the program. The greatest advantage of static typed

languages is that it provides static type security, and the compiler can check whether the

name of every function call is correct or not, and whether type of parameters are correct or

not. Such a system allows many errors to be detected and located at compile time which can

save the unit testing time.

25



4.1.5 Type Safety

If a well formed program behaves well when it is executed, it can be called safe. Most

strongly typed programming languages are safe. Informally, this means that certain kinds

of mismatches cannot arise during execution. For example, it will never happened in a safe

languages that a number and a string to be added together or two numbers are concatenated,

which is not meaningful.

Type safety of the language E is stated precisely as follows[23]:

1. If e : τ and e 7→ e′, then e′ : τ

2. If e : τ , then either e val, or there exists e′ such that e 7→ e′

The first rule, called preservation, saying that the type should be preserved with the execution

process. The second rule called progress, ensures that well-typed expressions are either a value

or can be further executed. The type safety is the conjunction of this two rules.

4.1.6 Elm

Elm is a purely functional domain-specific programming language. Elm was published by

Evan Czaplicki as his thesis in 2012, this language was initially designed two years before

that, around 2010. The first release of Elm came along with several examples and an online

editor[2], which made it easy and fast for new learners to try it out in a web browser. We

mainly use Elm for creating websites and web apps. Elm’s compiler compilers it down into

optimised JavaScript. It solves tons of problems which Web programming are facing in day-

to-day work flow. Some programmers even think that Elm could be the future of front end

development. There are several important features of Elm.

26



Architecture

The concepts around the Elm architecture are starting to be more and more used. It es-

sentially boils down to three parts: Model, View, and Update. The entire application can

be viewed as one loop that runs in perpetuity. It takes an initial model, presents it to the

users as a view in a certain way, lets them issue messages from the view, updates the model

based on those messages, and presents the updated model back to the users with a new view

again. The work flow of Elm is specified as Figure 4.2, and the interactions between the Elm

runtime and various components in an application is shown in Figure 4.3:

Figure 4.2: Work flow of Elm architecture

Figure 4.3: Interactions during Elm runtime

1. Model: a model represents the state of the application. It does not necessarily have to

be complicated, all depends on how complex the application is and how many different
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things it needs to track.

2. Update: a way to update the application’s state and do some certain operations based

on different messages.

3. View: a way to view the state as a html page. It takes a model as input and outputs

HTML and CSS code.

This pattern is so reliable that programmers can always start with this following skeleton

shown in Listing 4.2 and fill in details with increasingly interesting logic for their own par-

ticular aim.

1 import Html exposing (..)

2

3 -- MODEL

4 type alias Model = { ... }

5

6 -- UPDATE

7 type Msg = Reset | ...

8

9 update : Msg -> Model -> Model

10 update msg model =

11 case msg of

12 Reset -> ...

13 ...

14

15 -- VIEW

16 view : Model -> Html Msg

17 view model = ...

Listing 4.2: Skeleton of Elm architecture

That is the essence of the Elm Architecture. One of the other benefit we can get from this

architecture is that it is great for modularity, code reuse, and testing.
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Commands and Subscriptions

Since Elm is a pure functional programming language, it does not have side effect. Most

scenarios in which an Elm app needs to interact with the outside world tend to fall into two

categories[1]:

1. Tell the Elm runtime to do something. Here are some examples:

(a) Send and receive data from a remote HTTP server.

(b) Save data to a local storage.

(c) Generate random numbers.

(d) Request a JavaScript library to perform an operation

2. Get notified when something happens. Here are some examples:

(a) Listen for web socket messages.

(b) Listen for location changes.

(c) Listen for clock ticks.

(d) Listen for an output generated by a JavaScript library

Elm offers commands to deal with the scenarios in the first category and subscriptions to

deal with the scenarios in the second category.

Compiler

Elm is a statically-typed language with type inference which means the type of a variable is

known at compile time and programmers no need to specific what type each variable is. This

strong Elm compiler is one of the most important reason why programs written by Elm get

no run-time exceptions. Based on this compiler, there is a biggest benefit which is reliability.

Firstly it almost never crash. Secondly it will give a very friendly assistance when we are
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Figure 4.4: Syntax error messages of Elm

debugging. Here is an example on detecting cases which programmer may missed shown in

Figure 4.4.

This is a pattern mating example, the message says that there is a situation branch which

is not covered in the program. As we all know, pattern matching in imperative languages

is implemented using “If-Else”, in most cases, programmers are not required to fill up all

the situations, it might be fine and easy to implement, but sometimes it could cause some

serious consequence because of forgetting those small cases. However, in Elm, the compiler

will detect all the cases would happen, and strictly requires you to fill all of them. Besides

this helpful feature here, it gives us a fast and specific feedback which makes it quite clear

and easy to debug. Basically, the compiler saves us from things that we don’t usually think

to write unit tests for.
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4.1.7 JavaScript and Node.js

JavaScript is a language aimed for web development, in order to execute it, all browsers

have JavaScript engines which execute the JavaScript code of web pages, like: Firefox has

an engine called Spider-monkey, Safari has JavaScriptCore, and Chrome has an engine called

V8.

Node.js is not a language or a special dialect of JavaScript. Node.js is simply the V8 en-

gine bundled with some libraries to do I/O and networking, so that programmers can use

JavaScript outside of the browser, to create shell scripts, backend services or execute it on

hardware.

The original compiler of Elm compiles it into JavaScript and aims to be executed in web

browsers. The compiler CEJ constructed in this thesis is used to compile Elm into node.js

which can be executed on somewhere outside of browsers, like normal x64 system or other

hardware.

4.2 The Internet of Things

4.2.1 Raspberry Pi

The Raspberry Pi is a series of small single-board computers developed in the United King-

dom to promote the teaching of basic computer science in schools. There are lots of developers

and applications that are leveraging the Raspberry Pi for home automation[11]. These pro-

grammers are trying to change the Raspberry Pi into a cost-affordable solution in energy

monitoring and power consumption. Because of the low cost of the Raspberry Pi, it has

become a popular and economical solution to the expensive commercial alternatives.

The Raspberry Pi 3 is the third generation Raspberry Pi, about the size of a credit card. The

Raspberry Pi is a powerful device fully capable of running an Linux operating system. The
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device provided for this thesis came with an SD-card with the Raspbian operating system

installed. The Raspberry Pi main board is shown in Figure 4.5.

Figure 4.5: The Raspberry Pi 3 Model B

The hardware specification for the Raspberry Pi 3 is listed as follows:

• A 1.2GHz 64-bit quad-core ARMv8 CPU, 802.11n Wireless LAN

• Bluetooth 4.1

• Bluetooth Low Energy

• 1GB RAM

• 4 USB ports

• 40 GPIO pins

• Full HDMI port

• Ethernet port

• Combined 3.5mm audio jack and composite video-camera interface

• Display interface

• Micro SD card slot

• VideoCore IV 3D graphics core
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GPIO

An important feature of the Raspberry Pi is the rows of GPIO (general-purpose input/output)

pins along the top edge of the board[8]. A 40-pin GPIO header is found on most current

Raspberry Pi boards. Any of the GPIO pins can be designated in softwares as an input

or output pin and used for a wide range of purposes. It is possible to control GPIO pins

using a number of programming languages and tools, and programmers just need to include

corresponding libraries and call the function with a pin index as one of the parameters. Note

that the numbering of the GPIO pins is not in numerical order As shown in Figure 4.6.

Figure 4.6: GPIO pins

I2C

Except for GPIO, The other serial interface is the Inter-Integrated-Circuit bus(I2C)[5]. It

potentially allows many devices, as long as their addresses do not conflict.

I2C is a communication standard in the computing world for sensors, micro controllers, port

expanders and more. Since the Raspberry Pi can talk using I2C protocol, we can connect it

to a variety of I2C capable chips and modules. Besides, The I2C bus allows multiple devices

to be connected to our Raspberry Pi, each with a unique address. It is very useful to be able

to see which devices are connected to your Pi as a way of making sure everything is working.

The i2cdetect program will probe all the addresses on a bus, and report whether there are

any devices. To check it out, only need to type “i2cdetect -y 1” in the command line, As

shown in Listing 4.3
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1 pi@raspberrypi :~/$ i2cdetect -y 1

2 0 1 2 3 4 5 6 7 8 9 a b c d e f

3 00: -- -- -- -- -- -- -- -- -- -- -- -- --

4 10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

5 20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

6 30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

7 40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

8 50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

9 60: 60 -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

10 70: -- -- -- -- -- -- -- --

Listing 4.3: Addresses table of I2C bus

This map indicates that there is a peripheral at address 0x60.

NPM Support

Library “Raspi-sensor” is a Node.js C++ plugin, allowing to easily read data from Raspberry

Pi’s sensors. There are two kinds of ways to plug in a sensor in Raspberry Pi, I2C and GPIO.

If we wish to use I2C sensors, the I2C driver should be loaded. If we wish to use GPIO

sensors, an existing installation of wiringPi is required. For now, those sensors are supported

by npm:

• DHT22(or DHT21) (GPIO) : temperature and humidity sensor

• DHT11 (GPIO) : temperature and humiditysSensor

• PIR (GPIO) : motion sensor

• BMP180 (I2C) : pressure, temperature and altitude sensor

• TLS2561 (I2C) : adafruit digital light sensor

Since the first two items are both temperature and humidity sensors, this thesis only focus on

one of them, DHT11. In total we will discover 4 sensors: DHT11, PIR, BMP180, TLS2561.
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4.2.2 Sensors

DHT11

DHT11 digital temperature and humidity sensor is a composite sensor contains a calibrated

digital signal output of the temperature and humidity. It applies a dedicated digital modules

collection technology and the temperature and humidity sensing technology which ensure

that the product has high reliability and excellent long-term stability. The sensor includes

a resistive sense of wet components and an NTC temperature measurement devices, and

connected with a high-performance 8-bit microcontroller.

PIR

A passive infrared sensor (PIR sensor) is an electronic sensor that measures infrared light

radiating from objects in its field of view. They are most often used in PIR-based motion

detectors.

BMP180

BMP180 combines barometric pressure, temperature and altitude. The I2C allows easy

interface with any microcontroller. On board 3.3V LDO regulator makes this board fully 5V

supply compatible. In advance resolution mode, BMP180 can measure pressure range from

300 to 1100hPa which is +9000m to -500m relating to sea level with an accuracy down to

0.02hPa, around 0.17m.

TLS2561

The TSL2561 luminosity sensor is an advanced digital light sensor, ideal for use in a wide

range of light situations. This sensor is precise, allowing for exact lux calculations ranges to

detect light ranges from up to 0.1 - 40,000+ Lux on the fly.
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4.3 Research Problems

This thesis focuses on these following three problems.

Firstly, implementing IoT applications using Elm-like code. Through the original compiler,

Elm can be compiled into JavaScript and used to create web applications. In the meanwhile,

node.js is used to control IoT devices in Raspberry Pi. Based on this, there is a creative idea

and can be the first research problem here: if we can produce those IoT applications directly

implemented using Elm. However, the JavaScript file generated by Elm compiler can not be

executed in Linux OS. Apparently, directly using current Elm compiler is not doable, then

this research problem becomes: if we can generate a compiler of Elm which can generate

concise and valid node.js files can be executed on Raspberry Pi directly.

Secondly, semantic analyse: The description of a language can be split into two components:

syntax and semantics. Syntax refers to the grammatical structure of a program and semantics

refers to its meaning. There are many scenarios where Elm can throw a syntactic error such as

a misplaced keyword, two operators in a row, unbalanced parentheses, etc. After a program’s

syntactic validity has been established, the next step is to look for semantic errors. For

example, the ‘++’ is a valid operator in Elm, but if it used to combine a string and a

number, now is semantically incorrect. For a program to be valid in Elm, it has to be both

syntactically and semantically correct. The second research problem could be: is there any

change of the semantic of Elm after we link it to IoT applications.

Thirdly, Hardware-in-the-loop (HIL) simulation. This is a kind of technique which can be

used both in the development and testing of complex real-time embedded systems. Widely

usage of HIL enhances the quality of the testing by increasing the scope of the it. Ideally, an

embedded system would be tested against the real plant, but most of the time the real plant

itself imposes limitations in terms of the scope of the testing. In this case, HIL provides the

efficient control and safe environment where test or application engineer can focus on the

functionality of the controller. As we mentioned before, since Elm is designed for creating
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web applications, testers can use the web interface constructed using Elm to simulate a real

world model. In this way, it becomes easy to test abilities of IoT system. So, the last research

problem is if we can use Elm as a simulation tool of some specific hardware applications.

We will discuss those three research problems deeper in following chapters.
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Chapter 5

Design

5.1 Abstraction and Mapping

In order to abstract IoT programming and map it into Elm architecture, we can start with

a node.js example of a piece of IoT program. After analysing this example, the mapping

strategies of each part, namely Model, View and Update, will be displayed separately and

explained in detail.

5.1.1 Start with an Example

As shown in Listing 5.1. This program mainly manipulates DHT11 sensor (temperature

sensor), and a fan, accomplishes the “Smart Home” service shown in Figure 5.1. Simply

speaking, in this tiny IoT system, if the temperature is above 27 degree, it will turn on the

fan automatically. This example is chosen because it represents the typical IoT programs,

getting data from sensors and change the state of peripherals according to some logical

operations.

Figure 5.1: A smart home example
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1 var sleep = require("system -sleep");

2 var dht_sensor = require("node -dht -sensor");

3 var Gpio = require("onoff").Gpio;

4 var fan = new Gpio(18, "out");

5

6 while (true) {

7 dht_sensor.read(11, 4, function(err , temperature , humidity) {

8 if (err) {

9 process.exit (1)

10 }

11

12 console.log("temp:" + temperature.toFixed (1) + "degree");

13

14 if (( temperature.toFixed (1) > 27)){

15 fan.writeSync (1);

16 }

17 else {

18 fan.writeSync (0);

19 }

20 });

21 sleep (5000); // 5 seconds

22 }

Listing 5.1: An IoT program of DHT11

Before diving into the details of this piece of program, it should be specified that the DHT11

sensor is connected with the pin 4 and the fan is connected with pin 18 in the GPIO of the

Raspberry Pi. The first 4 lines are declaring all the variables necessarily used later on. From

line 6 to 22, there is a while loop will be executed repeatedly before the termination of this

program. Inside of this loop, firstly, it reads the value of current temperature and humidity

in line 7. Then if there is no error invoked form the reading process, it generates a log record.

Next, it comes to an if-else statement from line 14 to 19, deciding what value should be
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assigned to the fan, namely 1 represents to turn it on while 0 to turn it off. In the end it

sets a 5 seconds interval before enter into next loop. (Note that in line 7, the first parameter

“11” in the “read” function represents the type of the DHT11 sensor)

From this node.js example shown above, what can be tried is to abstract this real example

correspond to the Model-View-Update architecture first which is shown in Table 5.1. In

order to make it clearer, a web app also showed there as a comparison. Basically, that web

application allows logged in users to create blog posts.

Table 5.1: One instance of the mapping between a Web app and an IoT app

Abstraction Web App IoT App

Model the state of the

application

isLoggedIn = False

numberOfPosts = 10

temperature = 20

View a way to show the state

as a HTML page

an HTML page

showing posts

write LOW to the pin

connected with the fan

Update a way to update the

state of Model

add a post update the value of

current temperature

It seems that the architecture works well in at least this example. Next step, a formal

prescription will be given on how to abstract any IoT program correspond to Model-View-

Update architecture. What need to be stressed here is due to the diversity of programming

in general, there might be different ways to abstract and map. The solution proposed in the

following sections is one of the prototypes of abstracting IoT programming.

5.1.2 Essential Library

To build a complete IoT system using Elm, libraries are indispensable which defines basic

types and functions will be used in the programs, such as the data type of the sensor and

device and the function used to listen to the changes from the sensors.
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The partial code of the library is shown in Listing 5.2, and the complete code of this essential

library is listed in Appendix C.

1 type SensorInput msg = SI msg Sensor

2 type IoTSystem a b = IS a b

3 type IOSensors msg = IOS msg Sensor

4 type IODevices msg = IOD msg Device

5 type IOSignal = SetHigh | SetLow

6 type alias Sensor = {s_type: String , s_address: Int}

7 type alias Device = {d_pin : Int , d_lib : Maybe String ,

8 d_func: Maybe String , d_dir : Maybe String}

9

10 bmp180 : Sensor

11 bmp180 = {s_type = "BMP180", s_address = 77}

12

13 fan_1 : Device

14 fan_1 = {d_pin = 16, d_lib = Just "onoff"

15 ,d_func = Just "Gpio", d_dir = Just "out"}

16

17 temperature : a -> Sensor -> IOSensors a

18 temperature a b = IOS a b

19

20 fan : IOSignal -> Device -> IODevices IOSignal

21 fan a b = IOD a b

22

23 iot : List (IOSensors a) -> List (IODevices b) ->

24 IoTSystem (List (IOSensors a)) (List (IODevices b))

25 iot a b = IS a b

26

27 onTemperatureChange : (Int ->Msg) -> Sensor -> SensorInput Msg

28 onTemperatureChange f s = let m = f 1 in SI m s

Listing 5.2: Partial essential library of constructing an IoT system using Elm
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5.1.3 Model

Model is basically a set of data which expected to be tracked during the whole process of

executing the application. Besides, every Model should be initialised properly because it is

related to what dose View present at the first time.

In one IoT program, the data should be tracked all the time is the values returned by the

sensors. In the example shown in Figure 5.1, the data we care about is the value of the

temperature returned by DHT11, because only when temperature being tracked can program

decide which value to be assigned to peripheral devices, like a fan.

Based on these thinkings, the Model should be simply constructed with a record

which consists of all the values returned by existing sensors in the IoT system.

One example of the Model data structure design is shown in following Listing 5.3.

1 type TemperatureTyp = HIGH|MEDIUM|LOW -- union type of temperature

2 type LightTyp = DAY|EVENING|NIGHT -- union type of light

3

4 -- MODEL -- returned from BMP180 sensor and TSL2561 sensor

5 model : (TemperatureTyp , LightTyp)

6 model = (HIGH , DAY)

Listing 5.3: A model design of IoT program

In this example, there are two sensors are included, BMP180 (temperature sensor) and

TSL2561(light sensor). In the line 1 and 2, for each of them, there is an union type de-

signed to describe the data from the sensor. As we can see, the type of the model defined

in line 5 is a tuple of union types, aggregated the value of temperature and light. The

initialisation of Model is shown in line 6.

You may ask that what if the concrete value of the temperature and light need to be precisely

saved. In this case, setting the type of the Model as a tuple of integer can solve this problem.
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5.1.4 View

Intuitively, the view of a web application simply refers to the html page which users can

see directly, it could be an input text area, a button, a paragraph of text, an image and so

on. Based on the current view, users may make some operations like pressing the keyboard,

clicking the mouse or entering some text in input area. Reacting to those operations, the html

view page may change to another view, so on and so forth. View needs to trigger Update

using a concrete message. In this sense, View is also an interface to get information from

outside because if we enter a word in one input area, the View will send a message along

with this entered word to Update. In this perspective, View is a component which not only

collects data from outside but also present the current Model in a certain way. In the IoT

world, the View must have two parts, one of them collects data from the sensors,

one of them shows the current state of devices. The view of a device could be a light,

on or off, red or blue; It could be a fan, on or off, strong or weak; It also could be a buzzer,

alarming or not. As shown in Figure 5.2 and Figure 5.3.

Figure 5.2: View of a Web app Figure 5.3: View of an IoT app

One example of the View function design is shown in Listing 5.4. As we can see, the model

function takes the current model as input. Inside of the View, it calls a function named “iot”

which takes two listS as parameters. The first list is a collection of all the sensors while the
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second one collects all the devices would be controlled in this system. There are two functions

defined in line 10 and 16 used to change the state of the fan and the buzzer based on the

current state of the Model.

1 -- VIEW

2 view model =

3 iot [ light (onLightChange Light) tsl2561

4 ,temperature (onTemperatureChange Temperature) bmp180

5 ]

6 [ fan (control_fan model) fan_1

7 ,buzzer (control_buzzer model) buzzer_1

8 ]

9

10 control_fan model = -- A function to control the fan

11 case model of

12 (HIGH , DAY) -> 1 -- SetHigh

13 (HIGH , EVENING) -> 1 -- SetHigh

14 otherwise -> 0 -- SetLow

15

16 control_buzzer model = -- A function to control the buzzer

17 case model of

18 (LOW , NIGHT) -> 1 -- SetHigh

19 otherwise -> 0 -- SetLow

Listing 5.4: A view design of IoT program

5.1.5 Update

The update is the vital part in the “Model-View-Update” abstraction, not only it connects

the other two parts together, but also contains all the logical computations inside of the

application. Basically, the update relies on how many messages the app can handle in total.

No matter it is a web application or an IoT application, the job of Update is quite clear,
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that is to get the current Model and a specific message as inputs, then return a new Model

correspondingly. The complexity of Update depends on the complexity of Model and the

complexity of messages. In IoT world, the Update should be constructed along with

the message data type and has a logical pattern matching used to return a new

state of Model. One example of the Update function design is shown in Listing 5.5.

1 -- UPDATE

2 type Msg = Temperature Int | Light Int

3

4 update msg model =

5 case msg of

6 Temperature num ->

7 if num < 20

8 then (LOW , second model)

9 else if num < 30 then (MEDIUM , second model)

10 else (HIGH , second model)

11 Light num ->

12 if num > 500

13 then (first model , DAY)

14 else if num > 200 then (first model , EVENING)

15 else (first model , NIGHT)

Listing 5.5: An update design of IoT program

As we can see, there are two kinds of sources can invoke the Update function, the change of

the temperature and the change of the light. Taking the temperature as an example, if the

value of it less than 20 degree, the state of it will be changeD to LOW, and the state will

be MEDIUM if the temperature greater than 20 and less than 30, otherwise it will be set to

HIGH.
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5.2 The CEJ

This thesis is also going to implement a compiler which compiles Elm into JavaScript (CEJ).

Of course, the first step is to construct the AST of source code. The main working process of

the compiler is roughly shown in Figure 5.4. Basically, the compiler takes a piece of source

code as input and generates the corresponding AST of it. After a series of operations and

transformations, a new AST of target code will be generated as well. In the end, the compiler

will be able to generate the target code based on the new AST. The transformation process

between two ASTs may contains semantical validation and translation and other necessary

operations.

Figure 5.4: Translation process

5.2.1 What is CEJ?

CEJ is the compiler which compiles Elm into JavaScript. The original compiler of Elm

compiles it into JavaScript which executed in web browsers. CEJ is used to compile Elm into

node.js which can be executed on somewhere outside of brewers, like normal x64 system or

other hardware. In this thesis, the target platform is Raspberry Pi 3.

The CEJ is implemented by Haskell. As shown in Figure 5.5. It takes an Elm file as input and

outputs a corresponding JavaScript file. From the designing standpoint, there are four main

stages inside of the executing process, namely lexical analysis, syntactic analysis, semantic

analysis and code generating. In the real implementation process, the lexical and syntactic

analysis are combined together to be a parser to generate the abstract syntax tree. The
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technologies used in these stages will be explained in the following sections.

Figure 5.5: Main work flow of CEJ

5.2.2 Syntax Design

The CEJ aims to compile Elm files into JavaScript files. In this thesis, in order to simplify

the the problem, a subset grammar of Elm language is supported by the CEJ. The following

syntax tree defines the grammar of the supported scope of Elm. Since the main purpose of

this thesis is not creating a new language, the syntax tree still follows the origin compiler of

Elm, which is open-sourced in GitHub (https : //github.com/elm/compiler).

The abstract syntax, specified by a collection of grammar rules. It provides a systematic

and unambiguous account of the hierarchical and binding structure of the language and is

considered as the official presentation of the language. However, for the sake of clarity, it

is also useful to specify minimal concrete syntax conventions, without going through all the

trouble to set up fully precise grammar for it. As shown in Table 5.2. The following syntax

chart summarises the abstract and concrete syntax of Elm which is used in this thesis.

Syntax Chart of Elm

Table 5.2: Syntax Chart of Elm

AST CST Description

Decl d ::= Union(str1, [stri], [(strj , [tj ])]) type str1 [stri] = [(strj , [tj ])] union type

Alias (str1, [stri], t) type alias str1 [stri] = t alias of type

Annotation (str, t) str : t type definition
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Definition (str, [p], e) str [p] = e function definition

Typ t ::= Var(str) str variable

TypeQual(str, [ti]) str [ti] type definition

Lambda(t1, t2) t1 → t2 type composition

Tuple(t1, t2, [ti]) (t1, t2, [ti]) tuple type

Record[(stri, ti)] {(stri : ti)} record type

Pattern p ::= Anything anything

Var(str) str variable

Num(int) int numeral

Str(str) str string

Ctor(str, [pi]) str [pi] pattern conposition

Cons(p1, p2) p1 :: p2 constant pattern

List[pi] [pi] list

Record[stri] stri record

Tuple(p1, p2, [pi]) (p1, p2, [pi]) tuple

Unit () unit

Expr e ::= Var(str) str variable

Num(int) int numeral

Str(str) str string

List[ei] [ei] list

Negate(e) −e negation

Binops(e1,⊕, e2) e1 ⊕ e2 binary operations

Lambda([pi], e) \[pi] −→ e lambda expression

Call(str, [ei]) str [ei] call expression
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If([(ei, ej)], e) if e1 then e2 else e if expression

Let([d], e) let [d] in e let expression

Case(e, [(pi, ei)]) case e of pi −→ ei case expression

Tuple(ei, e2, [ei]) (e1, e2, [ei]) tuple expression

Record[(stri, ei)] {(stri = ei)} records

Update(str, [(stri, ei)]) {str | [stri = ei]} update expression

Tag(str, [ei]) str [ei] tag expression

Def d ::= Define(str, [pi], e) str [pi] = e definition

⊕ ::= + | − | × | ÷ | == | ! = | > | < | > | 6 | &&

There are five main layers of this AST, namely declaration, type, pattern, expression and

definition. The “declaration” is the topmost layer. Since some of them are overlapping, the

most complex one will be explained in detail here, which is expression. For each of these key

syntax, an example will be showed to help explain.

Operators

Binary operators consists of arithmetic operators and logical operators. There are four arith-

metic operators: plus(+), minus(-), multiplication(×) and division(÷). And seven logical

operators: equal(==), not equal(!=), greater than(>), less then(<), greater or equal(>), less

or equal(6) and and operation(&&).

Lambda Expression

A Lambda expression represents an anonymous function which is a function defined, and

possibly called, without being bound to an identifier. The following example represents a
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function takes two parameters as input and return the addition of them:

\ x y −→ x+ y

Call Expression

Any set of identifiers separated by spaces is a function call. For instance: “ a b c d e ” is a

call to function “a” with arguments “b”, “c”, “d”, and “e”.

If Expression

The “if then else” construct is common across many programming languages. Although the

syntax varies from language to language, the basic structure is the same. In Elm, “else”

cannot be omitted in an If expression. Here is an simple example:

if x < 0 then 1

else if x > 100 then 2

else 3

Let Expression

A let expression may be considered as a lambda abstraction applied to a value, may also be

considered as a conjunction of expressions, within an existential quantifier which restricts the

scope of the variable. Here is an example that the definition of “ x = y ” only valid in the

scope of z.

let x = y in z

Case Expression

A case expression defines the pattern matching function. An expression is matched against

the patterns. In case of run time errors, all the possible patterns should be defined.
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case value of 1 −→ 100

2 −→ 99

...

otherwise −→ 0

Record Expression

Consider a datatype whose purpose is to hold configuration settings. In order to distinguish

each entry of the configuration, we simply give names to the fields in the datatype declaration,

as follows:

data Server = { username :: String

, localHost :: String

...

}

Update Expression

The update expression here is actually a syntax sugar which is used to update specific entries

of the Model record. The reason why we need it is sometimes the Model need to record tons

of items of data, but at each time, we may only wish to update one pr two of them. There

is no need to define the full Model record again. One example of update expression is shown

as following:

{ model | username = ′′Newname′′ }

Union Type

In Elm, an Union Types declaration is used for many things as they are incredibly flexible.

A union type has the following components:
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type State = Pending | Done | Failed

In this example “State” is the type. And “Pending”, “Done” and “Failed” are constructors.

These are called constructors because you construct a new instance of this type using them.

5.2.3 Parser

After confirming the concrete syntax design of the Elm source file, it comes to the task of

parsing a file which is a common one for programmers. Parsec is a useful parser combinator

library, with which we combine small parsing functions to build more sophisticated parsers.

Parsec provides some simple parsing functions, as well as functions to tie them all together.

It’s helpful to know where Parsec fits compared to the tools used for parsing in other lan-

guages. Parsing is sometimes divided into two stages: lexical analysis and parsing itself. In

this thesis, Parsec is used to perform both lexical analysis and parsing.

5.2.4 Semantic Validation

Assume that we have completed construction of the AST, we are ready to analyze the seman-

tics, or the actual meaning of a program, and not focus on simply its structure. Unlikely to

other programming languages, due to the architecture of Elm itself, it has its own semantics.

Main function

Due to the special architecture of programming language Elm, One input file has to define

the main function which has a specific way to present, as shown below:

main = {model = model, view = view, update = update }

In this declaration, “main”, “model”, “view” and “update” are reserved words. It does not

matter which order you follow to define “model”, “view” and “update”, but all of them

should be defined at the same time. And those italic names refer to the functions you want
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to bind with each component of the architecture. Programmers can change those names to

whatever they want as long as those functions will be defined as well in the input Elm file.

In the CEJ, there are two kinds of semantic errors could be triggered here.

1. Incomplete declaration of “main” function.

2. Function names are not defined in the file.

Type Checking

In this thesis, the type checking is not implemented, we simply use the existing type checking

system of Elm either by compiling the source code in the online editor or compiling it in the

local installed Elm compiler. If there is no error message, the source code is valid on type

matching.

Symbol Table

Symbol table is an important data structure created and maintained by compilers in order

to store information about the occurrence of various entities such as variable names, function

names, objects, classes, interfaces, etc. The symbol table serves the following purposes:

1. To store the names of all entities in a structured form at one place.

2. To determine the scope of a name (scope resolution).

As shown in Figure 5.6, in order to keep a symbol table, the CEJ keeps a stack to save all

the symbols which are presented as forms. Each form illustrates the scope and the type of

each symbol. There are two kinds of semantic errors could be triggered here.

1. The variable name is not in this scope

2. The type of the parameters are not matching.
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Figure 5.6: Symbol table construction

5.2.5 Code Generation

As shown in Figure 5.4, after constructed the AST of the source code of Elm, next step is to

transform this Elm AST into the corresponding AST of JavaScript. A parser for JavaScript

implemented using Haskell is founded in Hackage [4]. In this transforming part, I referenced

the AST of their parser. As shown in Table 5.3. The following syntax chart summarises the

abstract and concrete syntax of JavaScript which is used in this thesis.

Syntax Chart of JavaScipt

Table 5.3: Syntax Chart of JavaScipt

AST CST Description

JSAST p ::= JSAstProgram[s] [s] program

JSState s ::= JSStateBlock[si] s1 s2 ... block statement
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JSVariable([ei], semi) var e1, e2, ...; variable declaration

JSFunction(str, [stri], s) function str (str1, ...){s} function

JSIfElse(e, s1, s2) if(e) s1 else s2 if-else statement

JSReturn(Maybee, semi) return(e); return statement

JSWhile(e, s) while(e)s while statement

JSCallDot(e1, e2, semi) e1.e2; call statement

JSStateList[ei] e1 e2 ... list of statements

JSExpr e ::= JSId str str identifier

JSInt str str numeral

JSBool str str boolean

JSString str “str” string

JSIndex (e1, e2) e1[e2] index

JSList [ei] [e1, e2, ...] list expr

JSVarInitExpr(e1, e2) e1 = e2 variable define

JSRecord[(stri, ei)] {(str1 : e2), ...} record define

JSCallExprDot(e1, e2) e1.e2 call expression

JSMemberExpr(e, [ei]) e (ei) function call

JSMemberNew(e, [ei]) new e(ei) new function

JSExprBinary(e1, op, e2) e1 op e2 binary operation

JSFuncExpr(str, [stri], s) str [stri] s function defination

JSBinOp op ::= + | − | × | ÷ | == | ! = | > | < | > | 6 | &&

JSSemi semi ::= ; semicolon
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Mappings between JavaScript and Elm

In order to transform between ASTs of different languages, the consistence of syntax and

semantics should be strictly guaranteed. Fortunately, there are lots of common usages be-

tween Elm and JavaScript. The Table 5.4[3] shows side-by-side mappings between these two

languages. Though this is just a subset of the syntax, it still can be observed that lot of

syntaxs are very similar.

Table 5.4: Syntax Mappings between Elm and JavaScript

Elm JavaScript

Literals

3 3

3.1415 3.1415

“Hello world!” “Hello world!”

True true

[1,2,3] [1,2,3]

Objects / Records

{ x = 3, y = 4 } { x: 3, y: 4 }
point.x point.x

{ point | x = 42 } point.x = 42

Functions

\x y ->x + y function(x, y) { return x + y; }
max 3 4 Math.max(3, 4)

List.map sqrt numbers numbers.map(Math.sqrt)

List.map .x points points.map(function(p) { return p.x })
Control Flow

if 3 >2 then “cat” else “dog” 3 >2 ? ‘cat’ : ‘dog’

let x = 42 in ... var x = 42; ...

Strings

“abc” ++ “123” ‘abc’ + ’123’

String.length “abc” ‘abc’.length

String.toUpper “abc” ‘abc’.toUpperCase()

“abc” ++ toString 123 ‘abc’ + 123

For normal functions, it can be translated directly based on those mapping rules, but for

the functions related to the Elm architecture, such as “model”, “view”, “update”, should be

translated specially based on the special semantics.
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5.3 The Simulation System

5.3.1 Problem Description

IoT is simultaneously driven by both software and hardware. They are equally important

and rely on each other. Since hardware takes longer to develop, companies are forced to wait

until the hardware is completed and then begin to truly test their entire IoT system. There

is no doubt that this leads to a longer time for market, sub-optimal user experience, and

more costly endeavours. It is true that changes to hardware take more time and money than

changes to software, so the usage of simulation systems in IoT programming provides a way

for companies to save tons of time, money, and energy. If we could simulate the hardware

of an IoT solution while it’s still being developed to test as if the hardware actually existed.

Nothing would be physically connected to the software, but the tasks that the hardware

performs such as measure, collect, or transfer data would be simulated and the software

would not know any difference. The aims of the simulation system are:

1. To make sure the software is working as expected under normal conditions.

2. Use stress test to see how the software behaves at scale or as key values exceed

thresholds.

3. Rapidly iterate before a product goes to market to ensure the highest quality solution

and best user experience possible.

4. Allow IoT companies to actually put something in the hands of stakeholders or

potential customers before the hardware is finished, providing critical feedback early in the

process.

5.3.2 Simulation Model

This thesis uses language Elm to implement the simulation system. Essentially the simulation

system is a web application, and the users can easily open it in a browser. The simulation
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Figure 5.7: Work flow of simulation model

system consists of 2 parts, input area and output area. As the example shown in Figure 5.7,

the view of the application gives users a interface to change the parameter of the sensor, and

shows users the current state of the device. The web application will keep one Repository

of the Model which contains the current information of the sensor and current state of the

device. Once the user changed the parameter of the sensor, the simulation system will first

update the state of the Model and then send it to the IoT solution through web socket.

Receiving the data, the IoT solution will give a reaction based on the new state of the Model.

In the end, the simulation system will render the View again after receiving the commands

from IoT solution.
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Chapter 6

Implementation

This chapter mainly uses some important code segments to explain how dose it implemented

on each part. The full repository can be found on my GitHub page:

https : //github.com/songyahui/Elm− IoT − CEJ.git.

6.1 Parser

1 declaration :: Parser Decl

2 declaration = try union_or_alias <|> define_or_annotation

3

4 declarations :: Parser [Decl]

5 declarations = spaces *> many (lexeme $ declaration)

6

7 build_AST :: SourceName -> String -> Either ParseError [Decl]

8 build_AST = runParser declarations ()

9

10 parse :: String -> String -> Either ParseError [Decl]

11 parse fileName inpStr =

12 let inpStr_no_comments = clearComments inpStr ""

13 in build_AST fileName inpStr_no_comments

Listing 6.1: Implementation of the parser (1)

The haskell parser combinator library Parsec is used in this part. As shown in Listing 6.1,

if one file needs to be parsed, the interface function parse should be called with the file’s
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name and the content string as input parameters. It will return us either an error message or

a complete syntax tree. Before calling the build AST function, all the comments should be

cleared as a pre-process. Since the topmost level of Elm AST is declarations, it starts with

trying to parse a possible declaration, as shown in line 2, the “try... < | > ...” expression

provides a chance to consume a correctly matched declaration syntax rule. The combinator

“∗ >” applies its first argument, throws away its result, then applies the second and returns

its result. Function“many” is used to consume zero or more declarations.

1 union_or_alias :: Parser Decl

2 union_or_alias = do

3 re <- try $ lexeme $ string "type"

4 fc <- lexeme_ret $ unionD <|> aliasD

5 return fc

6

7 union:: Parser Decl

8 union = do

9 (name , args) <- nameArgsEquals

10 ec <- sepBy unionDhelper (lexeme $ char "|")

11 return $ Union name args ec

12

13 alias:: Parser Decl

14 alias = do

15 re <- try $ lexeme $ string "alias"

16 (name , args) <- nameArgsEquals

17 ec <- type_

18 return $ Alias name args ec

Listing 6.2: Implementation of the parser (2)

As shown in Listing 6.2, this function union or alias is used to distinguish union type and

an alias type. Since both of them start with a keyword type, once detected the keyword, it

will keeping matching if it is a union type or a alias type in line 4. For each of them, there

are some different rules needs to be matched before return a concrete declaration.
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6.2 AST Transformer

The interface of AST transformation is transformer, as it shown in Listing 6.3, and it takes

a list of Elm declaration as input, returns a JavaScript AST. For some special functions like

iot main, model, view, update, the transformation would be special designed due to the se-

mantic reasons shown from line 7 to line 12. But for other declarations, they will be treated

all the same, and uses function trans def to JS to complete the transformation.

1 trans_def_to_JS :: Decl -> JSState

2 trans_def_to_JS (Definition c d e) =

3 JSFunction c (map trans_pattern_to_JS d) (trans_expr_to_JS_state e)

4

5 transformer :: [Decl] -> [JSState] -> JSAST

6 transformer [] temp = JSAstProgram temp

7 transformer (( Annotation a ("Device")):( Definition c d e):xs) temp = ...

8 transformer (( Annotation a ("Sensor")):( Definition c d e):xs) temp = ...

9 transformer (( Definition "iot_main" a b):xs) temp = ...

10 transformer (( Definition "model" a b):xs) temp = ...

11 transformer (( Definition "view" a b):xs) temp = ...

12 transformer (( Definition "update" a b):xs) temp = ...

13 transformer (( Definition c d e):xs) temp =

14 let body_expr = trans_state_to_JS (Definition c d e)

15 in transformer xs (temp ++[ body_expr ])

16 transformer (x:xs) temp = transformer xs temp

Listing 6.3: Implementation of the AST transformer (1)

For each syntax rule in Elm, a corresponding JavaScript rule should be mapped properly.

Due to the difference of structures of two ASTs, some Elm expression need to be translated

into JavaScript expression while some Elm expression need to be translated into JavaScript

statement. As shown in Listing 6.4, function trans expr to JS mainly translates Elm expres-

sions into JavaScript expressions. For those terminal expressions like Str, V ar, Int, it will
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be translated directly into a JavaScript statement. But for those non-terminal expressions,

it needs to call the function trans expr to JS recursively.

1 trans_expr_to_JS :: Expr -> JSExpr

2 trans_expr_to_JS (Str p) = JSString p

3 trans_expr_to_JS (Var p) = JSId p

4 trans_expr_to_JS (Tag s e) =

5 let helper [] temp = temp

6 helper (x:xs) temp = helper xs (temp ++ [( trans_expr_to_JS x)])

7 in JSTagList ([( JSString s)] ++ (helper e []) )

8 trans_expr_to_JS (Record e) =

9 let helper [] temp = temp

10 helper (x:xs) temp =

11 case x of

12 (a, b) -> helper xs (temp ++ [(a,( trans_expr_to_JS b))])

13 in JSRecord (helper e [])

14

15 trans_expr_to_JS (Binops a b c) =

16 JSExprBinary (trans_expr_to_JS b) (trans_op a) (trans_expr_to_JS c)

17

18 trans_expr_to_JS (Call "second" a) =

19 JSIndex (trans_expr_to_JS (head a)) (JSInt "1")

20 trans_expr_to_JS (Call "first" a) =

21 JSIndex (trans_expr_to_JS (head a)) (JSInt "0")

22

23 trans_expr_to_JS (Tupple a b _) =

24 JSList [( trans_expr_to_JS a), (trans_expr_to_JS b)]

Listing 6.4: Implementation of the AST transformer (2)
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6.2.1 Special Cases

For most cases, Elm and JavaScript have the same syntax, even though the writing style is

not completely the same. But there are some other syntaxes existed in Elm while are not

supported by JavaScript. Besides, out of the thinking that some functions related to the Elm

architecture, they are not just a normal function, they have some other meanings. For those

special cases, transform them directly will not be appropriate anymore. That is the reason

why we need special considerations for those cases.

Tuple syntax

Elm supports the tuple expression. For example, the expression (1, “b”) represents a tuple

which consists two elements, the first one is a number 1, and the second one is a string “b”.

But there is no tuple expression in JavaScript. In this case, the tuple expression in Elm will

be transformed into a List in JavaScript, due to the face that in JavaScript it is not necessary

to keep all the elements in the List have the same type. So the expression (1, “b”) will be

transformed into [1, “b”]

Tag syntax

In Elm, type Device = Light a b c represents a constructor of type Device. There is a

Tag expression written in this format which is a sequence of variables starts with a variable

with an upper case as the first character. However, that is not required to declare the type

in JavaScript. In this case, a type variable Light 1“a”true will be transformed to a List

[“Light”, 1, “a”, true].
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Declaration of device and sensor

In IoT programming, every sensor and every device should be declared at the beginning of

the code. In Elm, the devices and the sensors will be declared using a function, and the

body of the function is a record which contains all the necessary information of this device

or sensor. In this case, the transformer will detect the type of each function, of the type

is Sensor or Device, then this function will be transformed into a declaration statement in

JavaScript.

View function

Since the view function is one of the elements of Elm architecture, it will be translated into

a while loop, in which the sensor will keep fetching data from environment, and based on the

changes of the data, the states of all the devices will also keep being update.

6.3 Code Generator

After last section, a JavaScript AST is generated, then the last step is to translate this AST

into target code. The translation strategy is straight forward. What the generator need

to do is to define the translation rules one by one for each expression ans statement. As

shown in Listing 6.5, the function generator is the interface of the code generation, it takes

a JavaScript AST as input and returns a string which is the target code.

1 generator :: JSAST -> String

2 generator JSAstProgram list = generator_all list ""

Listing 6.5: Implementation of the code generator (1)

The expression translation is partially shown here as an example in Listing 6.6. For those

terminal expressions like JSId, JSInt, JSBool, it will be translated directly into a string.
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But for those non-terminal expressions, it needs to call the function gen expr recursively.

1 gen_expr :: JSExpr -> String

2 gen_expr (JSId p) = p

3 gen_expr (JSBool p) = p

4 gen_expr (JSString p)= "\’" ++ p ++ "\’"

5 gen_expr (JSMemberDot a b) = (gen_expr a) ++ "." ++ (gen_expr b)

6 gen_expr (JSExprBinary a b c) =

7 let lhs = (gen_expr a)

8 rhs = (gen_expr c)

9 op = case b of

10 Divide -> " / "

11 Ge -> " >= "

12 Gt -> " > "

13 ...

14 in "(" ++ lhs ++ op ++ rhs ++ ")"

15 ...

Listing 6.6: Implementation of the code generator (2)
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Chapter 7

Outcome from The CEJ

In this chapter, a test example will be used to show the outcome of implementing the CEJ.

There are two sensors and two devices are manipulated based on the changes of the temper-

ature and the light. The test source code of Elm is shown in the following Listing 7.1.

1 buzzer_1 : Device

2 buzzer_1 = {d_pin = 18, d_lib = "onoff", d_func = "Gpio", d_dir = "out"}

3 fan_1 : Device

4 fan_1 = {d_pin = 16, d_lib = "onoff", d_func = "Gpio", d_dir = "out"}

5

6 bmp180 : Sensor

7 bmp180 = {s_lib = "raspi -sensors", s_constFun = "Sensor", s_type = "BMP180"

8 , s_address = 0X77 , s_desc = "Temperature_sensor"}

9 tsl2561 : Sensor

10 tsl2561 = {s_lib = "raspi -sensors", s_constFun = "Sensor", s_type = "TSL2561"

11 , s_address = 0X39 , s_desc = "LIGHT_sensor"}

12

13 iot_main = { model = model , view = view , update = update }

14

15 type TemperatureTyp = HIGH|MEDIUM|LOW --temperature type

16 type LightTyp = DAY|EVENING|NIGHT --light type

17

18 model : (TemperatureTyp , LightTyp)

19 model = (HIGH , DAY)

20

21 type Msg = Temperature Int | Light Int
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22

23 update msg model =

24 case msg of

25 Temperature num -> if num < 20

26 then (LOW , second model)

27 else if num < 30 then (MEDIUM , second model)

28 else (HIGH , second model)

29 Light num -> if num > 500

30 then (first model , DAY)

31 else if num > 200 then (first model , EVENING)

32 else (first model , NIGHT)

33 otherwise -> model

34

35 view model =

36 iot [ light (onLightChange Light) tsl2561

37 ,temperature (onTemperatureChange Temperature) bmp180

38 ]

39 [ fan (control_fan model) fan_1

40 ,buzzer (control_buzzer model) buzzer_1

41 ]

42

43 control_fan model =

44 case model of

45 (HIGH , DAY) -> 1 --SetHigh

46 (HIGH , EVENING) -> 1 --SetHigh

47 otherwise -> 0 --SetLow

48

49 control_buzzer model =

50 case model of

51 (LOW , NIGHT) -> 1 --SetHigh

52 otherwise -> 0 --SetLow

Listing 7.1: TEST- Elm source code
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After generating and translating the AST of this source code, the target code is generated

successfully, which is shown in Listing 7.2.

1 var buzzer_1_lib = require("onoff").Gpio;

2 var buzzer_1 = new buzzer_1_lib (18, "out");

3

4 var fan_1_lib = require("onoff").Gpio;

5 var fan_1 = new fan_1_lib (16, "out");

6

7 var bmp180_lib = require("raspi -sensors");

8 var bmp180 = new bmp180_lib.Sensor ({

9 type: "BMP180", address: 119

10 }, ’Temperature_sensor ’);

11

12 var tsl2561_lib = require("raspi -sensors");

13 var tsl2561 = new tsl2561_lib.Sensor ({

14 type: "TSL2561", address: 57

15 }, "LIGHT_sensor");

16

17 var model = ["HIGH", "DAY"];

18 function update(msg , model) {

19 if (msg [0] == Temperature) {

20 if (num < 20) {

21 return ["LOW", model [1]];

22 }

23 else if (num < 30) {

24 return ["MEDIUM", model [1]];

25 }

26 else return ["HIGH", model [1]];

27 }

28 else if (msg [0] == Light) {

29 if (num > 500) {

30 return [model [0], "DAY"];

31 }
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32 else if (num > 200) {

33 return [model [0], "EVENING"];

34 }

35 else return [model [0], "NIGHT"];

36 }

37 else return model;

38 }

39 while (true) {

40 tsl2561.fetch(function (err , num) {

41 update (["Light", num], model);

42 });

43 bmp180.fetch(function (err , num) {

44 update (["Temperature", num], model);

45 });

46 fan_1.writeSync(control_fan(model));

47 buzzer_1.writeSync(control_buzzer(model));

48 }

49 function control_fan(model) {

50 if ((model [0] == "HIGH") && (model [1] == "DAY")) {

51 return 1;

52 }

53 else if (( model [0] == "HIGH") && (model [1] == "EVENING")) {

54 return 1;

55 }

56 else return 0;

57 }

58 function control_buzzer(model) {

59 if ((model [0] == "LOW") && (model [1] == "NIGHT")) {

60 return 1;

61 }

62 else return 0;

63 }

Listing 7.2: TEST- JavaScript Target code
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Chapter 8

Conclusion

8.1 Research Process

This thesis started from around October 2017. From the beginning of 2018, we narrowed

down the research direction into Elm programming language and Raspberry Pi. Before that,

the research work was in a wide range. It took me around 2 months to get familiar with

Haskell and functional programming in general. In the meanwhile, I was also learning how

to develop a hardware application as well, and tried several different hardware programming

languages such as Verilog and VHDL. When I first learnt about Elm, I was attracted to it

because it can be nicely compiled into JavaScript. As we all know, JavaScript is a popular and

robust programming language which can be used in many occasions. Next, I had to find some

hardware platforms which can be supported by JavaScript. In the end, I chose Raspberry

Pi. I tried several examples of Elm applications and IoT applications build in Raspberry Pi

separately and independently. These experience allow me to create a new compiler which is

specifically designed to convert Elm into Node.js. I did not have any hardware programming

experience before. This may have contributed to the difficulty on pushing the project forward.

8.2 Evaluation

The solution provided in this thesis is mainly trying to tackle the high complexity problem

of IoT programming in real life. The impact of this work can be summarised into following
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five main points:

1. The most direct result of this work is programmers can use Elm-like code and its well-

constructed architecture to manipulate IoT devices directly.

2. This work greatly changes the common way on IoT programming as well as changes

the design mode of IoT programs.

3. The thesis also tends to combine IoT with purely functional programming languages

which is not only improving the security of IoT systems[27] but also widening the usage

of functional programming languages in real life.

4. The process on creating CEJ also gives an example in practice on creating a new

programming language related to IoT programming.

5. In the end, to study more features of programming language Elm, and to expand the

usage of it, this thesis also constructed a simulation system using Elm aims to provide

a solution on testing IoT systems which increases the diversity of creating a simulation

system.

8.3 Limitation

There are two current limitations of CEJ compiler.

Firstly, diversity. This thesis focuses on translating Elm to JavaScript, and because of the

limitation of the sensors supported by npm, the sensor’s diversity scope of CEJ is also limited.

Secondly, connectivity. Current test cases are mainly dealing with sensors and devices con-

nected in one single platform. This is not enough. As we all know, smart homes control

different devices which are connected in different places using network. It is important to

extend the CEJ to supporting network programming as well.
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8.4 Future Work

Firstly, based on the limitation pointed out in last section, one further study should be how

to built a more robust system with high extensibility and connectedness.

Secondly, type checking. In the static analysis, the type checking should be an important

component. Type checking has already implemented in the original compiler of Elm. We

should systematically execute it and apply it to CEJ.

Thirdly more advanced technologies. It is of great importance to combine technologies such

as data mining and AI to improve the performance of IoT applications.
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Appendix A

Haskell Implementation of the Elm AST

1 -- EXPRESSIONS

2 data Expr

3 = Str String

4 | Int Int

5 | Float Double

6 | Boolean Bool

7 | Var String

8 | List [Expr]

9 | Negate Expr

10 | Binops String Expr Expr

11 | Lambda [Pattern] Expr

12 | Call String [Expr]

13 | If [(Expr , Expr)] Expr

14 | Let [Def] Expr

15 | Case Expr [(Pattern , Expr)]

16 | Tupple Expr Expr [Expr]

17 | Record [(String , Expr)]

18 | Update String [(String , Expr)]

19 | Tag String [Expr]

20 | Block [Expr]

21 deriving (Show , Eq)

22

23 -- DEFINITIONS

24 data Def = Define (String) [Pattern] Expr

25 deriving (Show , Eq)

26
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27 -- PATTERN

28 data Pattern

29 = PAnything

30 | PStr String

31 | PInt Int

32 | PVar String

33 | PCtor String [Pattern]

34 | PCons Pattern Pattern

35 | PList [Pattern]

36 | PRecord [String]

37 | PTuple Pattern Pattern [Pattern]

38 | PUnit

39 deriving (Show , Eq)

40

41 -- TYPE

42 data Type

43 = TLambda Type Type

44 | TVar String

45 | TTuple Type Type [Type]

46 | TRecord [(String , Type)]

47 | TTypeQual String [Type]

48 deriving (Show , Eq)

49

50 -- DECLARATIONS

51 data Decl

52 = Union String [String] [(String , [Type])]

53 | Alias String [String] Type

54 | Annotation String Type

55 | Definition String [Pattern] Expr

56 deriving (Show , Eq)
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Appendix B

Haskell Implementation of the JavaScript AST

1 module Generator.JSAST where

2 import Text.ParserCombinators.Parsec

3 import Control.Applicative ((<*), (*>), (<$>), (<*>))

4

5 data JSAST = JSAstProgram [JSState]

6 deriving (Eq, Show)

7

8 data JSState

9 = JSStateBlock [JSState] -- ^{ stmts};

10 | JSVariable [JSExpr] JSSemi -- var exprs;

11 | JSFunction String [String] JSState -- ^fn,name ,( parameters)block

12 | JSIfElse JSExpr JSState JSState -- ^if ,(,expr ,),stmt ,else ,rest

13 | JSReturn (Maybe JSExpr) JSSemi

14 | JSWhile JSExpr JSState -- ^while ,lb ,expr ,rb,stmt

15 | JSCallDot JSExpr JSExpr JSSemi

16 | JSStateList [JSExpr]

17 deriving ( Eq, Show)

18

19 data JSExpr

20 = JSId String

21 | JSInt String

22 | JSBool String

23 | JSString String

24 | JSIndex JSExpr JSExpr --model [0]

25 -----------------------------------

26 | JSTagList [JSExpr]
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27 | JSList [JSExpr]

28 | JSVarInitExpr JSExpr JSExpr -- id = initializer

29 | JSRecord [(String , JSExpr)]

30 | JSMemberDot JSExpr JSExpr -- firstpart.name

31 | JSMemberExpr JSExpr [JSExpr] -- expr(args)

32 | JSMemberNew JSExpr [JSExpr] -- new , name(args)

33 | JSExprBinary JSExpr JSBinOp JSExpr -- lhs , op, rhs

34 | JSFunctionExpression String [String] [JSExpr] -- ^fn,name ,lb, parameter

list ,rb,block ‘

35 deriving ( Eq, Show)

36

37 data JSBinOp

38 = Divide -- /

39 | Eq -- =

40 | Ge -- >=

41 | Gt -- >

42 | Le -- <=

43 | Lt -- <

44 | Minus -- -

45 | Neq -- =

46 | Plus -- +

47 | Times -- *

48 | Andand -- &&

49 | EqEq -- ==

50 deriving ( Eq, Show)

51

52 data JSSemi = Semi

53 deriving ( Eq, Show)
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Appendix C

Essential Library of Constructing an IoT System using Elm

1 type SensorInput msg = SI msg Sensor

2 type IoTSystem a b = IS a b

3 type IOSensors msg = IOS msg Sensor

4 type IODevices msg = IOD msg Device

5 type IOSignal = SetHigh | SetLow

6

7 type alias Sensor =

8 { s_type: String

9 , s_address: Int

10 }

11 type alias Device =

12 { d_pin : Int

13 , d_lib : Maybe String

14 , d_func: Maybe String

15 , d_dir : Maybe String

16 }

17

18 bmp180 : Sensor

19 bmp180 = {s_type = "BMP180", s_address = 77}

20

21 tsl2561 : Sensor

22 tsl2561 = {s_type = "TSL2561", s_address = 39}

23

24 light : a -> Sensor -> IOSensors a

25 light a b = IOS a b

26
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27 temperature : a -> Sensor -> IOSensors a

28 temperature a b = IOS a b

29

30 buzzer : IOSignal -> Device -> IODevices IOSignal

31 buzzer a b = IOD a b

32

33 led : IOSignal -> Device -> IODevices IOSignal

34 led a b = IOD a b

35

36 fan : IOSignal -> Device -> IODevices IOSignal

37 fan a b = IOD a b

38

39 iot : List (IOSensors a) -> List (IODevices b) -> IoTSystem (List (IOSensors

a)) (List (IODevices b) )

40 iot a b = IS a b

41

42

43 buzzer_1 : Device

44 buzzer_1 = {

45 d_pin = 18

46 ,d_lib = Just "onoff"

47 ,d_func = Just "Gpio"

48 ,d_dir = Just "out"

49 }

50

51 led_1 : Device

52 led_1 = {

53 d_pin = 12

54 ,d_lib = Just "onoff"

55 ,d_func = Just "Gpio"

56 ,d_dir = Just "out"

57 }

58
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59 fan_1 : Device

60 fan_1 = {

61 d_pin = 16

62 ,d_lib = Just "onoff"

63 ,d_func = Just "Gpio"

64 ,d_dir = Just "out"

65 }

66

67 onLightChange : (Int -> Msg) -> Sensor -> SensorInput Msg

68 onLightChange f s = let m = f 1 in SI m s

69

70 onTemperatureChange : (Int ->Msg) -> Sensor -> SensorInput Msg

71 onTemperatureChange f s = let m = f 1 in SI m s

72

73 first (a, b) = a

74 second (a,b) = b
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