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Abstract. Esterel is an imperative synchronous language that has found
success in many safety-critical applications. Its precise semantics makes
it natural for programming and reasoning. Existing techniques tackle
either one of its main challenges: correctness checking or temporal veri-
fication. To resolve the issues simultaneously, we propose a new solution
via a Hoare-style forward verifier and a term rewriting system (TRS)
on Synced Effects. The first contribution is, by deploying a novel effects
logic, the verifier computes the deterministic program behaviour via con-
struction rules at the source level, defining program evaluation syntacti-
cally. As a second contribution, by avoiding the complex translation from
LTL formulas to Esterel programs, our purely algebraic TRS efficiently
checks temporal properties described by expressive Synced Effects. To
demonstrate our method’s feasibility, we prototype this logic; prove its
correctness; provide experimental results, and a number of case studies.

1 Introduction

Esterel [6] is a synchronous programming language for the development of com-
plex reactive systems. Its high-level imperative style allows the simple expression
of parallelism and preemption, making it natural for programmers to specify
and reason about control-dominated model designs. Esterel has found success in
many safety-critical applications such as nuclear power plant control software.

The success with real-time and embedded systems in domains that need
strong guarantees can be partially attributed to its precise semantics and com-
putational model. There exist two main semantics for Esterel [4]: (i) the opera-
tional semantics: is a small-step semantics, a procedure for running a whole pro-
gram defined by an interpretation scheme. It analyses control flow and signals
propagation in the reaction; and (ii) the circuit semantics: translates Esterel
programs into constructive boolean digital circuits, i.e., systems of equations
among boolean variables. Existing semantics are particularly useful for code com-
pilation/optimization or tracking the execution, but not ideal for compositional
reasoning in terms of the source program.

Esterel treats computation as a series of deterministic reactions to external
signals. All parts of a reaction complete in a single, discrete-time step called
an instant. Besides, instants exhibit deterministic concurrency; each reaction
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may contain concurrent threads without execution order affecting the result
of the computation. Primitives constructs execute in zero time except for the
pause statement. Hence, time flows as a sequence of logical instants separated by
explicit pauses. In each instant, several elementary instantaneous computations
take place simultaneously.

To maintain determinism and synchrony, evaluation in one thread of execu-
tion may affect code arbitrarily far away in the program. In another words, there
is a strong relationship between signal status and control propagation: a signal
status determines which branch of a present test is executed, which in turn
determines which emit statements are executed (See Sec. 3.1 for the language
syntax). In this paper, we tackle Esterel’s Logical Correctness issue, caused by
these non-local executions, which is simply the requirement that there exists pre-
cisely one status for each signal that respects the coherence law. For example:

1 signal S1 in

2 present S1 then nothing else emit S1 end present end signal

Consider the program above. If the local signal S1 were present, the program
would take the first branch of the condition, and the program would terminate
without having emitted S1 (nothing leaves S1 with its default value, absent).
If S1 were absent, the program would choose the second branch and emit the
signal. Both executions lead to a contradiction. Therefore there are no valid
assignments of signals in this program. This program is logically incorrect.

1 signal S1 in

2 present S1 then emit S1 else nothing end present end signal

Consider the revised program above. If the local signal S1 were present, the
conditional would take the first branch, and S1 would be emitted, justifying the
choice of signal value. If the S1 were absent, the signal would not be emitted, and
the choice of absence is also justified. Thus there are two possible assignments
to the signals in this program, which is also logically incorrect.

1 present S1 then emit S1 else nothing end present

However, if S1 is an unbounded external input signal, then this program
becomes logically correct, as given a certain status of the input signal, there
is precisely one reaction, which satisfies the the coherence law. Although logical
correctness is decidable, there is a deep lack in the state-of-the-art semantics
for Esterel [12], which is the ability to reason about unbounded input signals.
We show that our Effects logic resolves the above issues more systematically,
by taking the signal statuses (both present and absent) explicitly as arithmetic
path constraints and looking ahead of analyzing the whole program.

In this paper, we represent the program behaviours using Synced Effects. By
deploying a novel fixpoint logic, the Hoare-style forward verifier computes all the
possible execution traces. Logically incorrect programs, having none/multiple
assignments for local/output signals w.r.t the same input set, will be rejected.
Meantime, we present a term rewriting system (TRS) upon synced effects to
support temporal verification, which is another research challenge of Esterel.
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Safety properties are typically used to describe the desired properties of reac-
tive systems. One of the widely used languages for specifying temporal behaviour
and safety properties is linear-time temporal logic (LTL). Existing approaches
to Esterel’s temporal verification have neither achieved compositionality nor au-
tomation. One prior work [15], recursively translates LTL formula into an Esterel
program whose traces correspond to the computations that violate the safety
property. The program derived from the formula is then parallel composed with
the given Esterel program to be verified. The composed program is compiled
using Esterel tools. Lastly, an analysis of the compiler’s output then indicates
whether or not the property is satisfied by the original program.

In this work, we propose an alternative approach based on our effects logic,
which enables a modular local temporal verification without any complex transla-
tion. More specifically, given a logical correct program P, we compute its synced
effects Φ, and express the temporal properties in Φ′; Our TRS efficiently checks
the language inclusions Φ v Φ′. To the best of the authors’ knowledge, this
work proposes the first algebraic TRS for Esterel and resolves the correctness
checking and temporal verification at the same time. In addition, while existing
works for Esterel’s temporal verification have designed for a fixed set of temporal
primitives such as finally, next, until, we show that our expressive synced effects
provide us with more flexibility than existing temporal logics (Sec. 5.2).

We summarize our main contributions as follows:

1. The Synced Effects: We define the syntax and semantics of the Synced
Effects, to be the specification language, which are sufficient to capture the
Esterel program behaviours and non-trivial temporal properties (Sec. 3.2).

2. Automated Verification System: Targeting a pure Esterel language (Sec.
3.1), we develop a Hoare-style forward verifier (Sec. 4), to compositionally
compute the program effects, and check the logical correctness with the pres-
ence of input signals. We present an effects inclusion checker (the TRS), to
soundly prove temporal properties represented by synced effects (Sec. 5).

3. Implementation and Evaluation: We prototype the novel effects logic,
prove the correctness, provide experimental results and case studies to show
the feasibility of our method (Sec. 6).

Organization. Sec. 2 gives motivation examples to highlight the key method-
ologies and contributions. Sec. 3 formally presents a pure Esterel language, the
syntax and semantics of our synced effects. Sec. 4 presents the forward verifica-
tion rules and the logical correctness checking process. Sec. 5 explains the TRS
for effects inclusion checking, and displays the essential auxiliary functions. Sec.
6 demonstrates the implementation and evaluation. We discuss related works in
Sec. 7 and conclude in Sec. 8. Proofs can be found in the technical report [21].

2 Overview

We now give a summary of our techniques, using Esterel programs shown in Fig.
1. and Fig. 2. Our synced effects can be illustrated with the modules close and
manager, which simulate the operations to constantly open and close a file.
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1 module close:

2 output CLOSE;

3 /*@ requires {OPEN}

4 ensures {}.{ CLOSE} @*/

5 pause; emit CLOSE

6 end module

Fig. 1. The close module

1 module manager:

2 input BTN;

3 output CLOSE;

4 /*@

5 requires {}

6 ensures ({BTN }.{ CLOSE }\/{})*

7 @*/

8 signal OPEN in

9 loop

10 emit OPEN;

11 present BTN

12 then run close

13 else nothing

14 end present;

15 pause

16 end loop

17 end signal

18 end module

Fig. 2. The manager module

Here, CLOSE and BTN are declared
to be input/output signals. The mod-
ule manager enters into a loop af-
ter declaring a local signal OPEN. In-
side of the loop, it emits the sig-
nal OPEN, indicating the file is now
opened; then tests on the status of
signal BTN. Signals are absent by de-
fault, until they are explicitly emit-
ted. If BTN is present, a function call
to module close will be triggered,
otherwise, it does nothing1.

The input signal BTN denotes a
button which can be pressed by
the users, and its presence indicates
the intention to close the file. Then
before exiting from the loop, the
manager pauses for one time instant.

The module close is obligated
to simply emit the signal CLOSE af-
ter a pause, indicating the file is now
closed.

2.1 Synced Effects. We de-
fine Hoare-triple style specifications
(marked in green) for each program,
which leads to a compositional veri-
fication strategy, where temporal reasoning can be done locally.

Synced effects is a novel abstract semantics model for Esterel. The process
control in such synchronous languages are event driven. Events, represented by
signals, are emitted within the environment for instance by sensors or the users.
The system generates signals in response which are either internal or external.
Following this model, synced effects describe the program behaviours using se-
quences of sets of signals occurring in the macro level.

More specifically, the set of signals to be present in one logical time instance
are represented within one {}. For example, the postcondition of module close,
{} · {CLOSE}, says that the execution leads to two time instances, and only in
the second time instance, the signal CLOSE is guaranteed to be present.

Putting the temporal effects in the precondition is new, to represent the
required temporal execution history. For example, the precondition of module
close, {OPEN} requires that before entering into this module, the signal OPEN
should be emitted in the current time instance. Besides, to enhance the expres-
siveness, synced effects allow trace disjunctions via ∨ and trace repetitions via ?
and ω. For example, the postcondition in module manager ensures a repeating

1 nothing is the Esterel equivalent of unit, void or skip in other languages.
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pattern, in which it can be either {BTN} · {CLOSE} or just {}. See Sec. 3.2 for the
syntax and semantics of synced effects2.

2.2 Forward Verification. As shown in Fig. 3., we demonstrate the forward
verification process of the loop in module manager. The current effects state of
a program is captured in the form of 〈Φ〉. To facilitate the illustration, we label
the verification steps by 1), ..., 9). We mark the deployed verification rules in
gray. The verifier invokes the TRS to check language inclusions along the way.

1) loop

〈{}〉
2) emit OPEN;
〈{OPEN}〉 [FV-Emit]

3) present BTN then

〈{OPEN, BTN}〉 [FV-Present]

4) run close

{OPEN, BTN} v {OPEN} (-TRS: check precondition, succeed-)
〈{OPEN, BTN} · {CLOSE}〉 [FV-Call]

5) else nothing

〈{OPEN}〉 [FV-Present]

6) end present;
〈{OPEN, BTN} · {CLOSE} ∨ {OPEN}〉 [FV-Present]

7) pause

〈({OPEN, BTN} · {CLOSE} ∨ {OPEN}) · {}〉 [FV-Pause]

8) end loop

〈({OPEN, BTN} · {CLOSE} ∨ {OPEN})?〉 [FV-Loop]

9) ({OPEN, BTN} · {CLOSE} ∨ {OPEN})? v ({BTN} · {CLOSE} ∨ {})? (-TRS: check postcon-
dition, succeed-)

Fig. 3. The forward verification example for the loop in module manager.

The effects state 1) is the initial effects when entering into the loop. The
effects state 2) is obtained by [FV-Emit], which simply adds the emitted signal
to the current time instance. The effects states 3), 5) and 6) are obtained by
[FV-Present], which adds the constraints upon the tested signal into the cur-
rent state, and unions the effects accumulated from two branches at the end.
The effects state 4) is obtained by [FV-Call]. Before each method call, it checks
whether the current effects state satisfies the precondition of the callee method.
If the precondition is not satisfied, then the verification fails, otherwise it con-
catenates the postcondition of the callee to the current effects. The effects state
7) is obtained by [FV-Pause]. It concatenates an empty time instance to the
current effects, to be the new current state. The effects state 8) is obtained by
[FV-Loop], which computes a deterministic fixpoint of effects, to be the invari-

2 The signals shown in one time instance represent the minimal set of signals which
are required/guaranteed to be there. An empty set {} refers to any set of signals.
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ant of executing the loop. After these states transformations, step 9) checks the
satisfiability of the declared postcondition by invoking the TRS.

Table 1. The inclusion proving example from the postcondition checking in Fig. 3.

Φ v Φpost(†) [REOCCUR]

E · Φ v (E ∨ ⊥) · Φpost
[UNFOLD]

{CLOSE} · Φ v ({CLOSE} ∨ E) · Φpost
[UNFOLD]

{OPEN, BTN} · {CLOSE} · Φ v Φpost

Φ v Φpost(†) [REOCCUR]
[UNFOLD]

E · Φ v (⊥ ∨ E) · Φpost
[UNFOLD]

{OPEN} · Φ v Φpost

Φ v Φpost(†)

where Φ = ({OPEN, BTN} · {CLOSE} ∨ {OPEN})?; and Φpost=({BTN} · {CLOSE} ∨ {})?

2.3 The TRS. Our TRS is obligated to check the inclusion among synced ef-
fects, an extension of Antimirov and Mosses’s algorithm. Antimirov and Mosses [3]
present a term rewriting system for deciding the inequalities of regular expres-
sions, based on a complete axiomatic algorithm of the algebra of regular sets.
Basically, the rewriting system decides inequalities through an iterated process
of checking the inequalities of their partial derivatives [2]. There are two impor-
tant rules: [DISPROVE], which infers false from trivially inconsistent inequalities;
and [UNFOLD], which applies Theorem 1 to generate new inequalities. Da(r) is the
partial derivative of r w.r.t the instance a. (Σ is the whole set of the alphabet.)

Theorem 1 (Regular Expressions Inequality (Antimirov)). For regular
expressions r and s, r � s⇔ (∀a ∈ Σ). Da(r) � Da(s).

Extending to the inclusions among synced effects, we present the rewriting
process by our TRS in Table 1., for the postcondition checking shown in Fig.
3. We mark the rules of the inference steps in gray. Note that time instance
{OPEN, BTN} entails {BTN} because the former contains more constraints. We
formally define the subsumption for time instances in Definition 3. Intuitively,
we use [DISPROVE] wherever the left-hand side (LHS) is nullable3 while the right-
hand side (RHS) is not. [DISPROVE] is the heuristic refutation step to disprove
the inclusion early, which leads to a great efficiency improvement.

Termination is guaranteed because the set of derivatives to be considered is
finite, and possible cycles are detected using memorization. The rule [REOCCUR]
finds the syntactic identity, as a companion, of the current open goal, as a bud,
from the internal proof tree [9]. (We use (†) in Fig. 3. to indicate such pairings.)

3 Language and Specifications

In this section, we first introduce a pure Esterel language and then depict our
Synced Effects as the specification language.

3 If the event sequence is possibly empty, i.e. contains E , we call it nullable, formally
defined in Definition 1.
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3.1 The Target Language: Pure Esterel

In this work, we consider the Esterel v5 dialect [4,5] endorsed by current aca-
demic compilers, shown in Fig. 4. Pure Esterel is the subset of the full Esterel
language where data variables and data-handling primitives are abstracted away.
We shall concentrate on the pure Esterel language, as in this work, we are mainly
interested in signal status and control propagation, which are not related to data.

(Program) P ::= meth∗ (Basic Types) τ ::= IN | OUT | INOUT
(Module Def .) module ::= x (τ S)∗ 〈requires Φpre ensures Φpost〉 p

(Statement) p q ::= nothing | pause | emit S | present S p q

| p ; q | loop p | p || q | trap T p | exit Td

| signal S p | run x (S)∗ | assert Φ

S ∈ signal variables x, T ∈ var (Finite List) ∗ (Depth)d ∈ Z

Fig. 4. Pure Esterel Syntax.

Here, we regard S, x and T as meta-variables. Basic signal types include
IN (input signals), OUT (output signals), INOUT (the signals used to be both
input and output). var represents the countably infinite set of arbitrary distinct
identifiers. We assume that programs we use are well-typed conforming to basic
types τ . A program P comprises a list of method declarations meth∗.

Each module meth has a name x, a list of well-typed arguments (τ S)∗, a
statement-oriented body p, also is associated with a precondition Φpre and a
postcondition Φpost. (The syntax of effects specification Φ is given in Fig. 6.)

Following the language constructs formally defined in Fig. 4., we describe
how signals are emitted and how control is transmitted between statements [4]:
- The statement nothing terminates instantaneously.
- The statement pause pauses exactly one logical instant and terminates in the
next instant.
- The statement emit S broadcasts the signal S to be set to present and termi-
nates instantaneously. The emission of S is valid for the current instant only.
- The statement present S p q immediately starts p if S is present in the current
instant; otherwise it starts q when S is absent.
- The sequence statement p ; q immediately starts p and behaves as p as long
as p remains active. When p terminates, control is passed instantaneously to
q, which determines the behaviour of the sequence from then on. If p exits a
trap, so does the whole sequence, q being discarded in this case. q is never
started if p always pauses. (Notice that ‘emit S1 ; emit S2’ emits S1 and S2
simultaneously and terminates instantaneously.)
- The statement loop p immediately starts its body p. When p terminates, it
is immediately restarted. If p exits a trap, so does the whole loop. The body
of a loop is not allowed to terminate instantaneously when started, i.e., it must
execute either a pause or an exit statement. For example, ‘loop emit S’ is not a



8 Yahui Song and Wei-Ngan Chin

correct program. A loop statement never terminates, but it is possible to escape
from the loop by enclosing it within a trap and executing an exit statement.
- The parallel statement p || q starts p and q in parallel. The parallel statement
remains active as long as one of its branches remains active unless some branch
exits a trap. The parallel statement terminates when both p and q are termi-
nated. The branches can terminate in different instants, the parallel waiting for
the last one to terminate. Parallel branches may simultaneously exit traps. If, in
some instant, one branch exits a trap T or both branches exit the same trap T,
then the parallel exits T. If both statements exit distinct traps T and U in the
same instant, then the parallel only exits the higher prioritized one.
- The statement trap T p defines a lexically scoped exit point T for p. When
the trap statement starts, it immediately starts its body p and behaves as p
until termination or exit. If p terminates, so does the trap statement. If p exits
T, then the trap statement terminates instantaneously. If p exits an inner trap
U, this exit is propagated by the trap statement.

1 trap T in

2 trap U in

3 [ exit T1

4 || exit U0

5 || exit V3]

6 end trap;

7 exit T0

8 end trap

Fig. 5. Nested Traps

- The statement exit Td instantaneously exits the
trap T with a depth d. The corresponding trap state-
ment is terminated unless an outermost trap is con-
currently exited, as an outer trap has a higher prior-
ity when being exited concurrently. For example, as
shown in Fig. 5., such an encoding of exceptions for
Esterel was first advocated for by Gonthier [13]. As
usual, we make depths value d explicit. Here, T1 has
depth 1 because of the declaration of trap U in the
middle; U0 and T0 have depth 0 because they are
directly enclosed by the trap U and T respectively;
V3 has depth 3 corresponding to an outer trap, defined outside of this code
segment. Therefore Fig. 5. ends up with exiting outermost trap V3.
- The statement signal S p starts its body p with a fresh signal S, overriding
any that might already exist.
- The statement run x(S∗) is a call to module x providing the list of IO signals.
- The statement assert Φ is used to guarantee the temporal property Φ asserted
at a certain point of the programs.

3.2 The Specification Language: Synced Effects

We present the syntax of our Synced Effects in Fig. 6. Effects Φ can be recursively
constructed by nil (⊥); an empty trace E ; one time instant represented by I;

(Synced Effects) Φ ::= ⊥ | E | I | Φ · Φ | Φ ∨ Φ | Φ? | Φω

(Time Instant) I ::= (S 7→ θ)∗

(Status) θ ::= present | absent

(Omega) ω (Kleene Star) ? (Finite List) ∗

Fig. 6. Synced Effects.
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effects concatenation Φ · Φ; effects disjunction Φ ∨ Φ; Kleene star ?, a multiple
times repetition of the effects Φ (possibly E); Omega ω, an infinite repetition of
the effects Φ. One time instant is constructed by a list of mappings from signals
to status, recording the current status of all the signals, and will be overwritten
if there is a new status of a signal had been determined. The status of a signal
can be either present or absent.

Semantic Model of Effects. To define the model, we use ϕ (a trace of sets
of signals) to represent the computation execution, indicating the sequential
constraint of the temporal behaviour. Let ϕ |= Φ denote the model relation, i.e.,
the linear temporal sequence ϕ satisfies the synced effects Φ.

As shown in Fig. 7., we define the semantics of our synced effects. We use []
to represent the empty sequence; ++ to represent the append operation of two
traces; [I] to represent the sequence only contains one time instant.

I is a list of mappings from signals to status. For example, the time instance
{S} indicates the fact that signal S is present regardless of the status of other
non-mentioned signals, i.e., the set of time instances which at least contain S to
be present. Any time instance contains contradictions, such as {S,S}, will lead
to false, as a signal S can not be both present and absent. We use the overline
on top of the signal to denote the constraint of being absent.

ϕ |= E iff ϕ=[]

ϕ |= I iff ϕ=[I]

ϕ |= Φ1 · Φ2 iff there exist ϕ1, ϕ2, ϕ=ϕ1++ϕ2 and ϕ1 |= Φ1 and ϕ2 |= Φ2

ϕ |= Φ1 ∨ Φ2 iff ϕ |= Φ1 or ϕ |= Φ2

ϕ |= Φ? iff ϕ |= E or
there exist ϕ1, ϕ2, ϕ=ϕ1++ϕ2 and ϕ1 |= Φ and ϕ2 |= Φ?

ϕ |= Φω iff there exist ϕ1, ϕ2, ϕ=ϕ1++ϕ2 and ϕ1 |= Φ and ϕ2 |= Φω

ϕ |= ⊥ iff false

Fig. 7. Semantics of Effects.

4 Automated Forward Verification

An overview of our automated verification system is given in Fig. 8. It consists
of a Hoare-style forward verifier and a TRS. The inputs of the forward verifier
are Esterel programs annotated with temporal specifications written in Synced
Effects (cf. Fig. 2.). The input of the TRS is a pair of effects LHS and RHS,
referring to the inclusion LHS v RHS to be checked (LHS refers to left-hand
side effects, and RHS refers to right-hand side effects.). Besides, the verifier calls
the TRS to prove produced inclusions, i.e., between the current effects states and
pre/post conditions or assertions (cf. Fig. 3.).
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Fig. 8. System Overview.

The TRS will be explained in
Sec. 5. In this section, we mainly
present the forward verifier by in-
troducing the forward verification
rules. These rules transfer program
states and systematically accumu-
late the effects based on the syntax
of each statement. We present the
intermediate representation of pro-
gram states in Fig. 9.

(Program States) ∆ ::= 〈Φ, π ∧ φ, k〉
(Intermediate Synced Effects) Φ ::= ⊥ | E | π ∧ φ | Φ · Φ | Φ ∨ Φ | Φ? | Φω

(Current Time Instant) π ∧ φ ::= (S = θ)∗ ∧ (S 7→ θ)∗

Fig. 9. Intermediate Representation for then Program States.

Program states ∆ are represented by a tuple, where the first element (Φ) repre-
sents the trace of history ; the second element represents the current time instant
containing the path constraints (π) and signal assignments (φ)4; the third ele-
ment (k) represents the completion code, keeping track of the exits from nested
traps [23]. Let % be the environment containing all the local and output signals.

4.1 Forward Rules.

As nothing is the Esterel equivalent of unit, void or skip in other languages,
the rule [FV-Nothing] simply obtains the next program state by inheriting the
current program state.

% ` 〈Φ, π ∧ φ, k〉 nothing 〈Φ, π ∧ φ, k〉
[FV-Nothing]

The rule [FV-Emit] updates the current assignment of signal S to present;
keeps the history trace and completion code unchanged.

φ′ = φ[S 7→ present]

% ` 〈Φ, π ∧ φ, k〉 emit S 〈Φ, π ∧ φ′, k〉
[FV-Emit]

The rule [FV-Pause] archives the current time instance to the history trace;
then initializes a new time instant where π′ is an empty set, and all the signals
from % are set to default absent. The completion code k remains unchanged.

π′ = {} φ′ = {S 7→ absent | ∀S ∈ %}
% ` 〈Φ, π ∧ φ, k〉 pause 〈(Φ · (π ∧ φ)), π′ ∧ φ′, k〉

[FV-Pause]

4 The difference between S = θ and S 7→ θ is: the former one denotes the constraints
along the execution path, which creates false if there are two different status as-
signments to the same signal; while the latter one records the current status of one
signal, and will be overwritten when the presence of a signal had been determined.
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The rule [FV-Decl] obtains a new environment %′ by adding the local signal S
into %; sets the status of S to absent in the current time instance, then behaves
as its body p w.r.t %′ and φ′ accordingly [6].

%′=%,S φ′=φ[S7→absent] %′ ` 〈Φ, π∧φ′, k〉 p 〈Φ1, π1∧φ1, k1〉
% ` 〈Φ, π ∧ φ, k〉 signal S p 〈Φ1, π1 ∧ φ1, k1〉

[FV-Decl]

1 signal SL in

2 present SL

3 then emit S1

4 else emit S2

5 end present

6 end signal

Fig. 10. Cannot

The rule [FV-Present] firstly gets π′ and π′′

by adding the path constraints (S=present)
and (S=absent) to the current time instance;
then derives 〈Φ1, π1∧φ1, k1〉 and 〈Φ2, π2∧φ2, k2〉
from the then and else branches. We introduce
can [12] function which intuitively determines
whether the tested signal S can be emitted or
not. If S cannot be emitted (can(S)=false), the
final states will only come from the else branch
q; otherwise we say S can be emitted (can(S)=true), the final states will be
the union of both branches’ execution. For example, as it shown in Fig. 10., to
unblock a present expression, one must determine if the tested signal can be
emitted or not. One way for that is to detect the none-occurrences of emit SL.
Here, since can(SL)=false, the program will leave SL absent and emit S2.

π′ = π ∧ (S=present) % ` 〈Φ, π′ ∧ φ, k〉 p 〈Φ1, π1 ∧ φ1, k1〉
π′′ = π ∧ (S=absent) % ` 〈Φ, π′′ ∧ φ, k〉 q 〈Φ2, π2 ∧ φ2, k2〉
〈∆〉 = 〈Φ2, π2 ∧ φ2, k2〉 when can(S)=false

〈∆〉 = 〈Φ1, π1 ∧ φ1, k1〉 ∨ 〈Φ2, π2 ∧ φ2, k2〉 when can(S)=true

% ` 〈Φ, π ∧ φ, k〉 present S p q 〈∆〉
[FV-Present]

1 emit A; pause; emit B; emit C

2 ||

3 emit E; pause; emit F; pause; emit G

Fig. 11. Parallel Composition

The rule [FV-Par] gets
〈Φ1, π1∧φ1, k1〉 and
〈Φ2, π2∧φ2, k2〉 by execut-
ing p and q. The zip

function synchronises the
effects from these two branches.
For example, as it shown in Fig. 11., the first branch generates effects {A}·{B,C}
while the second branch generates effect {E} · {F} · {G}; then the final states
should be {A,E} · {B,C,F} · {G}. The max function returns the larger value of
k1 and k2. When both of the branches have exits, the final kf follows the larger
one, as the larger completion code indicates a higher exiting priority.

% ` 〈Φ, π ∧ φ, k〉 p 〈Φ1, π1∧φ1, k1〉 % ` 〈Φ, π ∧ φ, k〉 q 〈Φ2, π2∧φ2, k2〉
〈Φf, πf ∧ φf〉 = zip (Φ1, π1 ∧ φ1) (Φ2, π2 ∧ φ2) kf = max(k1, k2)

% ` 〈Φ, π ∧ φ, k〉 p || q 〈Φf, πf ∧ φf, kf〉
[FV-Par]

The rule [FV-Seq] firstly gets 〈Φ1, π1∧φ1, k1〉 by executing p. If there is an
exceptional exit in p, (k1 6=0), it abandons the execution of q completely. Other-
wise, there is no exits in p, (k1=0), it further gets 〈Φ2, π2∧φ2, k2〉 by continuously
executing q, to be the final program state.
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% ` 〈Φ, π ∧ φ, k〉 p 〈Φ1, π1∧φ1, k1〉 % ` 〈Φ1, π1∧φ1, k1〉 q 〈Φ2, π2∧φ2, k2〉
〈∆〉 = 〈Φ1, π1∧φ1, k1〉 when k1 6=0

〈∆〉 = 〈Φ2, π2∧φ2, k2〉 when k1=0

% ` 〈Φ, π ∧ φ, k〉 p ; q 〈∆〉
[FV-Seq]

The rule [FV-Loop] firstly computes a fixpoint 〈Φ1, π1 ∧ φ1, k1〉 by initializing
a temporary program state 〈E , π ∧φ, k〉 before executing p. If there is an exit in
p, (k1 6=0), the final state will contain a finite trace of history effects, Φ followed
by Φ1, and a new current time instance (π1 ∧φ1). Otherwise, there is no exits in
p, the final states will contain a infinite trace of effects, constructed by ω. Then
anything following an infinite trace will be abandoned. (cf. Table 2.)

% ` 〈E , π ∧ φ, k〉 p 〈Φ1, π1 ∧ φ1, k1〉
〈∆〉 = 〈Φ · Φ1, π1 ∧ φ1, k1〉〉 when k1 6=0

〈∆〉 = 〈Φ · (Φ1 · (π1 ∧ φ1))ω, none, k1〉 when k1=0

% ` 〈Φ, π ∧ φ, k〉 loop p 〈∆〉
[FV-Loop]

The rule [FV-Trap] gets 〈Φ1, π1∧φ1, k1〉 by executing the trap body p. When
there is no exit from the trap body (k=0), or there is an exit which can be
exactly catched by the current trap (k=1), we leave the final completion code
to be 0. When there is an exit with a higher priority, (k>1), indicating to exit
from a outer trap, we get the final kf by decreasing the completion code by one.

% ` 〈Φ, π ∧ φ, k〉 p 〈Φ1, π1 ∧ φ1, k1〉
kf = 0 when k1≤1
kf = k1-1 when k1>1

% ` 〈Φ, π ∧ φ, k〉 trap T p 〈Φ1, π1 ∧ φ1, kf〉
[FV-Trap]

As exit Td will abort execution up to the (d+1) th enclosing of the trap T.
The rule [FV-Exit] sets the value of k using d+1.

% ` 〈Φ, π ∧ φ, k〉 exit Td 〈Φ, π ∧ φ, d+1〉
[FV-Exit]

The rule [FV-Call] checks if the precondition of callee, Φpre, is satisfied by
the current effects state; then it obtains the next program state by concatenating
the postcondition to the current effects state. (cf. Table 2.)

x (τ S)∗ 〈requires Φpre ensures Φpost〉 p ∈ P
TRS ` Φ · (π ∧ φ) v Φpre 〈∆〉 = Φ · (π ∧ φ) · Φpost

% ` 〈Φ, π ∧ φ, k〉 run x (S)∗ p 〈∆〉
[FV-Call]

The rule [FV-Assert] simply checks if the asserted property Φ′ is satisfied by
the current effects state. If not, a compilation error will be raised.

TRS ` Φ · (π ∧ φ) v Φ′

% ` 〈Φ, π ∧ φ, k〉 assert Φ′ 〈Φ, π ∧ φ, k〉
[FV-Assert]
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4.2 Correctness Checking.

Esterel assumes that the systems are deterministic. Informally, a non-deterministic
system does not have a unique response to a given input event; instead, it chooses
its response to the input event from a set of possible responses, and an exter-
nal observer has no way to consistently predict the response that will be cho-
sen by the system. Non-determinism corresponds to unlimited parallelism and
not to any stochastic behaviour [17]. All Esterel statements and constructs are
guaranteed to be deterministic, in other words, there is no way to introduce
non-deterministic behaviour in an Esterel program.

1) present S1 〈{}〉

2) then nothing 〈{S1 ∧ S1}〉

3) else emit S1 〈{S1 ∧ S1}〉

4) end present 〈{false} ∨ {false}〉
false→ logical incorrect

Fig. 12.

To effectively check logical correctness,
in this work, given an Esterel program, af-
ter been applied to the forward rules, we
compute the possible execution traces in a
disjunctive form; then prune the traces con-
tain contradictions, following these princi-
ples: (cf. Fig. 12.) (i) explicit present and
absent; (ii) each local signal should have
only one status; (iii) lookahead should work for both present and absent; (iv)
signal emissions are idempotent; (v) signal status should not be contradictory.

Finally, upon each assignment of inputs, programs have none or multiple
output traces that will be rejected, corresponding to no-valid or multiple-valid
assignments. We regard these programs, which have precisely one safe trace
reacting to each input assignments, as logical correct.

Lemma 1 (Safe Time Instants). Given a time instant π ∧ φ, we define it is
safe if and only if, for any signal S, the binding from the path constraints JπKS

justifies the status from the time instant mappings JφKS; otherwise, we say it is
a contradicted instant. Formally,

π ∧ φ is safe iff 6 ∃S. JπKS 6= JφKS

Note that, the proof obligations are discharged by the Z3 solver while deciding
whether a time instant I is safe or not, represented by SAT(π ∧ φ).

Corollary 1 (Safe Traces). A temporal trace Φ is safe iff all the time instants
contained in the trace are safe.

5 Temporal Verification via a TRS

The TRS is a decision procedure (proven to be terminating and sound) to check
language inclusions among Synced Effects (cf. Table 1.). It is triggered i) prior
to temporal property assertions; ii) prior to module calls for the precondition
checking; and iii) at the end of verifying a module for the post condition checking.
Given two effects Φ1, Φ2, the TRS is to decide if the inclusion Φ1 v Φ2 is valid.

During the effects rewriting process, the inclusions are in the form of Γ `
Φ1 vΦ Φ2, a shorthand for: Γ ` Φ · Φ1 v Φ · Φ2. To prove such inclusions is to
check whether all the possible event traces in the antecedent Φ1 are legitimately
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allowed in the possible event traces from the consequent Φ2. Γ is the proof
context, i.e., a set of effects inclusion hypothesis, Φ is the history of effects from
the antecedent that have been used to match the effects from the consequent.
Note that Γ, Φ are derived during the inclusion proof. The inclusion checking
procedure is initially invoked with Γ={} and Φ=E . Formally,

Theorem 2 (Synced Effects Inclusion).
For synced effects Φ1 and Φ2, Φ1 v Φ2 ⇔ (∀I). DI(Φ1) v DI(Φ2).

Next we provide the definitions and implementations of auxiliary functions
Nullable (δ), First (fst) and Derivative (D) respectively. Intuitively, the Nul-
lable function δ(Φ) returns a boolean value indicating whether Φ contains the
empty trace E ; the First function fst(Φ) computes a set of possible initial time
instants of Φ; and the Derivative function DI(Φ) computes a next-state effects
after eliminating one time instant I from the current effects Φ.

Definition 1 (Nullable). Given any effects Φ, we recursively define δ(Φ) as:

δ(Φ) : bool=

{
true if E ∈ Φ

false if E /∈ Φ
, where

δ(⊥)=false δ(E)=true δ(I)=false δ(Φ1 · Φ2)=δ(Φ1) ∧ δ(Φ2)

δ(Φ1 ∨ Φ2)=δ(Φ1) ∨ δ(Φ2) δ(Φ?)=true δ(Φω)=false

Definition 2 (First). Let fst(Φ):={I | (I ·Φ′) ∈ JΦK} be the set of initial time
instants derivable from effects Φ. (JΦK represents all the traces contained in Φ.)

fst(⊥)={} fst(E)={} fst(I)={I} fst(Φ?)=fst(Φ)

fst(Φω)=fst(Φ) fst(Φ1 ∨ Φ2)=fst(Φ1) ∪ fst(Φ2)

fst(Φ1 · Φ2)=

{
fst(Φ1) ∪ fst(Φ2) if δ(Φ1)=true

fst(Φ1) if δ(Φ1)=false

Definition 3 (Instants Subsumption). Given two time instants I and J, we
define the subset relation I⊆J as: the set of present signals in J is a subset of
the set of present signals in I, and the set of absent signals in J is a subset of
the set of absent signals in I.5 Formally,

I⊆J ⇔ {S | (S 7→ present) ∈ J} ⊆ {S | (S 7→ present) ∈ I} and
{S | (S 7→ absent) ∈ J} ⊆ {S | (S 7→ absent) ∈ I}

Definition 4 (Partial Derivative). The partial derivative DI(Φ) of effects Φ
w.r.t. a time instant I computes the effects for the left quotient I-1JΦK.

DI(⊥)=⊥ DI(E)=⊥ DI(J)=E (if I⊆J) DI(J)=⊥ (if I 6⊆J)

DI(Φ
?)=DI(Φ) · (Φ?) DI(Φ

ω)=DI(Φ) · (Φω) DI(Φ1 ∨ Φ2)=DI(Φ1) ∨ DI(Φ2)

DI(Φ1 · Φ2)=

{
DI(Φ1) · Φ2 ∨ DI(Φ2) if δ(Φ1)=true

DI(Φ1) · Φ2 if δ(Φ1)=false

5 As in having more constraints refers to a smaller set of satisfying instances.
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5.1 Inference Rules.

We now discuss the key steps and related inference rules that we may use in
such an effects inclusion proof.

I. Axiom rules. Analogous to the standard propositional logic, ⊥ (referring
to false) entails any effects, while no non-false effects entails ⊥.

Γ ` ⊥ v Φ
[Bot-LHS]

Φ 6= ⊥
Γ ` Φ 6v ⊥

[Bot-RHS]

II. Disprove (Heuristic Refutation). This rule is used to disprove the inclu-
sions when the antecedent is nullable, while the consequent is not nullable.
Intuitively, the antecedent contains at least one more trace (the empty trace)
than the consequent. Therefore, the inclusion is invalid.

δ(Φ1) ∧ ¬δ(Φ2)

Γ ` Φ1 6v Φ2

[DISPROVE]

III. Prove. We use the rule [REOCCUR] to prove an inclusion when there exist
inclusion hypotheses in the proof context Γ, which are able to soundly prove
the current goal. One of the special cases of this rule is when the identical
inclusion is shown in the proof context, we then terminate the procedure and
prove it as a valid inclusion.

(Φ1 v Φ3) ∈ Γ (Φ3 v Φ4) ∈ Γ (Φ4 v Φ2) ∈ Γ

Γ ` Φ1 v Φ2

[REOCCUR]

IV. Unfolding (Induction). Here comes the inductive step of unfolding the
inclusions. Firstly, we make use of the auxiliary function fst to get a set of
instants F, which are all the possible initial time instants from the antecedent.
Secondly, we obtain a new proof context Γ′ by adding the current inclusion,
as an inductive hypothesis, into the current proof context Γ. Thirdly, we
iterate each element I ∈ F, and compute the partial derivatives (the next-
state effects) of both the antecedent and consequent w.r.t I. The proof of the
original inclusion Φ1 v Φ2 succeeds if all the derivative inclusions succeeds.

F = fst(Φ1) Γ′ = Γ, (Φ1 v Φ2) ∀I ∈ F. (Γ′ ` DI(Φ1) v DI(Φ2))

Γ ` Φ1 v Φ2

[UNFOLD]

V. Normalization. We present a set of normalization rules to soundly transfer
the synced effects into a normal form, particular after getting their deriva-
tives. Before getting into the above inference rules, we assume that the effects
formulae are tailored accordingly using the lemmas shown in Table 2. We
built the lemmas on top of a complete axiom system suggested by Antimirov
and Mosses [3], which was designed for finite regular languages and did not
include the corresponding lemmas for effects constructed by ω.

Theorem 3 (Termination). The rewriting system TRS is terminating.

Theorem 4 (Soundness). Given an inclusion I, if the TRS returns TRUE

when proving I, then I is valid.

Proof. Both see in the technical report [21].
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Table 2. Some Normalization Lemmas for synced effects.

Φ ∨ Φ→ Φ ⊥ · Φ→ ⊥ (E ∨ Φ)? → Φ?

⊥ ∨ Φ→ Φ Φ · ⊥ → ⊥ (Φ1 ∨ Φ2) ∨ Φ3 → Φ1 ∨ (Φ2 ∨ Φ3)

Φ ∨ ⊥ → Φ ⊥ω → ⊥ (Φ1 · Φ2) · Φ3 → Φ1 · (Φ2 · Φ3)

E · Φ→ Φ ⊥? → E Φ · (Φ1 ∨ Φ2)→ Φ · Φ1 ∨ Φ · Φ2

Φ · E → Φ Φω · Φ1 → Φω (Φ1 ∨ Φ2) · Φ→ Φ1 · Φ ∨ Φ2 · Φ

5.2 Expressiveness of Synced Effects.

Classical LTL extended propositional logic with the temporal operators G (“glob-
ally”) and F (“in the future”), which we also write � and ♦, respectively; and
introduced the concept of fairness, which ensures an infinite-paths semantics.
LTL was subsequently extended to include the U (“until”) operator and the X
(“next time”) operator. As shown in Table 3., we are able to recursively encode
these basic operators into our synced effects, making it possibly more intuitive
and readable, mainly when nested operators occur6.

Table 3. Examples for converting LTL formulae into Effects. ({A}, {B} represent
different time instants which contain signal A and B to be present.)

�A ≡ {A}ω ♦A ≡ {}? · {A} A U B ≡ {A}? · {B}

XA ≡ {} · {A} �♦A ≡ ({}? · {A})ω ♦�A ≡ {}? · {A}ω

Besides the high compatibility with standard first-order logic, synced effects
makes the temporal verification for Esterel more scalable. It avoids the must-
provided translation schemas for each LTL temporal operator, as to how it has
been done in the prior work [15].

6 Implementation and Evaluation

To show the feasibility of our approach, we have prototyped our automated veri-
fication system using OCaml (Source code and test suite are available from [19]).
The proof obligations generated by the verifier are discharged using constraint
solver Z3. We prove termination and soundness of the TRS, our beck-end solver.
We validate the front-end forward verifier for conformance, against two Esterel
implementations: the Columbia Esterel Compiler (CEC) [11] and Hiphop.js [7,24]:

– CEC: It is an open-source compiler designed for research in both hardware
and software generation from the Esterel synchronous language to C, Verilog
or BLIF circuit description. It currently supports a subset of Esterel V5 [5],
and provides pure Esterel programs for testing.

– Hiphop.js: It is a DSL for JavaScript, to facilitate the design of complex
web applications by smoothly integrating Esterel and JavaScript. To enrich
our test suite, we take a subset of Hiphop.js programs (as our verifier does
not accept JavaScript code), and translate them into our target language.

Based on these two benchmarks, we validate the verifier using 96 pure Esterel
programs, varying from 10 lines to 300 lines. We manually annotate temporal

6 Our implementation provides a LTL-to-Effects translator.
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specifications in synced effects for each of them, including both succeeded and
failed instances. The remainder of this section presents some case studies.

6.1 Loops 1 module loopTest1:

2 output A,B,C;

3 /*@

4 require {}

5 ensure {A,B}.({B,C})w

6 @*/

7 emit A;

8 loop

9 emit B; pause; emit C

10 end loop end module

Fig. 13. Loop (1)

1 module loopTest2:

2 output A,B,C;

3 /*@

4 require {}

5 ensure {A}.({B}.{C})w

6 @*/

7 emit A;

8 loop

9 pause; emit B;

10 pause; emit C

11 end loop end module

Fig. 14. Loop (2)

1 module trapTest:

2 output A,B;

3 /*@

4 require {}

5 ensure {A}

6 @*/

7 trap T1 in

8 trap T2 in

9 emit A;

10 (exit T1)||( exit T2)

11 end trap;

12 emit B

13 end trap

14 end module

Fig. 15. Exception priority

As shown in Fig. 13., the program firstly
emits signal A, then enters into a loop
which emits signal B followed by a pause
followed by emitting signal C at the end.
The synced effects of it is Φ={A, B} ·
({B, C})ω, which says that in the first time
instant, signals A and B will be present,
because there is no explicit pause between
the emit A and the emit B; then for the
following instants (in an infinite trace),
signals B and C will be present all the
time, because after executing emit C,
it immediately executes from the begin-
ning of the loop, which is emit B. As we
can see, Esterel’s instantaneous nature re-
quires a special distinction when it comes
to loop statements, which increases the
difficulty of the invariants inference, en-
abled by our forward verifier.

To further demonstrate the execution
of loop statements, we revise the exam-
ple in Fig. 13. by adding a pause at the
beginning of the loop, as shown in Fig.
14. We get an different final effects Φ′ =
{A} · ({B} · {C})ω, where only signal A
is present in the first time instant; Then
for the following instances (in an infinite
trace), B and C are not necessarily to
be present in the same instances, instead,
they will take turns to be present.

6.2 Exception Priority

As shown in Fig. 15., the final effects for
this nested trap test contains one time
instance with only signal A is present.
In the nested exception declaration, the
outer traps have higher priorities over the
inner traps, in other words, the exception
of greater depth has always priority. In this example, when exit T1 and exit T2

are executed concurrently, as exit T1 has a higher priority, the control will
be transferred directly to the end of trap T1, ignoring the emit B in line 12.
Therefore signal A is emitted while signal B is not emitted.
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6.3 A Gain on Constructiveness 1 module a_bug:

2 output S;

3 /*@

4 require {}

5 ensure {S}

6 @*/

7 signal S in

8 present S then emit S

9 else emit S

10 end present end signal

11 end module

Fig. 16. A Bug Found

We discovered a bug from the Esterel v5
Constructive semantics [4]. As shown in
Fig. 16., this program is detected as “non-
constructive” and rejected by CEC. Be-
cause the status of S must be guessed
prior to its emission; however, in present
statements, it is required that the status
of the tested signal must be determined
before executing the sub-expressions.

Well, this program actually can be
constructed, as the only possible assign-
ment to signal S is to be present. Our verification system accepts this program,
and compute the effects effectively. We take this as an advantage of using our ap-
proach to compute the fixpoint of the program effects, which essentially explores
all the possible assignments to signals in a more efficient manner.

7 Related Work

7.1 Semantics of Esterel

For the Pure Esterel, an early work [6] (1992) gave two operational semantics, a
macrostep logical semantics called the behavioural semantics, and a small-step
logical semantics called the execution semantics. A subsequent work [4] (1999)
gave an update to the logical behavioural macrostep semantics to make it more
constructive. The logical behavioural semantics requires existence and unique-
ness of a behaviour, while the constructive behavioural semantics introduces Can
function to determine execution paths in an effective but restricted way.

Our synced effects of Esterel closely follows the work of states-based seman-
tics [4]. In particular, we borrow the idea of internalizing state into effects using
history and current that bind a partial store embedded at any level in a program.
However, as the existing semantics are not ideal for compositional reasoning in
terms of the source program, our forward verifier can help meet this requirement
for better modularity.

A more recent work [12] (2019) proposes a calculus for Esterel, which is
different from a reduction system - although there is an equational theory. The
deep lack in the calculus is the ability to reason about input signals. However,
as explained in Sec. 4.2, our effects logic is able to reason about the correctness
with unbounded input signals. Beyond the correctness checking, the computed
temporal effects are particularly convenient for the safety checking at the source
code level before the runtime. With that, next, we introduce some related works
of temporal verification on Esterel programs.

7.2 Temporal Verification of Esterel

In prior work [15], given a LTL formula, they first recursively translate it into
an Esterel program whose traces correspond to the computations that violate
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the safety formula. The program derived from the formula is then composed in
parallel with the given Esterel program to be verified. The program resulting
from this composition is compiled using available Esterel tools; a trivial analysis
of the compiler’s output then indicates whether or not the property is satisfied
by the original program. By exhaustively generating all the composed program’s
reachable states, the Esterel compiler, in fact, performs model checking.

However, the overhead introduced by the complex translation makes it par-
ticularly inefficient when disproving some of the properties. Besides, it is limited
by the expressive power of LTL, as whenever a new temporal logic has to be
introduced, we need to design a new translation schema for it accordingly.

Informally, we are concerned with the problem: Given a temporal property
Φ′, how to check that a given behaviour Φ satisfies it. The standard approaches
to this language inclusion problem are based on the translation of Φ and Φ′ into
equivalent finite state automata: MA and MB; and then check emptiness of
MA ∩ ¬MB. However, the worst-case complexity of any efficient algorithm [10]
based on such translation also goes exponential in the number of states.

In this work, we provide an alternative approach, inspired by Antimirov and
Mosses’ work, which presented a TRS [3] for deciding the inequalities of basic
regular expressions. A TRS is a refutation method that normalizes regular ex-
pressions in such a way that checking their inequality corresponds to an iterated
process of checking the inequalities of their partial derivatives [2]. Works based
on such a TRS [3,16,14] suggest that this method is a better average-case algo-
rithm than those based on the translation into automata. Invigorated by that, in
this paper, we present a new solution of extensive temporal verification, which
deploys a TRS but solves the language inclusions between Synced Effects.

Similarly, extending from Antimirov’s notions of partial derivatives, prior
work [8] (Broda et al., 2015) presented a decision procedure for equivalence
checking between Synchronous Kleene Algebra (SKA) terms. Next, we discuss
the similarities and differences between our work and [8].

7.3 Synchronous Kleene Algebra (SKA)

Kleene algebra (KA) is a decades-old sound and complete equational theory of
regular expressions. Our Synced Effects theory draws similarities to SKA [18],
which is KA extended with a synchrony combinator for actions. Formally, given
a KA is (A,+, ·, ?, 0, 1), a SKA over a finite set AB is (A,+, ·,×, ?, 0, 1, AB), AB⊆A.
Our ⊥ (false) corresponds to the 0; our E (empty trace) corresponds to the 1; our
time instance containing simultaneous signals can be expressed via ×; and the
instants subsumption (Definition 3) is reflected by SKA’s demanding relation.

Presently, SKA allows the synchrony combinator × to be expressed over any
two SKA terms to support concurrency. We achieve a similar outcome in Synced
Effects by supporting normalization operations during trace synchronization, via
a zip function in the forward rule of [FV-Par]. This leads to one major difference
in the inclusion/equivalence checking procedure, whereby a TRS for SKA would
have to rely on nullable, first, and partial derivatives for terms constructed by
the added combinator ×, but carefully avoided by our TRS construction. While
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the original equivalence checking algorithm for SKA terms in [18] has relied
on well-studied decision procedures based on classical Thompson ε-NFA con-
struction, [8] shows that the use of Antimirov’s partial derivatives could result
in better average-case algorithms for automata construction. Our present work
avoided the consideration for the more general × operation from SKA and cus-
tomized the TRS for inclusion (instead of equivalence) checking. These decisions
led to some opportunities for improvements. Moreover, between TRS and the
construction of efficient automata, we have recently shown in [20] that the former
has a minor performance advantage (over a benchmark suite) when it is com-
pared with state-of-the-art PAT [22] model checker. Improvement came from the
avoidance of the more expensive automata construction process.

Apart from the synchrony combinator, we also introduced the ω construc-
tor to explicitly distinguish infinite traces from the coarse-grained repetitive
operator kleene star ?. The inclusion of ω constructor allows us to support non-
terminating reactive systems, that are often supported by temporal specification
and verification to ensure systems dependability. As a consequence, our backend
TRS solver is designed to be able to soundly reason about both finite traces (in-
ductive definition) and infinite traces (coinductive definition), using cyclic proof
techniques of [9].

Another extension from the ready-made KA theory is Kleene algebra with
tests (KAT), which provides solid mathematical semantic foundations for many
domain-specific languages (DSL), such as NetKAT [1], designed for network
programming. In KAT, actions are extended with boolean predicates and the
negation operator is added accordingly. Our Synced Effects also support the
boolean algebra in a similar way, since each of our signals can be explicitly
specified to be either present or absent. Contradictions of such signals are also
explicitly captured by ⊥ (false), whenever signal unification fails.

8 Conclusion

We define the syntax and semantics of the novel Synced Effects, capable of
capturing Esterel program behaviours and temporal properties. We develop a
Hoare-style forward verifier to compute the program effects constructively. The
verifier further enables a more systematic logical correctness checking, with the
presence of unbounded input signals, which was a profound lack in prior works.
We present an effects inclusion checker (the TRS) to verify the annotated tempo-
ral properties efficiently. We implement the effects logic and show its feasibility.
To the best of our knowledge, our work is the first solution that automates
modular verification for Esterel using an expressive effects logic.
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A Termination Proof

Proof. Let Set[I] be a data structure representing the sets of inclusions.
We use S to denote the inclusions to be proved, and H to accumulate “induc-

tive hypotheses”, i.e., S, H ∈ Set[I].
Consider the following partial ordering � on pairs 〈S, H〉:

〈S1, H1〉 � 〈S2, H2〉 iff |H1| < |H2| ∨ (|H1| = |H2| ∧ |S1| > |S2|).

where |X| stands for the cardinality of a set X. Let⇒ donate the rewrite relation,
then⇒∗ denotes its reflexive transitive closure. For any given S0, H0, this ordering
is well founded on the set of pairs {〈S, H〉|〈S0, H0〉 ⇒∗ 〈S, H〉}, due to the fact that
H is a subset of the finite set of pairs of all possible derivatives in initial inclusion.

Inference rules in our TRS given in Sec. 5.1 transform current pairs 〈S, H〉 to
new pairs 〈S′, H′〉. And each rule either increases |H| (Unfolding) or, otherwise,
reduces |S| (Axiom, Disprove, Prove), therefore the system is terminating.

B Soundness Proof

Proof. For each inference rules, if inclusions in their premises are valid, and their
side conditions are satisfied, then goal inclusions in their conclusions are valid.

I. Axiom Rules:

Γ ` ⊥ v Φ
[Bot-LHS]

Φ 6= ⊥
Γ ` Φ 6v ⊥

[Bot-RHS]

- It is easy to verify that antecedent of goal entailments in the rule [Bot-LHS]
is unsatisfiable. Therefore, these entailments are evidently valid.
- It is easy to verify that consequent of goal entailments in the rule [Bot-RHS]
is unsatisfiable. Therefore, these entailments are evidently invalid.

II. Disprove Rules:

δ(Φ1) ∧ ¬δ(Φ2)

Γ ` Φ1 6v Φ2

[DISPROVE]

- It’s straightforward to prove soundness of the rule [DISPROVE], Given that
Φ1 is nullable, while Φ2 is not nullable, thus clearly the antecedent contains
more event traces than the consequent. Therefore, these entailments are ev-
idently invalid.

III. Prove Rules:

(Φ1 v Φ3) ∈ Γ (Φ3 v Φ4) ∈ Γ (Φ4 v Φ2) ∈ Γ

Γ ` Φ1 v Φ2

[REOCCUR]
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- To prove soundness of the rule [REOCCUR], we consider an arbitrary model,
ϕ such that: ϕ |= Φ1. Given the promises that Φ1 v Φ3, we get ϕ |= Φ3;
Given the promise that there exists a hypothesis Φ3 v Φ4, we get ϕ |= Φ4;
Given the promises that Φ4 v Φ2, we get ϕ |= Φ2. Therefore, the inclusion
is valid.

IV. Unfolding Rule:

F = fst(Φ1) Γ′ = Γ, (Φ1 v Φ2) ∀I ∈ F. (Γ′ ` DI(Φ1) v DI(Φ2))

Γ ` Φ1 v Φ2

[UNFOLD]

- To prove soundness of the rule [UNFOLD], we consider an arbitrary model,
ϕ1 and ϕ2 such that: ϕ1 |= Φ1 and ϕ2 |= Φ2. For an arbitrary time instance
I, let ϕ1

′ |= I-1JΦ1K, with ϕ1=I · ϕ1
′; and ϕ2

′ |= I-1JΦ2K, with ϕ2=I · ϕ2
′.

Case 1), I /∈ F, ϕ1
′ |= ⊥, thus automatically ϕ1

′ |= DI(Φ2);
Case 2), I ∈ F, given that inclusions in the rule’s premise is valid, then
ϕ1
′ |= DI(Φ2).

By Theorem 2, since for all I, DI(Φ1) v DI(Φ2), the conclusion is valid.

All the inference rules used in the TRS are sound, therefore the TRS is sound.

C Completeness Proof

Proof. Given an inclusion I, if I is valid, then the TRS returns TRUE.
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