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Summary

Existing temporal verification approaches have sacrificed modularity in favor of

achieving automation or vice-versa. To exploit the best of both worlds, this thesis

presents a new framework to ensure temporal properties via Hoare-style verifiers

and term rewriting systems (TRSs).

The leading technique of temporal verification is automata-based model checking,

which has the following inadequacies: firstly, it requires a manual modeling stage;

secondly, it needs to be bounded due to the lack of symbolic reasoning; and lastly,

the expressiveness power is limited by the finite-state automata.

To tackle these issues, this thesis proposes a framework that conducts local

temporal verification, leading to a modular and compositional verification strategy,

where modules can be replaced by their already verified properties. In our exploration,

we proposed various effect logics to be the temporal specifications, which are extended

regular expressions (REs) and more flexible/expressive than the most deployed linear

temporal logic (LTL). Furthermore, the proposed framework devises purely algebraic

TRS to check the inclusions for the novel logics, avoiding the complex translation

into automata.

This thesis demonstrates the applicability of the proposed framework and various

REs-based temporal logics in different domains, such as synchronous programming,

real-time systems, algebraic effects, etc. This thesis also presents the corresponding

prototype systems, case studies, experimental results, and supporting proofs.

vii
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction
This thesis is interested in automatic verification using finite-state, yet possibly

non-terminating models of systems, with the underlying assumption that linear-time
system behavior can be represented as a set of traces representing all the possible
histories. In this model, verification consists of checking for language inclusion:
the implementation describes a set of actual traces, in an automaton A; and the
specification gives the set of allowed traces, in an automaton B; the implementation
meets the specification if every actual trace is allowed, i.e., L(A) ⊆ L(B).

The leading community of temporal verification is automata-based model check-
ing, which deploys mainstream temporal logic specifications, such as LTL and CTL.
Classical model checkers extract the logic design from the program using modeling
languages and verifying specific assertions to guarantee various properties. The
verification is based on a translation from modeling languages/specifications to
automata and the well-tuned inclusion checking algorithm for automata.

The current inadequacies of model-checking techniques are: firstly, it requires a
manual modeling stage; secondly, it needs to be bounded due to the lack of symbolic
reasoning; thirdly, the expressiveness power is limited by the finite-state automata;
and lastly, the expressiveness power is limited by the finite-state automata.

To further elaborate the efficiency issue on (ii) above, deciding the inclusion
between two finite-state automata is PSPACE-complete. The standard approaches
to the problem are based on the following steps: translate logical expressions into
equivalent nondeterministic finite automaton (NFA); convert the NFA to equivalent
deterministic finite automatons (DFA); minimize the DFA toMA andMB; and
finally check emptiness ofMA ∩ ¬MB. However, any efficient algorithm [Wul+06]

1



CHAPTER 1. INTRODUCTION

based on such translation potentially gives rise to an exponential blow-up.

Therefore, this thesis is motivated to find a more precise, extensive and efficient
solution for temporal verification. More specifically, it proposes a new framework
which deploys Hoare-style forward verifiers as the front-ends, and TRSs as the
back-ends. Forward verifier compute the actual temporal behaviors from the source
code, based on the formally-defined execution semantics of the target languages.
TRSs are decision procedures inspired by Antimirov and Mosses’s algorithm [AM95]
but solving the language inclusions between more expressive temporal logics.

Antimirov and Mosses’s rewriting algorithm can be used as an alternative
approach to the automata-based inclusion-checking approach. More specifically,
it decides inequalities of regular expressions (REs) through an iterated process of
checking the inequalities of their partial derivatives (cf. Definition 1 and Definition 2)
[Ant95]. There are two basic rules: [Disprove], which infers false from trivially
inconsistent inequalities; and [Unfold], which applies Theorem 1 to generate new
inequalities. Termination is guaranteed because the set of derivatives to be considered
is finite, and possible cycles are detected using memorization, i.e., a set of proof
hypotheses soundly derived during the proof search.

Definition 1 (Derivative). Given any formal language S over an alphabet Σ and
any string u ∈ Σ∗, the derivative of S with respect to u is defined as:

u-1S={w ∈ Σ∗ | u · w ∈ S}, where · denotes trace concatenation.

Definition 2 (Partial Derivative). Given any formal language S over an alphabet
Σ and any symbol a ∈ Σ, the partial derivative of S with respect to a is defined as:

a-1S={w ∈ Σ∗ | a · w ∈ S}.

Theorem 1 (Regular Expressions Inequality (Antimirov)). Given Σ is a finite set
of alphabet, A-1(r) is the partial derivative of r with respect to the symbol A, given
two REs r and s, their inequality is defined as: r � s⇔ ∀(A ∈ Σ). A-1(r) � A-1(s).

Works based on such a TRS [SC20; AM95; AMR09; KT14a; Hov12; Bjø+01;
KMP00; ÖM02; Ölv00] show its feasibility and suggest that this approach is a better
average-case algorithm than those based on the comparison of minimal DFA. Thus,

2



CHAPTER 1. INTRODUCTION

this work investigates the possibilities of applying such TRSs (upon extended regular
expressions) to serve as back-end solvers for different temporal verification contexts.

1.1 Verification Framework Overview

The proposed verification framework is shown in Figure 1.1. Rounded boxes are
the main procedures. They return true when the forward reasoning or the effects
inclusion proving succeeds, respectively. They return false otherwise. Rectangular
boxes describe the inputs to the procedures. The forward verifier relies on the TRS
to solve temporal proof obligations, in the form of effects inclusions. The TRS
discharges arithmetic proof obligations – generated while solving effects inclusions –
by state-of-the-art SMT solvers Z3 [dMB08], represented by the grey box.

Figure 1.1: Verification Framework Overview.

The inputs of the forward verifier are target programs annotated with temporal
specifications. The input of the TRS is a pair of effects LHS and RHS, referring to
the inclusion LHS v1 RHS to be checked. (Note that LHS refers to left-hand-side
effects, and RHS refers to right-hand-side effects.)

Based on the proposed verification framework, this thesis presents several inde-
pendent works on different applicable domains, which deploy different effect logics for
different targeting languages, with different back-end TRSs accordingly. Altogether,

1v captures the inclusion relation between effects, defined based on different effect logics, in
Definition 6 (for DependentEffs), Definition 13 (for ASyncEffs), Definition 20 (for TimEffs), and
Definition 26 (for ContEffs) respectively.
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this work investigates: the feasibility of the proposed framework; the extensible
expressiveness of regular expressions; and the efficiency of TRSs.

Similarities to the Types-and-effect systems. The design and implementation
of a correct system can benefit from employing static techniques for ensuring that
the dynamic behaviour satisfies the specification. Many programming languages
incorporate types for ensuring that certain operations are only applied to data of the
appropriate form. A natural extension of type checking techniques is to enrich the
types with annotations and effects that further describe intensional aspects of the
dynamic behaviour. Types-and-effect systems [Nie+99] refine the type information
by annotating the types so as to express further intensional or extensional properties
of the semantics of the program [Jou87; JG89; JG91; LG88].

The verification framework proposed here draws similarities to Types-and-effect
systems as it assumes the input programs are type-checked; but differs in that it only
focuses on the reasoning for the effects in the form of symbolic traces. The effects
reasoning does not need to depend on the type systems; therefore, it can be deployed
separately by languages that do not have static typing checking mechanisms.

1.2 Thesis Synopsis

This thesis instantiates the above general framework with several independent
works to show its applicability. Each of them has different input programs with
varying specification languages. Their forward verifiers and TRSs differ regarding
the program semantics and the effect logic. As shown in Table 1.1, Chapters 3-6
present different possible effect logics for different verification contexts:

1. DependentEffs (Chapter 3) targets general-purpose sequential programs and
integrates the basic and ω-regular expressions with dependent values and arithmetic
constraints, denote the number of repetitions of a trace, gaining the expressive power
beyond LTL, µ-calculus, and prior effect logics.

2. ASyncEffs (Chapter 4) targets a preemptive asynchronous execution model by
integrating the Synchronous Kleene Algebra (SKA) [Pri10; Bro+15] with a new
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Table 1.1: Proposals Overview

Target Specification Applied Research

Language Language Domain Paper

Chapter 3 C DependentEffs General Effectful Programs [SC20]

Chapter 4 Esterel ASyncEffs Reactive Systems [SC21]

Chapter 5 Ct TimEffs Time Critical Systems [SC22; SC23]

Chapter 6 λh ContEffs Algebraic Effects and Handlers [SFC22]

operator, to provide block waiting (among threads) abstraction into traditional
synchronous verification.

3. TimEffs (Chapter 5) targets real-time systems with not only timed behavioral
patterns but also shared variables and concurrency, by integrating regular expressions
with dependent values and arithmetic constraints, to denote symbolic real-time
bounds, providing a more modular and expressive timed verification.

4. ContEffs (Chapter 6) targets user-defined effects and handlers and integrates
? for finite traces; ω for infinite traces; ∞ for possibly finite and possibly infinite
traces. ContEffs provides a general reasoning technique for the coexistence of zero-
shot, one-shot and multi-shot continuations. Furthermore, it also helps to detect
non-terminating behaviors while using effect handlers.

The rest of this thesis is organized as: Chapter 2 presents the literature review;
Chapter 7 summarizes the thesis and discusses possible future works; Appendix A,
Appendix B and Appendix C demonstrate the supporting proofs.
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Chapter 2

Literature Review
Recently, temporal reasoning has garnered renewed popularity and importance for

possibly non-terminating programs with subtle use of recursion and non-determinism,
as used in reactive or time-critical applications.

2.1 General Perspectives of Temporal Verification

This section first discusses the related works in the following general perspectives:
automata-based model checking and traces-based effects systems (subsection 2.1.1);
expressive effect logics (subsection 2.1.2); and efficient algorithms for language
inclusion checking (subsection 2.1.3).

2.1.1 Model Checking and Effects Systems

A vast range of techniques has been developed for the prediction of program
temporal behaviors without actually running the system. One of the leading
communities of temporal verification is automata-based model checking, mainly for
finite-state systems. Various model checkers, such as PAT [Sun+09], Uppaal [LPY97],
and TLA+ [Lam+02], etc., are based on classic temporal logic specifications, such as
LTL and CTL. Such tools extract the logic design from the program using modeling
languages and verify assertions to guarantee various safety/liveness properties.
However, classical model-checking techniques usually require a manual modeling
stage and need to be bounded when encountering non-terminating traces.

On the other hand, combining program events with a temporal program logic to
assert properties of event traces yield a powerful and general engine for enforcing
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program properties. Prior works [SSV08; SS04a; MSS03] have demonstrated that
static approximations of program event traces can be generated by type and effect
analyses [TJ94; ANN99], in a form amenable to existing model-checking techniques
for verification. These approximations are called trace-based effects. Trace-based
analyses have been shown capable of statically enforcing flow-sensitive security
properties such as safe locking behaviors [FTA02], and resource usage policies such
as file usage protocols and memory management [MSS03]. A trace effect analysis is
used to enforce secure service composition [BDF05]. Stack-based security policies
are also amenable to this form of analysis [SS04b].

More related to this thesis, prior research has been extending Hoare logic with
event traces. Prior work [MMW11] focuses on finite traces (terminating runs) for
web applications, leaving the divergent computation, which indicates false, simply
verified for every specification. Prior work [NU10] focuses on infinite traces (non-
terminating runs) by providing coinductive trace definitions. Together with the
prior work [Bub+15], this thesis works on dynamic logic and unified operators
to reason about possibly finite and infinite traces simultaneously. The soundness
is guaranteed via the theoretical foundations for reasoning about inductive and
coinductive definitions simultaneously [Bro05b].

Moreover, the proposed effect logics draw similarities to contextual effects
[Nea+08], which takes the already occurred events as the history effects; the events
which are not yet happened as the future effects. Besides, prior work [ANN99]
proposes an annotated type and effect system and infers behaviors from CML [Rep93]
programs for channel-based communications, though it did not provide any language
inclusion checking solutions.

2.1.2 Expressive Effect Logics

To conduct temporal reasoning locally, there is a sub-community whose aim is to
support temporal specifications in the form of effects via the type-and-effect system.
The inspiration from this approach is that it leads to a modular and compositional
verification strategy, where temporal reasoning can be done locally and combined to
reason about the overall program [HC14; KT14b; Nan+18]. However, the temporal
effects in prior work tend to over-approximate program behaviors either via ω-regular
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expressions [HC14] or by büchi automata [KT14b]. One of the recent works [Nan+18]
proposes the dependent temporal effects on program input values, which allows the
reasoning on infinite input alphabet, but still loses the precision of the branching
properties. These conventional effects have the form (Φu,Φv), which separates the
finite and infinite effects. In our proposals, by integrating possibly finite and possibly
infinite effects into a single disjunctive form the effect logics eliminate the finiteness
distinction, and enable an expressive modular temporal verification.

2.1.3 Efficient Algorithms for Language Inclusion Checking

There are no existing finite-state automata capable of expressing the proposed
effect logics: DependentEffs, ASyncEffs, TimEffs and ContEffs; neither are there
corresponding language inclusion checking algorithms. We here reference two effi-
cient prior works targeting basic regular sets: Antichain-based algorithms and the
traditional TRS, which are both avoiding the explicit, complex translation from
the NFA into their minimal DFA. (However, generally, it is unavoidable for any
language inclusion checking solutions to have exponential worst-case complexity.)

Antichain-based algorithm [Wul+06] was proposed for checking universality and
language inclusion for finite word automata. By investigating the easy-to-check
pre-order on set inclusion over the states powerset, Antichain is able to soundly prune
the search space, therefore it is more succinct than the sets of states manipulated
by the classical fixpoint algorithms. It significantly outperforms the classical subset
construction, in many cases, it still suffers from the exponential blow up problem.

The main peculiarity of a purely algebraic TRS [Ter03; AM95; KT14a] is that
it provides a reasoning logic for regular expression inclusions to avoid any kind
of translation aforementioned. Specifically, as defined in Theorem 1, a TRS takes
finite steps to reduce r � s into its normal form r′ � s′ and the inclusion checking
fails whenever r′ � s′ is not valid. A TRS is shown to be feasible and, generally,
faster than the standard methods, because (i) it deploys the heuristic refutation step
to disprove inclusions earlier; (ii) it prunes the search space by using fine-grained
normalization lemmas. Overall, it provides a better average-case performance than
those based on the translation to minimal DFA. More importantly, a TRS allows us
to accommodate infinite traces and capture value-dependent properties.
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In this thesis, we choose to deploy extended TRSs, which combine optimizations
from both Antichain-based algorithms and classical TRS. Having such a TRS as
the back-end to verify temporal effects, one can benefit from the high efficiency
without translating effects into automata. More importantly, this thesis generalizes
Antimirov and Mosses’s rewriting procedure [AM95], to further reason about infinite
traces, together with value-dependent properties and arithmetic constraints. One
of the direct benefits granted by the effect logic is that it provides the capability
to check the inclusion for possibly finite and infinite event sequences without a
deliberate distinction, which is already beyond the strength of existing classical TRS
[AM95; AMR09; KT14a; Hov12].

2.2 Domain Specific Related Works

This section elaborates domain-related contexts for the target languages in
Chapter 4, Chapter 5, and Chapter 6 respectively: preliminaries of the preemptive
asynchronous concurrency model (subsection 2.2.1); real-time verification (subsec-
tion 2.2.2); and type-and-effect systems for algebraic effects (subsection 2.2.3).

2.2.1 Preemptive Asynchronous Concurrency Model

In Chapter 4, we propose ASyncEffs, to reason about a preemptive asynchronous
concurrency model. The mixture is essentially a combination of Esterel’s synchrony
[Ber99] with JavaScript’s asynchrony [MLT17]. This section discusses existing
semantic models for Esterel and JavaScript; temporal verification for synchronous
language Esterel. Afterward, it compares ASyncEffs with the Synchronous Kleene
Algebra, which shares the most similarities to our work.

2.2.1.1 Semantics of Esterel and JavaScript’s asynchrony

The web orchestration language HipHop.js [BS20] integrates Esterel’s synchrony
with JavaScript’s asynchrony, which provides the infrastructure for our work on
preemptive asynchronous execution models. To the best of the author’s knowledge,
the forward reasoning rules in our work formally define the first axiomatic semantics
for a core language of HipHop.js, which are established on top of the existing
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semantics of Esterel and JavaScript’s asynchrony.

For the pure Esterel, the kernel of the Esterel synchronous reactive language,
prior work gave two semantics, a macrostep logical semantics called the behavioral
semantics [Ber99], a small-step semantics called execution/operational semantics
[BG92], and a calculus for bounded input signals [Flo+19]. Our forward reasoning
rules closely follow the work of state-based semantics [Ber99]. In particular, we
borrow the idea of internalizing state into effects using history trace and current event
at any level in a program. As the existing semantics are not ideal for compositional
reasoning in the source program, our forward verifier can help meet this requirement
for better modularity.

In JavaScript programs, the primitives async and await serve for promises-based
(supported in ECMAScript 6 [Ecm99]) asynchronous programs, which can be written
in a synchronous style, leading to more scalable code (comparing to the callback-
based asynchronous code). However, the ECMAScript 6 standard specifies the
semantics of promises informally and in operational terms, unsuitable for formal
reasoning or program analysis. Prior works [MLT17; Ali+18], in order to understand
promise-related bugs, present the λp calculus, which provides a formal semantics for
JavaScript promises. Based on these, our work defines the semantics of async and
await in the event-driven synchronous concurrent context.

In Chapter 4, we propose to combine the operational semantics of synchronous
(preemptive) Esterel and the asynchronous constructs in JavaScript, building the
language foundation for such a blending of two distinct execution models.

2.2.1.2 Temporal Verification of Esterel

In prior work [JPO95], given an LTL formula, they first recursively translate it
into an Esterel program whose traces correspond to the computations that violate
the safety formula. The program derived from the formula is then combined with the
given Esterel program to be verified. The program resulting from this composition
is compiled using available Esterel tools; a trivial analysis of the compiler’s output
then indicates whether or not the property is satisfied by the original program.
The Esterel compiler performs model checking by exhaustively generating all the
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composed program’s reachable states.

However, the overhead introduced by the complex translation makes it particu-
larly inefficient when disproving some of the properties. Besides, it is limited by the
expressive power of LTL, as whenever a new temporal logic has to be introduced;
one needs to design a new translation schema accordingly.

Similarly, extending from Antimirov’s notions of partial derivatives, prior work
[Bro+15] presented a decision procedure for equivalence checking between Syn-
chronous Kleene Algebra (SKA) terms. The following subsection discusses the
similarities and differences between this work and [Bro+15].

2.2.1.3 Synchronous Kleene Algebra (SKA)

Kleene algebra (KA) is a decades-old sound and complete equational theory of
regular expressions. The ASyncEffs logic draws similarities to SKA [Pri10], which
is KA extended with a synchrony combinator for actions. Formally, given a KA is
(A,+, ·, ?, 0, 1), a SKA over a finite set AB is (A,+, ·,×, ?, 0, 1, AB), AB⊆A. The
⊥ (false) corresponds to the 0; the ε (empty trace) corresponds to the 1; the time
instance containing simultaneous signals can be expressed via ×; and the instants
subsumption (Definition 10) is reflected by SKA’s demanding relation.

Presently, SKA allows the synchrony combinator × to be expressed over any
two SKA terms to support concurrency. ASyncEffs achieves a similar outcome
by supporting normalization operations during trace synchronization, via a zip

function in the forward rule of [FV -Par ] (c.f. section 4.4). This leads to one major
difference in the inclusion/equivalence checking procedure, whereby a TRS for SKA
would have to rely on nullable, first, and partial derivatives for terms constructed
by the added combinator ×, but carefully avoided by the TRS construction. While
the original equivalence checking algorithm for SKA terms in [Pri10] has relied on
well-studied decision procedures based on classical Thompson ε-NFA construction,
[Bro+15] shows that the use of Antimirov’s partial derivatives could result in better
average-case algorithms for automata construction. The proposal in Chapter 4
avoided the consideration for the more general × operation from SKA a customized
TRS for inclusion (instead of equivalence) checking.
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Apart from the synchrony combinator, the effect logic also introduced the ω
constructor to explicitly distinguish infinite traces from the coarse-grained repetitive
operator Kleene star ?. The inclusion of ω constructor allows us to support non-
terminating reactive systems that are often supported by temporal specification and
verification to ensure systems’ dependability. As a consequence, the backend TRS is
designed to be able to reason soundly about both finite traces (inductive definition),
and infinite traces (coinductive definition), using cyclic proof techniques [Bro05a].

Another extension from the ready-made KA theory is Kleene algebra with
tests (KAT), which provides solid mathematical semantic foundations for many
domain-specific languages (DSL), such as NetKAT [And+14], designed for network
programming. In KAT, actions are extended with boolean predicates, and the
negation operator has been added accordingly. ASyncEffs also similarly support
the boolean algebra since each signal can be explicitly specified as either present or
absent. Such contradictions of signal status are also explicitly captured by ⊥ (false).

2.2.2 Real-Time Verification

In Chapter 5, we propose TimEffs, to conveniently specify Symbolic Timed
Automata, with efficient back-end solving of clock constraints. This work overcomes
the main limitations of traditional timed model checking: i) Timed Automata (TAs)
cannot be used to specify/verify incompletely specified systems (i.e., whose timing
constants have yet to be known) and hence cannot be used in early design phases;
ii) verifying a system with a set of timing constants usually requires enumerating all
of them if they are supposed to be integer-valued; iii) TAs cannot be used to verify
systems with timing constants to be taken in a real-valued dense interval.

This section first discusses the existing compositional model checking for real-time
systems, which draws the most similarities to our work, deploying implicit clocks.
Then it presents an explicit clock approach as a comparison. Lastly, it discusses
other usages of efficient clock manipulation and zone-based bi-simulation.
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2.2.2.1 Compositional Model Checking for Real-Time Systems

Although TAs’ simple structure made efficient model checking feasible, specifying
and verifying compositional real-time systems is challenging due to the increasing
complexity. TAs lack high-level compositional patterns for hierarchical design;
moreover, users often need to manually manipulate clock variables with carefully
calculated clock constraints. The process is tedious and error-prone.

There have been some translation-based approaches on building verification
support for compositional timed-process representations. For example, Timed Com-
municating Sequential Process (TCSP), Timed Communicating Object-Z (TCOZ)
and Statechart based hierarchical Timed Automata are well suited for presenting
compositional models of complex real-time systems. Prior works [Don+08; DM01]
systematically translate TCSP/TCOZ/Statechart models to flat TAs so that the
model checker Uppaal [LPY97] can be applied.

We are of the opinion that in that the goal of verifying real-time systems, in
particular safety-critical systems is to check logical temporal properties, which can
be done without constructing the whole reachability graph or the full power of
model-checking. We consider our approach (in Chapter 5) is simpler as it is based
directly on constraint-solving techniques and can be fairly efficient in verifying
systems consisting of many components as it avoids to explore the whole state-space
[SC20; YPD94].

2.2.2.2 TLA+: the Explicit Time Approach

Opposite of the long-established implicit clock approaches, Leslie Lamport
proposed an explicit time approach in [Lam05]. In an explicit-time specification,
time is represented with a variable now that is incremented by a Tick action. For a
continuous-time specification, Tick might increment now by any real number; for
a discrete-time specification, it increments now by 1. Timing bounds on actions
are specified with one of three kinds of timer variables: a countdown timer is
decremented by the Tick action, a count-up timer is incremented by Tick, and an
expired timer is left unchanged by Tick. A countdown or count-up timer expires
when its value reaches some value; an expiration timer expires when its value minus
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now reaches some value. An upper-bound timing constraint on when an action A

must occur is expressed by an enabling condition on the Tick action that prevents
an increase in time from violating the constraint; a lower-bound constraint on when
A may occur is expressed by an enabling condition on A that prevents it from being
executed earlier than it should be.

The results reported in [Lam05] indicate that verifying explicit-time specifications
with an ordinary model checker is not very much worse than using a real-time model
checker. However, the main advantage of an explicit-time approach is the ability to
use languages and tools not specially designed for real-time model checking. This is
taken to be important for complex algorithms that can be quite difficult to represent
in the lower-level, inexpressive languages typical of real-time model checkers. For
example, distributed message-passing algorithms have queues or sets of messages
in transit, each with a bound on its delivery time. Such algorithms are difficult to
handle with most real-time model checkers.

2.2.2.3 (Implicit) Clock Manipulation and Zone Abstraction

Besides Timed CSP, the concept of implicit clocks has also been used in time
Petri nets, and implemented in a number of model checking engines, e.g. [BV06]. On
the other hand, to make model checking more efficient with explicit clocks, [DY96;
BC13; MWP13; GNA14] work on dynamically deleting or merging clocks.

The constraint-solving techniques in our TimEffs’ inclusion checking, also draw
connections with region/zone-based bisimulations [LGL19], which is broadly used
in reasoning timed automata. Zone abstraction constructs zone graphs, which is
an effective technique for checking both safety and liveness properties and it has
been developed in [LPY97; Tri99]. Different from zone abstraction applied to TA,
we dynamically create or delete a set of clocks to encode the timing requirements.

2.2.3 User-defined Effects and Handlers

Static program analysis for algebraic effects is challenging because they produce
complex and less restricted execution traces due to the composable non-local control
flow mechanisms. In Chapter 6, we propose ContEffs, providing modular specifica-
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tions for user-defined effects and handlers. This section first discusses the existing
type-and-effect systems for algebraic effects, and then discuss the existing logics for
reasoning algebraic effects.

2.2.3.1 Type-and-effect Systems for Algebraic Effects

Many languages with algebraic effects are equipped with type-and-effect systems
– which enrich existing types with information about effects – to allow the effect-
related behaviors of functions to be specified and checked. A common approach of
doing this is row-polymorphic effect types, used by languages such as Koka [Lei14b;
Daa17], Helium [Bie+19; Dar+19], Frank [LMM16], and Links [LC12]. An effect
row specifies a multi-set of effects a function may perform, and is popular for its
simplicity, expressiveness (naturally enabling effect polymorphism), and support
for inference of principal effects [Lei14b]. There are numerous extensions to this
model, including presence types attached to effect labels, allowing one to express
the absence of an effect [LC12], existential and local effects for modularity [Bie+19],
and linearity [Lei18]. Other choices include sets of (instances of) effects [Dar+19],
and structural sub-typing constraints [Pre13].

In our work, we take a step further to consider finer-grained specifications
ContEffs, which concerns the order of effect labels expressed as temporal properties.

2.2.3.2 A Separation Logic for Effect Handlers

Recent work [dVP21] proposes a separation logic for effects and handlers, and
provides a proof environment in Coq [Coq22] to manually prove properties for
algebraic effects. Another work [BP14] presents an effect system for a simplified
variant of Eff language. [BP14] provides equational reasoning for programs by
providing a fine-grained denotational semantics, which involves mutable states.
However, none of the prior work considers the coexistence of zero-shot, one-shot
and multi-shot continuations and the non-termination behaviors caused by the deep
handlers.

Although our work targets pure programs, i.e., without mutable global states,
our logic ContEffs facilitates an automated verification framework and fills up the
gaps mentioned above in the perspective of temporal properties. We take it as future
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work to add spatial information into our current ContEffs.
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Chapter 3

Dependent Effects (DependentEffs)
Existing approaches to temporal verification have either sacrificed compositional-

ity in favor of achieving automation or vice-versa. To exploit the best of both worlds,
we present a new solution to ensure temporal properties via a Hoare-style verifier and
a term rewriting system (TRS) on DependentEffs. The first contribution is a novel
effect logic capable of integrating value-dependent finite and infinite traces into a
single disjunctive form, resulting in more concise and expressive specifications. As a
second contribution, by avoiding the complex translation into automata, our purely
algebraic TRS efficiently checks the language inclusion, relying on both inductive
and coinductive definitions. We demonstrate the feasibility of our proposal using a
prototype system and a number of case studies. Our experimental results show that
our implementation outperforms the automata-based model checker PAT by 31.7%
of the average computation time.

3.1 Introduction

This chapter specifies system behaviors in the form of DependentEffs, which
integrates the basic and ω-regular expressions with dependent values and arithmetic
constraints, gaining the expressive power beyond finite-state machines. Specifically,
DependentEffs provides insights of: (i) definite finite traces: using symbolic values
to present finite repetitions, which can be dependent on program inputs; (ii) definite
infinite traces constructed by infinity operator (ω); (iii) possibly finite and possibly
infinite traces constructed by Kleene star (?). For example, it expresses, the effects
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of function send(n) as:

Φsend(n) , (n≥0 ∧ Sendn ·Done) ∨ (n<0 ∧ Sendω)

The send function takes a parameter n, and recursively sends out n messages.
The above specification of send(n) indicates the fact that for non-negative values of
the parameter n, the send function generates a finite trace comprising a sequence
with n times of event Send, followed by a final event Done. For the case when the
parameter is negative, it generates an infinite trace of event Send. Note that (i) the
DependentEffs can express both finite traces and infinite traces in one single formula,
separated by arithmetic constraints, and (ii) n is a parameter to send, making the
effects dependent with respect to the value of send’s parameter. Furthermore, by
allowing events to be parameterized with symbolic values, the effects are defined as
languages over potentially infinite alphabets of the form Σ× Z, where Σ is a finite
event set, and Z is the set of integers. The main contributions are:

1. Temporal Effects Specification: This chapter defines the syntax and seman-
tics of DependentEffs, going beyond LTL, µ-calculus and prior effects.

2. Automated Verification System: Targeting a core language, this chapter
develops a Hoare-style forward verifier to accumulate effects from the source code,
as the front-end; and a sound decision procedure (the TRS) to solve the effects
inclusions, as the back-end.

3. Implementation and Evaluation: This chapter prototypes the novel effect
logic on top of the HIP/SLEEK system [Chi+12]. It further provides case studies
and experimental results to show the feasibility of the proposal.

3.2 Language and Specifications

This section first introduces the target (sequential C-like) language and then
depict the temporal specification language which supports DependentEffs.
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3.2.1 The Target Language.

The syntax of the core imperative language, i.e., sequential C-like, is given in
Figure 3.1 Here, k and x are meta-variables. kτ represents a constant of basic type
τ . var represents the countably infinite set of arbitrary distinct identifiers. Here, a
refers to a singleton event coming from the finite set of events Σ. It assumes that
programs used are well-typed conforming to basic types τ (it takes () as the unit
type). A program P comprises a list of function declarations fun∗. Here, it uses the
∗ superscript to denote a finite list (possibly empty) of items, for example, x∗ refers
to a list of variables, x1, ..., xn.

(Program) P ::= fun∗

(Basic Types) τ ::= int | bool | unit
(Function) fun ::= τ mn (τ x)∗ {requires Φpre ensures Φpost} {e}
(Expressions) e ::= () | kτ | x | τ x; e | mn(x∗) | x:=e | e1; e2

| assert Φ | e1 op e2 | event[a] | if v then e1 else e2

kτ : constant of type τ x,mn ::∈ var (Events)a ::∈ Σ

Figure 3.1: A Core Imperative Language.

Each function fun has a name mn, an expression-oriented body e, also is as-
sociated with a precondition Φpre and a postcondition Φpost (the syntax of effects
specification Φ is given in Figure 3.2). The language allows each iterative loop
to be optimized to an equivalent tail-recursive function, where the mutation on
parameters is made visible to the caller. The technique of translating away iterative
loops is standard and is helpful in further minimizing the core language. Expressions
comprise unit (), constants k, variables x, local variable declaration τ x; e, function
calls mn(x∗), variable assignments x:=e, expression sequences e1; e2, binary opera-
tions represented by e1 op e2, including +, −, ==, <, etc, event raises expression
event[a], conditional expressions if v then e1 else e2, and the assertion constructor
assert, parameterized with effects Φ.
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3.2.2 The Specification Language.

This proposal plants the effects specifications into the Hoare-style verification
system. It uses {requires Φpre ensures Φpost} to capture the precondition Φpre

and the postcondition Φpost, defined in Figure 3.2.

(Effects) Φ ::= π ∧ es | Φ1 ∨ Φ2 | ∃x.Φ
(Event Seq.) es ::= ⊥ | ε | _ | a | ¬a | es1 · es2 | es1 ∨ es2 | es1 ∧ es2

| est | es? | esω

(Pure) π ::= True | False | A(t1, t2) | π1 ∧ π2 | π1 ∨ π2

| ¬π | π1⇒π2 | ∀x.π | ∃x.π
(Terms) t ::= n | x | t1+t2 | t1−t2

x ::∈ var n ::∈ Z (Event) a ::∈ Σ (Infinity) ω (Kleene Star) ?

Figure 3.2: Syntax of DependentEffs.

Effects can be a conditioned event sequence π ∧ es or a disjunction of two effects
Φ1 ∨ Φ2, or an effect Φ existentially quantified over a variable x. Event sequences
comprise false (⊥); an empty trace ε; the wild card _ representing any single event;
a single event a; sequences concatenation es1 · es2; disjunction es1 ∨ es2; conjunction
es1 ∧ es2; negation of a single event ¬a; t times repetition of a trace, est, where t is
a term; Kleene star, zero or many times (possibly infinite) repetition of a trace; and
the infinite repetition of a trace, esω.

It uses π to donate a pure formula which captures the (Presburger) arithmetic
conditions on program parameters. It uses A(t1, t2) to represent atomic formulas of
two terms (including =, >, <, ≥ and ≤), A term can be a constant integer value
n, an integer variable x which is an input parameter of the program and can be
constrained by a pure formula. A term also allows simple computations of terms,
t1+t2 and t1-t2.

3.2.3 Semantic Model of DependentEffs.

To define the model, var is the set of program variables, val is the set of primitive
values, es is the set of event sequences (or event multi-trees, per se), indicating
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s, ϕ |= Φ1 ∨ Φ2 iff s, ϕ |= Φ1 or s, ϕ |= Φ2

s, ϕ |= ∃x.Φ iff (∃v ∈ val).s[x→v], ϕ |= Φ

s, ϕ |= π ∧ ε iff JπKs=True and ϕ=[]

s, ϕ |= π ∧ _ iff JπKs=True, ϕ ∈ {[a] | a ∈ Σ}

s, ϕ |= π ∧ a iff JπKs=True and ϕ=[a]

s, ϕ |= π ∧ ¬a iff s, ϕ 6|= π ∧ a

s, ϕ |= π ∧ (es1 · es2) iff there exist ϕ1, ϕ2 and ϕ1 ++ ϕ2 = ϕ

and s, ϕ1 |= π ∧ es1 and s, ϕ2 |= π ∧ es2

s, ϕ |= π ∧ (es1 ∨ es2) iff s, ϕ |= π ∧ es1 or s, ϕ |= π ∧ es2

s, ϕ |= π ∧ (es1 ∧ es2) iff s, ϕ |= π ∧ es1 and s, ϕ |= π ∧ es2

s, ϕ |= π ∧ est iff Jπ ∧ t=0Ks=True, s, ϕ |= π ∧ ε or

Jπ ∧ t>0Ks=True, there exist ϕ1, ϕ2

and ϕ1 ++ ϕ2=ϕ and s, ϕ1 |= π ∧ es

and s, ϕ2 |= (π ∧ t>0) ∧ est-1

s, ϕ |= π ∧ es? iff s, ϕ |= ∃x.(π ∧ esx) or s, ϕ |= π ∧ esω

s, ϕ |= π ∧ esω iff there exist ϕ1, ϕ2 and ϕ1 ++ ϕ2=ϕ

and s, ϕ1 |= π ∧ es and s, ϕ2 |= π ∧ esω

s, ϕ |= false iff JπKs=False or ϕ=⊥

Figure 3.3: Semantics of DependentEffs.

the sequencing constraints on temporal behavior. Let s, ϕ |= Φ denote the model
relation, i.e., the stack s and linear temporal events ϕ satisfy the temporal effects Φ,
with s, ϕ from the following concrete domains: s , var → val and ϕ , es.

Figure 3.3 defines the semantics of DependentEffs. It uses ++ to represent the
append operation of two event sequences. It uses [] to represent the empty sequence,
[a] to represent the sequence only contains one element a.
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3.3 Automated Forward Verification

The automated verification system consists of a standard Hoare-style forward
verifier (the front-end) and a TRS (the back-end). In this section, this section mainly
presents the forward verifier, which invokes the back-end, by introducing a set of
forward verification rules. Note that it allows the precondition of a function to
be false. The body of any such function can always be successfully verified. This
relaxation does not affect the soundness of the verification system.

3.3.1 Forward Rules

This section presents some of the forward verification rules in Figure 3.4, which
are used to systematically accumulate the effects based on the syntax of each
statement. P is to denote the program being checked. With pre/post conditions
declared for each function in P , one can apply modular verification to a function’s
body using Hoare-style triples ` {ΦC} e {Φ′C}, where ΦC is the current effects and
Φ′C is the resulting effects by executing e.

In [FV -If -Else], (v ∧ ΦC) enforces v into the pure constraints of every traces
in ΦC , same for (¬v ∧ ΦC). The rule FV -Call checks whether the instantiated
precondition of callee, [y∗/x∗]Φpre, is satisfied by the tail 1 of current effect state,
in which it uses an auxiliary function rev to reverse the event sequences of effects.
Then it obtains the next effect state by concatenating the instantiated postcondition,
[y∗/x∗]Φpost, to the current effect state (cf. step 6 in Figure 3.5).

In FV -Fun, it initializes the current effect state using ε, accumulate the effects
from the function body, to obtain ΦC , and check inclusion between ΦC and the
declared specifications Φpost

2.

1It checks the inclusion between the reversed current effects and precondition effects, meaning
that, before calling a function, its required effects has just happened.

2Φpost only needs to capture the effects from the current function body, excluding the history
effects specified in Φpre.
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Φ′C=ΦC · a
` {ΦC} event[a] {Φ′C}

[FV -Event] ` {ΦC} e1 {Φ′C} ` {Φ′C} e2 {Φ′′C}
` {ΦC} e1; e2 {Φ′′C}

[FV -Seq]

` {v ∧ ΦC} e1 {Φ′C} ` {¬v ∧ ΦC} e2 {Φ′′C}
` {ΦC} if v then e1 else e2 {Φ′C ∨ Φ′′C}

[FV -If -Else]

` {ΦC} e {Φ′C}
` {ΦC} τ x; e {∃x.Φ′C}

[FV -Local] ` rev(ΦC) v rev(Φ) γR

` {ΦC} assert Φ {ΦC}
[FV -Assert]

τ mn (τ x)∗ {requires Φpre ensures Φpost} {e} ∈ P

` rev(ΦC) v rev([y∗/x∗]Φpre) γR Φ′C = ΦC · [y∗/x∗]Φpost

` {ΦC} mn(y∗) {Φ′C}
[FV -Call]

` {ε} e {ΦC} ` ΦC v Φpost

` τ mn (τ x)∗ {requires Φpre ensures Φpost} {e}
[FV -Fun]

` {Φ′pre} e {Φ′post} ` Φpre v Φ′pre ` Φ′post v Φpost

` {Φpre} e {Φpost}
[FV -Frame]

Figure 3.4: Selected Forward Rules for DependentEffs

3.4 Effects Inclusion Checker

The effects inclusion checking (an extension of the TRS proposed from [AM95])
will be triggered i) right before a function call, to check the satisfiability of the
precondition; ii) after the forward verification, to check the satisfiability of the
postcondition; and iii) when there is an assertion, to check the satisfiability of
the asserted effects. As shown in section 3.3, the forward verification generates
effects inclusions of the form: Γ ` Φ1 vΦ

V Φ2  γR, a shorthand for: Γ ` Φ · Φ1 v
∃V. (Φ · Φ2) γR.

To prove such effects inclusions is to check whether all the possible event traces
in the antecedent Φ1 are legitimately allowed in the possible event traces from
the consequent Φ2, and (in case there are) to compute a residual effects γR (also
known as "frame" in the frame inference [Cal+09]) , which represents what was
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not consumed from the antecedent after matching up with the effects from the
consequent. Γ is the proof context, i.e. a set of effects inclusions, Φ is the history
of effects from the antecedent that have been used to match the effects from the
consequent, and V is the set of existentially quantified variables from the consequent.
Note that Γ, Φ and V are derived during the inclusion proof. The inclusion checking
procedure is initially invoked with Γ=∅, Φ=True∧ ε and V=∅. Here briefly discusses
the key steps and related forward reasoning rules that it may use in such an effects
inclusion proof. Firstly, it presents the reduction to eliminate the disjunctions from
the antecedents and existential quantifiers.

3.4.1 Effect Disjunction.

An inclusion with a disjunctive antecedent succeeds if both disjunctions entail
the consequent. (LHS refers to left-hand side, and RHS refers to right-hand side.)

Γ ` Φ1 v Φ γR
1 Γ ` Φ2 v Φ γR

2

Γ ` Φ1 ∨ Φ2 v Φ (γR1 ∨ γR2) [LHS -OR]

3.4.2 Existential Quantifiers.

Existentially quantified variables from the antecedent are simply lifted out of
the inclusion relation by replacing them with fresh variables. On the other hand, it
keeps track of the existential variables coming from the consequent by adding them
to V . (u is a fresh variable)

Γ ` [u/x]Φ1 vΦ
V Φ2  γR

Γ ` ∃x. Φ1 vΦ
V Φ2  γR

[LHS -EX ]
Γ ` Φ1 vΦ

V ∪{u} ([u/x]Φ2) γR

Γ ` Φ1 vΦ
V (∃x. Φ2) γR

[RHS -EX ]

3.4.3 Normalization.

The rewriting of an inclusion between two quantifier-free effects starts with a
general normalization for both the antecedent and the consequent.

It is assumed that the effects formulae are tailored accordingly using the lemmas
in Table 3.1, which are extended from the normalization rules suggested by Antimirov
and Mosses, being able to further normalize DependentEffs.

24



CHAPTER 3. DEPENDENT EFFECTS (DEPENDENTEFFS)

Table 3.1: Some Normalization Lemmas for DependentEffs.

es ∨ es→ es εω → ε (es1 · es2) · es3 → es1 · (es2 · es3)
⊥ ∨ es→ es es ∧ es→ es (es1 ∨ es2) · es3 → es1 · es3 ∨ es2 · es3

es ∨ ⊥ → es es ∧ ⊥ → ⊥ es1 · (es2 ∨ es3)→ es1 · es2 ∨ es1 · es3

ε · es→ es ⊥ω → ⊥ esω · es1 → esω

es · ε→ es εt → ε False ∧ es→ False ∧ ⊥
⊥ · es→ ⊥ t=0 ∧ est → ε es ∧ ε→ ⊥ (δπ(es)=false)
es · ⊥ → ⊥ ⊥t → ⊥ es ∧ ε→ ε (δπ(es)=true)

3.4.4 Substitution.

In order to guarantee the termination, for both the antecedent and the consequent,
a term t1⊕t2 will be substituted with a fresh variable u constrained with u=t1 ⊕
t2 ∧ u≥0, where ⊕∈{+,−}. (cf. Table 3.3-II)

π′=(u=t1 ⊕ t2 ∧ u≥0) Γ ` (π1 ∧ π′)∧esu1 · es v (π2∧π′) ∧ es2  γR

Γ ` π1 ∧ (es1t1⊕t2 · es) v π2 ∧ es2  γR
[LHS -SUB]

π′=(u=t1 ⊕ t2 ∧ u≥0) Γ ` (π1 ∧ π′)∧es1 v (π2∧π′) ∧ esu2 · es γR

Γ ` π1 ∧ es1 v π2 ∧ (es2t1⊕t2 · es) γR
[RHS -SUB]

3.4.5 Case Split.

Based on the semantics of the symbolic integer t, whenever it is possibly zero, it
conducts a case split, to distinguish the zero (base) case, leads to an empty trace;
and the non-zero (inductive) case. (cf. Table 3.3-II)

[LHS-CaseSplit]
Γ ` ((π1 ∧ t=0) ∧ es) ∨ ((π1 ∧ t > 0) ∧ es1 · est-11 · es) v π2 ∧ es2  γR

Γ ` π1 ∧ (est1 · es) v π2 ∧ es2  γR

[RHS-CaseSplit]
Γ ` π1 ∧ es1 v ((π2 ∧ t=0) ∧ es) ∨ ((π2 ∧ t > 0) ∧ es2 · est-12 · es) γR

Γ ` π1 ∧ es1 v π2 ∧ (est2 · es) γR

25



CHAPTER 3. DEPENDENT EFFECTS (DEPENDENTEFFS)

3.4.6 Unfolding (Induction).

Here comes the key inductive step of unfolding the inclusion. Firstly, it makes use
of the fst auxiliary function to get a set of events F , which are all the possibly first
event from the antecedent. Secondly, it obtains a new proof context Γ′ by adding
the current inclusion, as an inductive hypothesis, into the current proof context Γ.
Thirdly, it iterates each element a (a∈F ), and compute the partial derivatives (the
next-state effects) of both the antecedent and consequent with respect to a. The
proof of the original inclusion succeeds if all the derivative inclusions succeeds.

F = fstπ1(es1) Γ′ = Γ, (π1 ∧ es1 v π2 ∧ es2)
∀a ∈ F. (Γ′ ` Dπ1a (es1) v Dπ2a (es2))

Γ ` π1 ∧ es1 v π2 ∧ es2
[Unfold]

Next, it provides the definitions and the key implementations3 of Nullable, First
and Derivative respectively. Intuitively, the Nullable function δπ(es) returns a
boolean value indicating whether π ∧ es contains the empty trace; the First function
fstπ(es) computes a set of possible initial events of π∧es; and the Derivative function
Dπa(es) computes a next-state effects after eliminating one event a from the current
effects π ∧ es.

Definition 3 (Nullable). Given any event sequence es under condition π, here
defines δπ(es) to be:

δπ(es) : bool=

true if ε ∈ Jπ ∧ es1Kϕ

false if ε /∈ Jπ ∧ es1Kϕ
, where δπ(est) = SMT (π ∧ (t=0))4

Definition 4 (First). Let fstπ(es):={a | a ·es′ ∈ Jπ∧esK} be the set of initial events
derivable from event sequence es with respect to the condition π.

fstπ(es1·es2)=

fstπ(es1) ∪ fstπ(es2) if δπ(es1)=true

fstπ(es1) if δπ(es1)=false

3As the implementations according to basic regular expressions can be found in prior work
[KT14a]. Here, it focuses on presenting the definitions and how does it deal with dependent values
in the effects, as the key novelties of this work.

4The proof obligations are discharged using the Z3 SMT prover, while deciding the nullability
of effects constructed by symbolic terms, represented by SMT (π).
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Definition 5 (Derivative). The derivative Dπa(es) of an event sequence es with
respect to an event a and the condition π computes the effects for the left quotient
a-1Jπ ∧ esK, where it defines Dπa(est) = Dπ∧t>0a (es) · est-1.

Dπ
a(es1 · es2)=

Dπa(es1) · es2 ∨Dπa(es2) if δπ(es1)=true

Dπa(es1) · es2 if δπ(es1)=false

3.4.7 Disprove (Heuristic Refutation).

This rule is used to disprove the inclusions when the antecedent is nullable, while
the consequent is not nullable. Intuitively, the antecedent contains at least one more
trace (the empty trace) than the consequent.

δπ1(es1) ∧ ¬δπ1∧π2(es2)
Γ ` π1 ∧ es1 6v π2 ∧ es2

[Disprove]

3.4.8 Prove.

It uses three rules to prove an inclusion: (i) [Prove] is used when there is a subset
relation ⊆ between the antecedent and consequent; (ii) [Frame] is used when the
consequent is empty, it proves this inclusion with a residue γR

5;

and (iii) [Reoccur] is used when there exists an inclusion hypothesis in the
proof context Γ, which meets the conditions. It essentially assigns to the current
unexpanded inclusion an interior inclusion with an identical sequent labelling.

π1 ⇒ π2 es1 ⊆ es2

Γ ` π1 ∧ es1 v π2 ∧ es2
[Prove]

π1 ⇒ π2 γR=π1 ∧ es1

Γ ` (π1∧es1 v π2∧ε) γR
[Frame]

∃.(π′1 ∧ es′1 v π′2 ∧ es′2) ∈ Γ π1⇒π′1⇒π′2⇒π2 es1⊆es′1 es′2⊆es2

Γ ` π1 ∧ es1 v π2 ∧ es2
[Reoccur ]

5A residue refers to the remaining event sequences from antecedent after matching up with the
consequent. An inclusion with no residue means the antecedent completely/exactly matches with
the consequent.
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3.4.9 Discussion: highlighting the novelty.

Departing from the original Antimirov algorithm [AM95], this work devises
more rewriting rules such as: [RHS-SUB], [LHS-SUB], [RHS-CaseSplit], [LHS-
CaseSplit], [Frame]. These rules are necessary to prove the inclusions between the
more expressive specifications formulae, DependentEffs, which integrate arithmetic
constraints with the symbolic traces. The comprehensive rewriting system serves as
a back-end engine for the finer-grained verification system, which cannot be trivially
achieved by the original rewriting system.

3.5 Demonstration Examples

Here is a summary of the techniques, using the example shown in Table 3.2-(a).
The DependentEffs can be illustrated with send and server, which simulate a server
who continuously sends messages to all its clients. This function server takes an
integer parameter n, triggers an event Ready, then calls the function send, making
a boolean choice depending on input n: in one case it triggers an event Done;
otherwise it triggers an event Send, then makes a recursive call with parameter n-1.
Finally server recurs.

Table 3.2: Overview Example for DependentEffs.

(a) Source Code (b) DependentEffs Specifications

1 void send (int n){

2 if (n==0) {

3 event["Done"];

4 }else{

5 event["Send"];

6 send (n-1);

7 }}

8

9 void server (int n){

10 event["Ready"];

11 send(n);

12 server(n);}

Φsend(n)
pre , True∧Ready · (_)?

Φsend(n)
post , (n≥0∧Sendn ·Done) ∨ (n<0∧Sendω)

Φserver(n)
pre , n≥0∧ε

Φserver(n)
post , n≥0∧(Ready · Sendn ·Done)ω
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3.5.1 DependentEffs

The effects specifications for server and send are given in Table 3.2-(b). It
defines Hoare-triple style specifications for each of the programs, which lead to a
more compositional verification strategy, where temporal reasoning can be done
locally. Function send’s precondition, denoted by Φsend(n)

pre , requires the event Ready
to have happened at some point of the effects history; and it guarantees the final
effects/postcondition, denoted by Φsend(n)

post .

Function server’s precondition, Φserver(n)
pre , requires the input value be non-

negative while the pre-trace is required to be empty (ε); its postcondition ensures the
final effects Φserver(n)

post – an infinite repetition of a trace consisting of an event Ready
followed by n times of Send followed by Done. Directly from the specifications,
they are aware of (i) termination properties: server must not terminate, while send
may not terminate; (ii) branching properties: different arithmetic conditions on the
input parameters lead to different temporal effects; and (iii) required history traces:
by defining the prior effects in the precondition. The examples already show that
DependentEffs provides more detail information than classical LTL or µ-calculus,
and in fact, it cannot be fully captured by any prior works [HC14; KT14b; Mur+16;
Nan+18]. Nevertheless, the gain in expressive power comes at the efforts of a more
dedicated verification process, namely handled by the TRS.

3.5.2 Forward Verification.

As shown in Figure 3.5, it demonstrates the forward verification process of
function send. The current effect states of a program is captured in the form of
{ΦC}. To facilitate the illustration, it labels the verification steps by 1), ..., 8). The
figure marks the deployed verification rules in gray. The verifier invokes the TRS to
check language inclusions along the way.

The effect state 1) is obtained by initializing ΦC from the precondition.The effect
states 2), 4) and 7) are obtained by [FV -If -Else], which adds the constraints from
the conditionals into the current effects state, and unions the effects accumulated
from two branches in the end. The effect states 3) and 5) are obtained by [FV -Event],
which simply concatenates the triggered singleton event to the end of the current
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1) void send (int n){ (– initialize the current effect state –)
{ΦC=Φsend(n)

pre =True ∧Ready · _?} [FV -Fun]

2) if (n==0){
{n=0 ∧Ready · _?} [FV -If -Else]

3) event[Done]; }
{n=0 ∧Ready · _? ·Done} [FV -Event]

4) else{
{n6=0} [FV -If -Else]

5) event[Send];
{n6=0 ∧Ready · _? · Send} [FV -Event]

6) send(n-1); }}
rev(n 6=0 ∧Ready · _? · Send) v rev(Φsend(n-1)

pre ) (-check precondition-)
{n6=0 ∧Ready · _? · Send · Φsend(n-1)

post } [FV -Call]

7) Φ′C=(n=0 ∧Ready · _? ·Done) ∨ (n6=0 ∧Ready · _? · Send · Φsend(n-1)
post )

8) Φ′C v Φsend(n)
pre · Φsend(n)

post ⇔ (– check postcondition –)
(n=0 ∧Done) ∨ (n6=0 ∧ Send · Φsend(n-1)

post ) v Φsend(n)
post

Figure 3.5: The forward verification example for the function send.

effect state. The effect state 6) is obtained by [FV -Call]. Before each function call,
it checks whether the current state satisfies the precondition of the callee function.
The rev function simply reverses the order of effects sequences. If the precondition is
not satisfied, then the verification fails, otherwise it concatenates the postcondition
of the callee to the current effects.

While Hoare logics based on finite traces (terminating runs) [MMW11] and
infinite traces (non-terminating runs) [NU15] have been considered before, the
reasoning on properties of mixed definitions is new. Prior effects in the precondition
is also new, allowing greater safety to be applied to sequential reactive controlling
systems such as web applications, communication protocols and IoT systems.

3.5.3 The TRS

Table 3.3 demonstrates the inclusion checking example on the postcondition
of function send. I : The main rewriting proof tree (coming from the step 8) in
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Figure 3.5); II : One sub-tree of the rewriting process.

Table 3.3: One inclusion checking example for DependentEffs.

I :

(n=0)∧ε v ε [Frame]

(n=0) ∧ Done v Done

(n=0) ∧ Done v Send0 · Done

(n=0) ∧ Done v Φsend(n)
post (II)

n<0 ∧ Sendω v Sendω (†)[Reoccur]
[Unfold]

n<0 ∧ Sendω v Sendω (†)
[Unfold]

n<0 ∧ Send · Sendω v Sendω

n<0 ∧ Send · Sendω v Φsend(n)
post

[DISJUNCTION]
(n=0 ∧Done) ∨ (n 6=0 ∧ Send · Φsend(n-1)

post ) v Φsend(n)
post

II :

n1=0∧ε v ε [Frame]

n1=0 ∧ Done v Done

(n2=n1-1∧n2≥0)∧Sendn2 · Done v Sendn2 · Done (‡)[Reoccur]

n1>0 ∧ Sendn1-1 · Done v Sendn1-1 · Done
[Unfold]

n1>0 ∧ Sendn1 · Done v Sendn1 · Done
[CaseSplit]

(n1=n-1 ∧ n1≥0) ∧ Sendn1 · Done v Sendn1 · Done (‡)
[SUBSTITUTE]

n>0 ∧ Sendn-1 · Done v Sendn-1 · Done
[Unfold]

n>0 ∧ Send · Sendn-1 · Done v Sendn · Done

n>0 ∧ Send · Sendn-1 · Done v Φsend(n)
post

The TRS is designed to check the inclusion between any two DependentEffs. We
present the rewriting process on the postcondition checking of the function send.
It marks the rules of some essential forward reasoning steps in green. The effects
rewriting system decides effects inclusion through an iterated process of checking the
inclusion of their partial derivatives. There are two important rules inherited from
Antimirov and Mosses’s algorithm: [Disprove], which infers false from a trivially
inconsistent inclusion; and [Unfold], which applies Theorem 1 to generate new
inclusions. Similarly, we present Definition 6 for unfolding the inclusions between
DependentEffs.

Definition 6 (DependentEffs Inclusion). Given Σ is a finite set of alphabet, for two
DependentEffs Φ1 and Φ2, their inclusion is defined as:
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Φ1 v Φ2 ⇔ (∀A ∈ Σ). A-1(Φ1) v A-1(Φ2).

Besides, DependentEffs use symbolic values (assuming non-negative) to capture
the finite traces, depended on program inputs. Whenever the symbolic value is
possibly zero, it uses the rule [CaseSplit] to distinguish the zero (base) and non-zero
(inductive) cases, as shown in Table 3.3-II. In addition, the TRS is obligated to rea-
son about mixed inductive (finite) and coinductive (infinite) definitions. It achieves
these features and still guarantee the termination by using rules: [SUBSTITUTE],
which renames the symbolic terms using free variables; and [Reoccur], which finds
the syntactic identity, as a companion, of the current open goal, as a bud, from the
internal proof tree [Bro05a]. (It uses (†) and (‡) in Table 3.3 to indicate the pairing
of buds with companions.)

3.6 Implementation and Evaluation

To show the feasibility of the proposal, the implemented prototype system is
in OCaml, on top of the HIP/SLEEK system [Chi+12]. The arithmetic proof
obligations generated by the verification are discharged using constraint solver Z3.
Next, we show case studies to demonstrate the expressive power of DependentEffs.

3.6.1 Case Studies.

I. Encoding LTL. Classical LTL extended propositional logic with the temporal
operators G ("globally") and F ("in the future"), which it also writes � and ♦,
respectively; and introduced the concept of fairness, which ensures an infinite-paths
semantics. LTL was subsequently extended to include the U ("until") operator
and the X ("next time") operator. As shown in Table 3.4, it encodes these basic
operators into the effects, making it more intuitive and readable, mainly when
nested operators occur. Furthermore, by putting the effects in the precondition,
DependentEffs naturally combines past-time LTL along the way. (A,B are events, n
≥0, m ≥0 are the default constraints.)
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Table 3.4: Examples for converting LTL into DependentEffs.

�A≡A? ♦A≡_n ·A A U B≡An ·B �♦A≡_n ·A · (_m ·A)?

XA≡_ ·A A→ ♦B≡¬A ∨ _n ·B ♦�A≡_n ·A? ♦A ∨ ♦B≡_n ·A ∨ _m ·B

II. Encoding µ-calculus. µ-calculus provides a single, elegant, uniform logical
framework of great raw expressive power by using a least fixpoint (µ) and a greatest
fixpoint (v). More specifically, it can express properties such as vZ.P ∧ XXZ,
which says that there exists a path where the atomic proposition P holds at every
even position, and any valuation can be used on odd positions. As one can see,
such properties already go beyond the first order logic. In fact, analogously to
DependentEffs, the symbolic/constant values correspond to the least fixpoint (µ),
referring to finite traces, and the constructor ω corresponds to the greatest fixpoint
(v), referring to infinite traces. For example, one can write (_ ·A)ω, meaning that
the event A recurs at every even position in an infinite trace.

III. Kleene Star. By using ?, it makes an approximation of the possible traces
when the termination is non-deterministic. As shown in Figure 3.6, a weaker
specification of send(n) can be provided as Send? ·Done, meaning that the repetition
of event Send can be both finite and infinite, which is more concise than the prior
work, also beyond µ-calculus.

1 void send (int n){

2 if (...){ event[Done];}

3 else{ event[Send];

4 send(n-1);}}

Figure 3.6: An unknown conditional.

By supporting a variety of specifications, it can make a trade-off between pre-
cision and scalability, which is important for realistic methodology on automated
verification. For example, it can weaken precondition of server(n) (cf. Table 3.2)
to Φserver(n)

pre , True ∧ ε, and opt for either of the following two postcondition:
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Φserver(n)
post1 , n≥0∧(Ready · Sendn · Done)ω, or Φserver(n)

post2 , n≥0∧(Ready · Sendn ·
Done)ω∨n<0∧Ready ·Sendω, with the latter being more complex but more precise.

IV. Beyond Regular, Context-Free and Context-Sensitive. The paradig-
matic non-regular linear language: n>0 ∧ an · bn, can be naturally expressed by
the depended effects. Besides, the effects can also express grammars such as
n>0 ∧ an · bn · cn, or n>0 ∧ m>0 ∧ an · bm · cn, which are beyond context-free
grammar. Those examples show that the traces which cannot be recognized even by
push-down automata (PDA) can be represented by DependentEffs.

However, such specifications are significant, suppose it has a traffic light control
system, it could have a specifications n>0 ∧m>0 ∧ (Redn · Yellowm · Greenn)ω,
which specifies that (i) this is a continuous-time system which has an infinite trace,
(ii) all the colors will occur at each life circle, and (iii) the duration of the green light
and the red light is always the same. Moreover, these effects can not be translated
into linear bounded automata (LBA) either, which equivalents to context-sensitive
grammar, as LBA are only capable of expressing finite traces.

3.6.2 Experimental Results.

This experiment compares the performance of the backend TRS against the
well-established model checker PAT [Sun+09], which is is taken as the baseline
and implements techniques for LTL properties with fairness assumptions. The
comparison chose a realistic benchmark containing 16 IOT programs implemented
in C for Arduino controlling programs [Ard22]. For each of the programs, it (i)
derives a number of temporal properties (for 16 distinct execution models, there are
in total 235 properties with 124 valid and 111 invalid), (ii) express these properties
using both LTL formulae and DependentEffs, (iii) it records the total computation
time using PAT and the TRS. The test cases are provided as a benchmark. The
experiments are conduct on a MacBook Pro with a 2.6 GHz Intel Core i7 processor.

As shown in Table 3.5, it records the lines of code (LOC), the number of testing
temporal properties (#Prop.), and the proving/disproving times (in milliseconds)
using PAT and the TRS respectively. The table compares the TRS with PAT, and
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Table 3.5: The experiments are based on 16 real world C programs.

Programs LOC #Prop. PAT(ms) TRS(ms)
1 Chrome_Dino_Game 80 12 32.09 7.66
2 Cradle_with_Joystick 89 12 31.22 9.85
3 Small_Linear_Actuator 180 12 21.65 38.68
4 Large_Linear_Actuator 155 12 17.41 14.66
5 Train_Detect 78 12 19.50 17.35
6 Motor_Control 216 15 22.89 4.71
7 Train_Demo_2 133 15 49.51 59.28
8 Fridge_Timer 292 15 17.05 9.11
9 Match_the_Light 143 15 23.34 49.65
10 Tank_Control 104 15 24.96 19.39
11 Control_a_Solenoid 120 18 36.26 19.85
12 IoT_Stepper_Motor 145 18 27.75 6.74
13 Aquariumatic_Manager 135 10 25.72 3.93
14 Auto_Train_Control 122 18 56.55 14.95
15 LED_Switch_Array 280 18 44.78 19.58
16 Washing_Machine 419 18 33.69 9.94

Total 2546 235 446.88 305.33

the total proving/disproving time has been reduced by 31.7%.

We summarize the insights which lead to the improvement: (1) when the transi-
tion states of the models are small, the average execution time spent by the TRS
is even less than the NFA construction time, which means it is not necessary to
construct the NFA when a TRS solves it faster; (2) when the total states become
larger, on average, the TRS outperforms automata-based algorithms, due to the
significantly reduced search branches provided by the normalization lemmas; and
(3) for the invalid cases, the TRS disproves them earlier without constructing the
whole NFA.

3.7 Summary

This proposal devises a concise and precise characterization of temporal properties.
It proposes a novel logic for effects to specify and verify the implementation of the
possibly non-terminating programs, including the use of prior effects in precondition.
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It implements the effect logic on top of the HIP/SLEEK system [Chi+12] and show its
feasibility. This work is the first solution that automate modular temporal verification
using an expressive effect logic, which primarily benefits modern sequential controlling
systems ranging over a variety of application domains.
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Chapter 4

(A)Synchronous Effects (ASyncEffs)
To make reactive programming more concise and expressive, it is promising to

combine two approaches to concurrency that integrates synchronous preemptions
with asynchronous promises. Existing automated temporal verification techniques
have not been designed to handle such a marriage of two execution models. This
work presents a solution that integrates a modular Hoare-style forward verifier with
a new term rewriting system (TRS) on (A)Synchronous Effects (ASyncEffs).

Firstly, we formally define the full-featured Esterel, generalizing the preemptive
asynchronous abstraction. Secondly, we propose ASyncEffs, a new effect logic, that
extends Synchronous Kleene Algebra with a waiting operator. Thirdly, we establish
an effect system via a set of forward verification rules. Lastly, we present a purely
algebraic TRS to efficiently check language inclusions between ASyncEffs. To show
the feasibility, we prototype the verification system; prove its correctness; report
experimental results, and investigate how it can help to detect errors related to both
synchronous preemptions and asynchronous promises.

4.1 Introduction

Synchronous programming [Ben+03] has found success in many safety-critical
applications, such as fly-by-wire systems and nuclear power plant control software1.
It exhibits a high concurrency but calls for deterministic and predictable execution,

1Concretely, it has been used in the creation and verification of fuel control systems; landing
gear control functions; virtual display systems at Dassault Aviation [Ber+00]; the control software
of the N4 nuclear power plants; the Airbus A320 fly-by-wire system; and the specification of part
of Texas Instrument’s digital signal processors [Ben+03].
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which has been considered a clean formalism for modeling, specifying, validating, and
implementing reactive systems. Languages based on this paradigm – such as Esterel
[BG92], Lustre [RHR91] and Signal [BLJ91] – assume that time is partitioned into
discrete instants/clock ticks and the computation/communication for processing all
events that occur within one time instant happen instantaneously.

Many mainstream languages, such as C#, Java, JavaScript, Rust, Python, and
Swift, have recently added support for asynchronous promises, also known as futures
or tasks [Bie+12]. These features support basic asynchronous operators, such as
yield pauses/resumes generator functions asynchronously; async/await simplify the
blending of asynchronous executions into sequential programming. However, most
these languages offer a small set of preemption primitives, often inadequate for
concisely modeling interruptions or control-driven computations.

To make reactive programming more concise and expressive, recent innovations
are dedicated to integrating synchronous features to asynchronous infrastructures.
For example: the language HipHop.js [BS20] is a mixture of JavaScript and Esterel
for reactive web applications, which facilitates JavaScript with preemptions like every
and abort; the Scala library ZIO [Mai22] is for type-safe asynchronous and concurrent
programming with rudimentary preemptive operators, such as zipPar and race;
similarly, microsoft’s durable function [ptc19] deploys blended asynchrony/synchrony,
including pause, parallel composition for deterministic orchestration functions, which
is available as libraries for C#, JavaScript, Python.

There is a growing need to reason about such preemptive asynchronous reactive
programs with multifarious preemptions. In particular, we are interested in the
techniques for specifying and verifying temporal behaviors of such execution models,
which have not been extensively studied. Here, we mainly tackle the challenges
related to synchronous preemptions and asynchronous promises.

The power of preemption appears in Figure 4.1. Module Main makes use of
three submodules: Identity reads the GUI and enables the login button when the
input username and password are both longer than two characters; Authenticate
calls the authorization service and output the signal connected when authorized;
Session establishes an active communication session between the authorized user
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1 module Main (in login, inout connected, out connState){

2 par{Identity(...)} // enables the login button

3 {every(login) { // implements a preemptive loop

4 Authenticate(...); // preempts the previous Session

5 present(connected){Session(...)} // then branch

6 {emit connState("err")}}}}// else ...

Figure 4.1: A preemptive program written in Esterel, for a simple web login, drawn
from [BS20].

and the server.

Statement par{...}{...} (at lines 2 and 3) runs branches in parallel. The
signal login is present when the login button is pressed in the first thread. Then
the presence of login makes the every statement restart the sequence of tasks (at
lines 4-6), so the current session is preempted and Authenticate begins execution.
When Authenticate terminates, the status of connected is tested (at line 5). If
present, Session starts to run a new session until next time when the login button
is pressed. When Session terminates, the every(login){...} statement simply
waits for a new login. If after Authenticate, the status of connected is absent,
then the output signal connState is emitted with an error message.

Although simple, Figure 4.1 shows that preemption statements allow a clean,
hierarchical description of temporal behaviors. While flexible and expressive, pre-
emption primitives have fairly complex semantics, which in turn makes reasoning
difficult. In this paper, we study the subtle operational semantics of various pre-
emptions, including: interrupt; abort; suspend; every; and the label-based escape.
Furthermore, we show that our approach supports a comprehensive foundation for
verifying preemptions with different keywords, including strong or weak, immediate
or delayed.

With asynchronous promises, we can perform long-lasting tasks without blocking
the main thread. The keywords async and await allow sequential-style code to
capture concurrent executions with explicit dependencies via asynchronous signals
succinctly. However, promises are complex and error-prone in their own right. Prior
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works [MLT17; Ali+18] display a set of broken promises chain anti-patterns shown
in asynchronous JavaScript, and propose to detect the anti-patterns by constructing
a promise dependency graph. In this paper, we focus on the async/await related
anti-pattern, where unreachable promises may have registered reactions that will
never be executed. Different from prior works, we show that our purely algebraic
approach detects such unreachable promises without any constructions of graphs.

To achieve a modular verification - where modules can be replaced by their
already verified properties - for preemptive asynchronous programs, and exploit
the best of both synchronous and asynchronous execution models, we propose a
novel temporal specification language, which enables compositional verification
via a forward verifier and a term rewriting system (TRS). More specifically, we
specify system behaviors in the form of ASyncEffs, which enriches the Synchronous
Kleene Algebra (SKA) [Pri10; Bro+15] with a new operator, to provide the waiting
abstraction into classic linear temporal verification. Our main contributions are:

1. Language Abstraction: we formally define the operational semantics for the
full-featured Esterel and use it to generalize the preemptive asynchronous programs.

2. Specification Logic: we propose ASyncEffs, by defining its syntax and seman-
tics. We show that in our proposal, ASyncEffs’ expressiveness power subsumes both
classic linear temporal logic (LTL) and the past-time LTL [Rei+11].

3. Forward Verifier: we establish an axiomatic semantics to infer the behaviors
of given programs, and check the real behaviors against the specifications.

4. An Efficient TRS: we present rewriting rules to prove/disprove the entailments
between ASyncEffs. The TRS is a back-end engine deployed by the front-end
Forward Verifier; also can work independently outside of our proposal.

5. Implementation and Evaluation: we prototype our proposal, prove its cor-
rectness, report on experimental results and investigate how it can help to debug
errors related to preemptions and asynchronous promises.
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4.2 Verification Challenges

Verification techniques for languages, with features like the full-featured Esterel,
are expected to overcome verification challenges from the both synchronous and
asynchronous worlds. This section outlines the existing specification requirements
in Esterel and asynchronous JavaScript, then proposes our solution to addresses
corresponding verification challenges.

4.2.1 A Sense of Esterel: Perfect Synchrony and Preemption

A synchronous program reacts to its environment in a sequence of logical ticks,
and computations within a tick are assumed to be instantaneous. Being suitable for
control-dominated model designs, Esterel has found success in many safety-critical
applications, that need strong guarantees, can be attributed to its precise semantics
and simpler computational model [BG92; Ber99].

Esterel treats computation as a series of deterministic reactions to external
signals. All parts of a reaction complete in a single, discrete-time event. Events
exhibit deterministic concurrency; and each reaction may trigger concurrent threads
without execution order affecting the computation result. Primitive constructs can
be assumed to execute in zero time, except for the pause statement. Hence, each
execution trace is a sequence of logical clock events, separated by explicit pauses. In
each event, several computations take place simultaneously.

To maintain determinism and synchrony, evaluation in one thread of execution
may affect code arbitrarily far away in the program. Thus, there is a strong
relationship between signal status and control propagation: a signal status determines
which branch of a present test is executed, which in turn determines which emit
statements are executed (cf. subsection 4.3.1 for the syntax). The first challenge of
programming Esterel is the Logical Correctness issue, caused by non-local executions.
This difficulty is resolved by assuming that there exists precisely one status for each
signal. The demonstration examples are shown in Table 4.1

In Table 4.1-(a), if the local signal S1 was present, the program would take the first
branch of the condition, and the program would terminate without having emitted
S1 (nothing leaves S1 with absent). If S1 were absent, the program would choose
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1 signal S1 {

2 present S1

3 then nothing

4 else emit S1

5 }

1 signal S1 {

2 present S1

3 then emit S1

4 else nothing

5 }

1 /*@ requires {S1} @*/

2 /*@ ensures {S1} @*/

3 present S1

4 then emit S1

5 else nothing

(a) No valid assignments (b) Two possible assignm- (c) One assignment under the

(Logically incorrect). ents (Logically incorrect). precondition (Logically correct).

Table 4.1: Logical correctness examples in Esterel.

the second branch and emit the signal. Both executions lead to a contradiction.
Therefore there are no valid assignments of signals in this program. This program is
thus assumed to be logically incorrect.

Consider the revised program in Table 4.1-(b), if S1 were present, the conditional
would take the first branch, and S1 would be emitted, justifying the choice of signal
value. If S1 were absent, the signal would not be emitted, and the choice of absence
is also justified. Thus there are two contradictory assignment to the signal in this
program, which is thus classified as logically incorrect. Our verification is able to
detect such logical errors, which concludes ⊥ (false) for Table 4.1-(a), and concludes
{S1}∨{S1} for Table 4.1-(b), cf, subsubsection 4.7.1.1. However, if S1 is not a local
signal, and can be composed to a bigger context, as shown in Table 4.1-(c), our
modular approach allows a precondition which guarantees that the environment
emits S1. In this case, the code snippet becomes logically correct, because there is
only one consistent assignment to S1. This was not possible in prior work [Flo+19].

The Second challenge is to model/verify programs with concurrent execution
that is compatible with preemptions. Coordination in concurrent systems can result
from message exchanges. In Esterel, it can also result from process preemption [Ber93]
(cf. Figure 4.1), which is an explicit control mechanism that consists in denying the
right to work on a process, either permanently (e.g., abortion) or temporarily (e.g.,
suspension). Most existing languages offer a small set of preemption primitives, but
this is often inadequate for concise modelling of reactive systems. Preemption is
particularly important in control-dominated reactive programming, where much of
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modelling comprise of handling interrupts and control-driven computation. While
expressive, preemption primitives have fairly complex semantics, which in turn
makes reasoning difficult. Here, based on our operational semantics model, we devise
a parallel merge operator, to soundly calculate temporal traces from concurrent
preemptive threads.

4.2.2 Asynchrony from JavaScript Promises: Async–Await

"Who can wait quietly while the mud settles? Who can remain still until the moment
of action?"
. – Laozi, Tao Te Ching

A number of mainstream languages, such as C#, JavaScript, Rust, and Swift, have
recently added support for async/await and the accompanying promises abstraction,
also known as futures or tasks [Bie+12]. As an example, consider the JavaScript
program in Figure 4.2. It uses the fs module (line 1) to load a file into a variable
(line 6) using async/await syntax.

1 const fs = require(’fs’).promises;

2

3 async function read (filePath) {

4 const task = fs.readFile(filePath);

5 ...// operations do not rely on the result of loading file

6 const data = await task; // block waiting

7 ...// logging or data processing of the Json file

8 }

Figure 4.2: Using Async-Await in JavaScript.

The function read takes a string called filePath. The keyword async indicates
that this function is to be executed asynchronously. Calling fs.readFile in line 4
does not block subsequent computations, such as line 5. The main thread will only
be blocked by await statements, that waits for the result of an earlier fs.readFile
asynchronous call.

The goal of the asynchronous programming model is to support concurrent exe-
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cution that expresses dependency between producers and consumers of information
(via its corresponding asynchronous signals). Its use allows sequential-style code to
succinctly capture concurrent execution with precise dependency via asynchronous
signals. Due to its more complex control flow mechanism, existing reasoning methods
for languages with synchrony do not directly support asynchronous signals.

Prior works [MLT17; Ali+18] display a set of broken promises chain anti-patterns
shown in asynchronous JavaScript, which are mostly caused by using promises
without sufficient static checking. They propose to mitigate the anti-patterns by
constructing a promise dependency graph, and enforce a static checking upon the
graph. Here we focuses on the unreachable reactions anti-pattern, where an unsettled
promise may have registered reactions that will not be executed. Different from
prior works, a case study in Table 4.6 shows that our purely algebraic approach
detects this anti-pattern without any constructions of graphs.

4.3 Language and Specifications

This section first introduces the target language and then depict the temporal
specification language which supports ASyncEffs.

4.3.1 The Target Language

We summarize a full-featured Esterel in Figure 4.3, to be our target language,
which provides the infrastructure for preemptive asynchronous abstraction. The
statements marked as purple are generalized from the preemptive statements in
(reactive) synchronous programming, while the statements marked as blue provide
the async/await constructs for programming asynchronous promises.

Here, S, x are meta-variables ranging over signal variables, constants. Signal
types are: in for input signals, out for output signals and inout for both. var
represents the countably infinite set of arbitrary distinct identifiers. A program P
comprises a list of module definitions −→fun2. Each module has a name mn, a list
of well-typed arguments

−−−−→
τ S(x), a statement-oriented body p, associated with a

2Here, we use the −→ script to denote a finite vector (possibly empty) of items.
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(Program) P ::= −→fun
(Signal Types) τ ::= in | out | inout
(Module Def .) fun ::= mn (

−−−−→
τ S(x)) 〈req Φpre ens Φpost〉 p

(Values) v ::= () | i | b | x
(Parametrized Signal) S ::= S(v)
(Statements) p, q ::= v | yield | emit S | p; q | p||q | call mn (−→S )
| loop p | signal S in p | present S then p else q | async S p q | await [κ1] S
| trap p | exit d | [κ2] abort p S | [κ2] suspend p S

(Preemption Keywords) κ1 ::= immediate | delayed κ2 ::= weak | strong

(Signal Variables)S ∈ Σ i ∈ Z b ∈ B mn, x ∈ var (Depth)d∈ N∪{0}

Figure 4.3: Esterel Syntax.

precondition Φpre and a postcondition Φpost. We here present the intuitive semantics
of the basic statements.

A thread of execution suspends itself for the current instant using the yield
construct, and resumes when the next instant started3. Statement emit S broadcasts
the signal S to be present. The emission of S is valid for the current instant only.
The sequence statement p; q starts p and instantaneously passes the control flow
to q when p terminates. Statement q is never started if p always yields. Parallel
statement p||q runs p and q in parallel. The branches can terminate in different
instants, and the parallel waits for the last one to terminate. Statement call mn (−→S )
is a call to module mn, providing the list of IO signals. Statement signal S in p

starts p with a local signal S, overriding any S might already be declared. Statement
present S p q immediately starts p if S is present in the current instant; otherwise
it starts q instead. Statement loop p implements an infinite loop.

Keywords immediately and delayed are for await statements, indicating waiting
for a signal from the current instant or the next instant, respectively. Keywords weak
or strong are for preemptive statements, indicating to allow or not allow, respectively,

3For a better cooperative multitasking [Wik22a], processes voluntarily yield control periodically
or when idle or logically blocked.
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the current instant to execute when the preemption condition is met.

In this work, we use the immediately waiting and weak preemptions by default,
with discussions on how to cooperate with the delayed waiting and strong preemptions
in detail.

4.3.2 Operational Semantics of the Target Language

The reduction rules are in the form of p
α,k−−→
E

p′, meaning that a process p
performs an action α in the context of a signal environment E , then becomes a
process p′ with a completion code k. E is the set of all the signals produced at the
instant by the whole program of which p is part, which gives the global information
about the presence and absence of signals. In particular, α ⊆ E .

The completion code k is a non-negative integer: when k=0, the reduction
completes without exits nor yields; when k=1, it completes without exits but with a
yield; when k=2, it completes with an exit which escapes the nearest trap; when
k>2, it completes with an exit which escapes a further enclosing trap. Such an
encoding for preemptions was first advocated by Gonthier [Gon88].

We start with axioms: statement () terminates without emitting any signals
and k=0; statement yield terminates without emitting any signals and k=1; and
statement emit S sets the signal S to be present and terminates with k=0.

() ∅,0−→
E

() [Axiom-Nothing] yield
∅,1−→
E

() [Axiom-Y ield]

emit S {S},0−−−→
E

() [Axiom-Emit]

The rules for sequences vary based on the completion code k: when p terminates
with k=0, (Seq-0) executes q immediately; when p produces a yield, so does the
whole sequence; when p raises an exception with depth k, (Seq-n) discards the rest
of the code. The rule (Loop) performs an instantaneous unfolding of the loop into a
sequence.

[Seq-0]
p

α,0−−→
E

() q
f,k−→
E

q′

p; q e∪f,k−−−→
E

q′

[Seq-1]
p

α,k−−→
E

p′ (k≤1)

p; q α,k−−→
E

p′; q

[Seq-n]
p

α,k−−→
E

p′ (k>1)

p; q α,k−−→
E

()

[Loop]
p; loop p α,k−−→

E
p′

loop p
α,k−−→
E

p′
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Due to the static scope of signals, E may already contain the S, therefore the
notation E\S denotes the instant obtained by removing any existing S from E . The
rule (Call) retrieves the function body p of mn from the program, and executes p.
−→
S \E represents the output signals declared in the callee function.

[Decl]
p

α,k−−−→
(E\S)

p′

signal S in p
α,k−−→
E

signal S in p′

[Call]
x (−→τ S) 〈req Φpre ens Φpost〉 p ∈ P p

α,k−−→
E

p′

call x (−→S ) α,k−−→
E

p′

If the signal is present in the current instant, the first clause is instantly executed.
Otherwise, the else clause is instantly executed.

(S7→present) ∈ E p
α,k−−→
E

p′

present S p q α,k−−→
E

p′
(Present-1)

(S7→present) 6∈ E q
α,k−−→
E

q′

present S p q α,k−−→
E

q′
(Present-2)

Figure 4.4 provides the operational semantics of the promise-related and preemp-
tive statements in the full-featured Esterel.

Statement async S p q is a syntactic sugar which spawns a long-lasting back-
ground computation for p, which will join back to the main thread later. It essentially
performs p and q in parallel, and emits S when p completes. Statement await S
blocks the local thread and waits for S to be emitted in the environment.

Statement abort p S performs p and terminates when S occurs. Statement
suspend p S suspends p for one instant when S is present in the environment. State-
ment trap p installs a trap and behaves like p until any exit occurs. Statement
exit d instantaneously exits the trap with depth d. The rules for parallel statements
execute the branches independently, then merge their output events accordingly. If
one branch exits with code k, then both threads are preempted with the exception
depth k. If both statements exit distinct traps with k1 and k2 in the same instant,
then the execution exits with the larger value.

Derived Statements.

Figure 4.5 shows how to construct the derived statements via the primitives.
Particularly, every S p implements a preemptive loop that checks for a condition,
here the presence of S. An every loop starts its body when its condition is true; but
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[Async]
(p; emit S) α,k1−−→

E
p′ q

β,k2−−→
E

q′

async S p q α∪β,max(k1,k2)−−−−−−−−−→
E

p′||q′

[Await-1]
(S 7→ present) ∈ E

await S ∅,1−→
E

()

[Await-2]
(S 7→ present) 6∈ E

await S ∅,1−→
E

await S

[Abort-1]
(S7→present) ∈ E

abort p S ∅,0−→
E

()

[Abort-2]
(S7→present) 6∈ E p

α,k−−→
E

p′

abort p S α,k−−→
E

abort p′ S

[Abort-3]

abort () S ∅,0−→
E

()

[Suspend-1]
(S7→present) ∈ E

suspend p S ∅,1−→
E

suspend p S

[Suspend-2]
(S7→present) 6∈ E p

α,k−−→
E

p′

suspend p S α,k−−→
E

suspend p′ S

[Suspend-3]

suspend () S ∅,0−→
E

()

[Trap-1]
p

α,k−−→
E

p′ (k≤1)

trap p
α,k−−→
E

trap p′

[Trap-2]
p

α,k−−→
E

p′ (k=2)

trap p
α,0−−→
E

()

[Trap-3]
p

α,k−−→
E

p′ (k>2)

trap p
α,k-1−−−→
E

p′

[Exit]

exit d
∅,d+2−−−→
E

()

[Par-Base-0]
p

α,0−−→
E

p′

p||q α,0−−→
E

p′||q

[Par-Base-1]
p

α1,1−−→
E

p′ q
α2,1−−→
E

q′

p||q α1∪α2,1−−−−→
E

p′||q′

[Par-Preemption]
p

α1,k1−−−→
E

p′ q
α2,k2−−−→
E

q′ (max(k1, k2)>1)

p||q α1∪α2,max(k1,k2)−−−−−−−−−−→
E

()

Figure 4.4: Operational semantics of the promise-related and preemptive statements
in the full-featured Esterel.

(1) halt , loop (yield)
(2) loop p each S , loop (abort (p;halt) S)
(3) every S p , await S; (loop p each S)
(4) await (delayed)S , yield; await S

Figure 4.5: Expansion of derived preemptions.

whenever the condition is met again in some further instants, it kills the current
execution instantly to restart a new iteration. Besides, await (delayed) S implements
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a delayed waiting which starts as early as the next instant, as opposite to the default
immediate waiting.

4.3.3 An Effect Logic for the Temporal Specification

(Effects) θ ::= ⊥ | ε | I | S? | θ1·θ2 | θ1∨θ2 | θ1||θ2 | θ?

(Instant) I ::= {} | {S 7→ α} | I1 ∪ I2

(Parametrized Signal) S ::= S(v)
(Signal Statuses) α ::= present | absent | undef

(Signal Variables)S ∈ Σ (Values)v (Waiting)? (Kleene Star)?

Figure 4.6: Syntax of ASyncEffs.

As shown in Figure 4.6, ASyncEffs comprise false (⊥); the empty trace ε; the
singleton instant I; waiting for a parametrized signal S?; trace concatenation θ1 · θ2;
trace disjunction θ1 ∨ θ2; synchronous parallelism θ1||θ2. ASyncEffs can also be
constructed by ?, representing zero or more times of repetition of a trace. There
are three possible statuses for a signal: present, absent and undefined. The default
status of signals in a new instant is undefined. An instant I is a set of mappings
from signals to their statuses; and instants can be empty sets {}, indicating no
signal constraints for the instant.

4.3.4 Semantic Model of ASyncEffs

To define the semantic model, we use ϕ (a trace of instants) to represent the
concrete the computation execution. Let ϕ |= Φ denote the model relation, i.e.,
linear temporal instants ϕ satisfy the temporal effects Φ, with ϕ from the concrete
domain: ϕ,list(I). Figure 4.7 defines the semantics of ASyncEffs.

[] represents an empty sequence; ++ appends two sequences; [I] represents a
singleton sequence contains one instant I. Here I is a list of mappings from
parametrised signals to statuses. We use {S} and {S} to shorthand {S 7→ present}
and {S 7→ absent} respectively. The signals shown in one instant represent the
minimal set of signals which are required/guaranteed to be there. Any instant
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ϕ |= ε iff ϕ = []
ϕ |= I iff ϕ = [I]
ϕ |= S? iff ∃n≥0. ϕ={S}n++[{S}]
ϕ |= θ1 · θ2 iff ∃ϕ1, ϕ2, ϕ=ϕ1++ϕ2 such that ϕ1|=θ1 and ϕ2|=θ2

ϕ |= θ1∨θ2 iff ϕ |= θ1 or ϕ |= θ2

ϕ |= θ1||θ2 iff ϕ |= θ1 and ϕ |= θ2

ϕ |= θ? iff ϕ |= ε or ϕ |= (θ · θ?)
ϕ |= ⊥ iff false

Figure 4.7: Semantics of ASyncEffs.

contains contradictions, such as {S,S}, will lead to false, as the signal S can not be
both present and absent.

Expressiveness.

As shown in Table 4.2, we are able to recursively encode event-based LTL
operators into ASyncEffs, making it more intuitive and readable, mainly when
nested operators occur. By putting effects in the postcondition, they restrict future
traces; whereas in the preconditions, they naturally encode past-time temporal
specifications. The basic modal operators are: � for "globally"; ♦ for "finally";
© for "next"; U for "until", and their past time reversed versions: ←−� ; ←−♦ ; and
	 for "previous"; S for "since". Besides, the implication operator is expressed as
A→ B ≡ {A} ∨ {A,B}. Apart from the high compatibility with standard first-order
logic, ASyncEffs make the temporal verification more flexible to incorporate with
other logics. ({A}, {B} represent different instants which contain signal A and B to
be present.)

Table 4.2: Examples for converting LTL formulae into Effects.

Φpost �A≡{A}? ♦A≡{}? · {A} ©A≡{} · {A} A U B≡{A}? · {B}
Φpre

←−
�A≡{A}?

←−
♦A≡{A} · {}? 	A≡{A} · {} A S B≡{B} · {A}?
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4.4 Automated Forward Verification

Here, we present the forward rules, i.e., an axiomatic semantics model for
the target language. These rules transfer program states and accumulate the
effects syntactically. To define the rules, we introduce an environment E and the
program state in a three-elements tuple (h, c, k), where h represents the trace of
history; c represents the current instant; k is the completion code. Concretely:
E ,

−−−−→
(S7→α), h , θ, c , I, k ∈ N∪{0}. The forward rules are in the form:

E ` 〈H,C,K〉 p 〈H ′, C ′, K ′〉, where E is the environment; p is the given statement;
〈H,C,K〉 refers to a set of disjunctive program states, i.e.,

−−−−→
(h, c, k). The meaning

of the transition rules can be described as follows:

〈H ′, C ′, K ′〉 = ⋃|〈H,C,K〉|-1
i=0 〈H ′i, C ′i, K ′i〉 where E ` 〈hi, ci, ki〉 p 〈H ′i, C ′i, K ′i〉.

We summarize the forward reasoning rules in Figure 4.8.
[FV -Nothing] obtains the next program state by inheriting the current state.

[FV -Emit] updates the current instant with S pointing from undef to present.
[FV -Yield] archives the current instant to the history trace, then initializes a new
current instant by an empty instant. [FV -Local] computes p’s effects by eliminating
the existing signal S. [FV -Present] computes the effects of p and q by extending the
current instant with S being present and absent, respectively. The final state is an
union of the results. [FV -Seq] computes p’s effects. If the completion code K1≤1,
i.e., there are no exits raised, then further computes 〈H2, C2, K2〉 by continuously
compute the effects of q. Otherwise, it discards q and returns 〈H1, C1, K1〉 directly.
The rule [FV -Loop] computes p’s effects. If the completion code of the first run
K1≤1, it appends a repeated trace to the history h · (H1)? with C1 to be current
instant. Otherwise, it simply exits the loop.

[FV -Call] triggers the back-end solver TRS to check if the precondition of the
callee is satisfied by the current state. If it holds, the rule obtains the final state
by concatenating the postcondition Φpost to the current effect state. Otherwise the
verification fails. [FV -Async] de-sugars the asynchronous construct into a parallel
program. [FV -Await] archives the current instant and appends S? to the history
trace. [FV -Exit] updates the value of k using d+2. [FV -Trap] computes p’s effects.
When K≤1, it means there is no exits to be handled, therefore the final effects is
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E ` 〈h, c, k〉 () 〈h, c, k〉 [FV -Nothing]
E ` 〈h, c, k〉 emit S 〈h, c+{S}, k〉

[FV -Emit]

[FV -Yield]

E ` 〈h, c, k〉 yield 〈h · c, {}, k〉

[FV -Local]
(E\S) ` 〈h, c\S, k〉 p 〈H ′, C ′, K ′〉

E ` 〈h, c, k〉 signal S in p 〈H ′, C ′, K ′〉

E ` 〈h, c+{S}, k〉 p 〈H1, C1, K1〉 E ` 〈h, c+{S}, k〉 q 〈H2, C2, K2〉
E ` 〈h, c, k〉 present S p q 〈H1, C1, K1〉 ∪ 〈H2, C2, K2〉

[FV -Present]

E ` 〈h, c, k〉 p 〈H1, C1, K1〉 E ` 〈H1, C1, K1〉 q 〈H2, C2, K2〉
〈H ′, C ′, K ′〉 = 〈H2, C2, K2〉 (K1≤1)
〈H ′, C ′, K ′〉 = 〈H1, C1, K1〉 (K1>1)
E ` 〈h, c, k〉 seq p q 〈H ′, C ′, K ′〉

[FV -Seq]

E ` 〈ε, c, k〉 p 〈H1, C1, K1〉
〈H ′, C ′, K ′〉=〈h · (H1)?, C1, K1〉 (K1≤1)
〈H ′, C ′, K ′〉=〈h ·H1, C1, K1〉 (K1>1)

E ` 〈h, c, k〉 loop p 〈H ′, C ′, K ′〉
[FV -Loop]

mn(
−−−−→
τ S(x)) 〈reqΦpre ensΦpost〉 p ∈ P h · c v Φpre[

−→
S /
−−→
S(x)]

〈H1, C1, K
′〉=Φpost[

−→
S /
−−→
S(x)]

E ` 〈h, c, k〉 call mn (−→S ) 〈H ·H1, C1, K ′〉
[FV -Call]

E ` 〈h, c, k〉 (p; emit S)||q 〈H ′, C ′, K ′〉
E ` 〈h, c, k〉 async S p q 〈H ′, C ′, K ′〉

[FV -Async]

〈∆〉 = 〈h · (c||S?), {}, k〉
E ` 〈h, c, k〉 await S 〈∆〉 [FV -Await]

k′=d+2
E ` 〈h, c, k〉 exit d 〈h, c, k′〉

[FV -Exit]

E ` 〈ε, c, k〉 p 〈H,C,K〉 〈∆〉=〈H,C,K〉 when (K≤1)
〈∆〉=〈H,C, 0〉 when (K=2)
〈∆〉=〈H,C,K-1〉 when (K>2)

E ` 〈h, c, k〉 trap p 〈h ·∆〉 [FV -Trap]

E ` 〈ε, c, k〉 p 〈H1, C1, K1〉 E ` 〈ε, c, k〉 q 〈H2, C2, K2〉
`pm 〈H1, C1, K1〉||〈H2, C2, K2〉 〈∆〉

E ` 〈h, c, k〉 p||q 〈h ·∆〉 [FV -Par ]

E ` 〈ε, c, k〉 p 〈H,C,K〉 〈∆〉=ℵAbort(S,C ,K)
Interleave (H, ε)

E ` 〈h, c, k〉 abort p S 〈h ·∆〉 [FV -Abort]

E ` 〈ε, c, k〉 p 〈H,C,K〉 〈∆〉=ℵSuspend(S,C ,K)
Interleave (H)

E ` 〈h, c, k〉 suspend p S 〈h ·∆〉 [FV -Suspend]

Figure 4.8: Forward Rules for ASyncEffs
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just 〈H,C,K〉. When K equals to 2, it means there is an exit need to be handled
by the current trap. When K is greater than 2, it means the current exit needs
to be handled by an outer trap statement, therefore it returns the final effects
as 〈H,C,K-1〉. [FV -Par ] computes p and q’s effects independently, then parallel
merges the results. Notation `pm refers to the parallelMerge algorithm, which is
detailed in subsection 4.4.1.

Definition 7 (Prepend Program States). Given a history trace h′, and program
states ∆=(H,C,K), we define that: h′ ·∆ = {(h′ · h, c, k) | (h, c, k) ∈ 〈H,C,K〉}.

[FV -Abort] and [FV -Suspend] compute the effects of p by initializing the history
trace with ε; then compute their corresponding interleaves4; lastly, prepend the
original history to the final results.

Algorithm 1: Abort Interleaving
Input: S, (Φ, I, k),Φhis
Output: Program States, ∆

1: rec function ℵAbort(S,I ,K)
Interleave (Φ,Φhis)

2: if fst(Φ)=∅ then
3: ∆1←[(Φhis, I+{S}, 0)] . Notion + unions two instants
4: ∆2←[(Φhis, I+{S}, k)]
5: return (∆1 ∪∆2)
6: else
7: ∆← []
8: foreach f∈fst(Φ) do
9: φ← [(Φhis, f+{S}, 0)]
10: Φ′ ← Df (Φ)
11: Φ′his ← Φhis · (f+{S})
12: ∆′←ℵAbort(S,I ,K)

Interleave (Φ′,Φ′his)
13: ∆← ∆ ∪ φ ∪∆′ . Notion ∪ unions two states
14: return ∆

Algorithm 1 presents the interleaving algorithm for abortions ( cf. Definition 9
and Definition 11 for First(fst) and Derivative(D) respectively). Note that, we
use weak abort/suspend as default in this work. The difference is: in strong

4The interleaving comes from the over-approximation of all the possible effect traces. For
example, for trace {A} · {B}, the (weak) abort preemption with condition signal S creates three
possibilities: ({A,S} · {B,S}) ∨ ({A,S} · {B,S}) ∨ ({A,S}).
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preemption, the body does not run when the preemption condition holds. Whereas
in weak preemption the body is allowed to run in the current instant even when
the preemption condition holds, but are terminated thereafter [Ber93; PRS95]. We
present the (weak) interleaving algorithm for suspensions, and demonstrate how to
encode strong abort/suspend in section A.1.

4.4.1 Parallel Merge Algorithm

The parallel merging 5 rules are in the form: `p〈H1, C1, K1〉||〈H2, C2, K2〉 〈H ′, C ′, K ′〉.
Given two sets of program states 〈H1, C1, K1〉 and 〈H2, C2, K2〉, the rule [PM -Union]
obtains 〈H ′, C ′, K ′〉 by combining the parallel merged states of their cartesian prod-
ucts.

∀(h1, c1, k1) ∈ 〈H1, C1, K1〉 ∀(h2, c2, k2) ∈ 〈H2, C2, K2〉
〈H ′, C ′, K ′〉 = ⋃(`pm 〈h1, c1, k1〉||〈h2, c2, k2〉 〈h′, c′, k′〉)

`pm 〈H1, C1, K1〉||〈H2, C2, K2〉 〈H ′, C ′, K ′〉
[PM -Union]

[PM -Unfold]
F1=fst(h1) F2=fst(h2) ∀f1 ∈ F1.∀f2 ∈ F2. I=f1∪f2,

der1=DI(h1) der2=DI(h2) 〈H ′, C ′, K ′〉= ⋃(`pm〈der1, c1, k1〉||〈der2, c2, k2〉)
`pm 〈h1, c1, k1〉||〈h2, c2, k2〉 〈I ·H ′, C ′, K ′〉

[PM -Unfold] applies to deductive steps, which deploys auxiliary functions, fst(θ)
and DI(θ), to compute the firsts instant and derivatives of an effect, cf. subsec-
tion 4.5.1. The rule gets the first set from h1 and h2 respectively. For each pair of
(f1, f2), it merges f1 and f2 to be the common first, denoted as I; then gets the
derivatives of h1 and h2 w.r.t I respectively; Finally it prepends I into the parallel
merged derivatives, by recursively calling the parallel merge algorithm. The next

5To help with the understanding, concrete examples are:
- 〈{A} · {B}, {C}, 0〉||〈{X} · {Y}, {Z}, 0〉 〈{A,X} · {B,Y}, {C,Z}, 0〉;
- 〈{A}, {C}, 2〉||〈{X} · {Y}, {Z}, 0〉 〈{A,X}, {C,Y}, 2〉; and
- 〈{A}, {C}, 0〉||〈{X} · {Y}, {Z}, 2〉 〈{A,X} · {C,Y}, {Z}, 2〉.
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rules deal with base cases and terminate the merging process.

[PM -EqLen]
c′=c1∪c2 k′=max(k1, k2)

`pm 〈ε, c1, k1〉||〈ε, c2, k2〉 〈ε, c′, k′〉

[PM -Cut]
k1>1 c′=c1∪fst(h2)

`pm 〈ε, c1, k1〉||〈h2, c2, k2〉 〈ε, c′, k1〉

k1≤1 h′=c1||h2

`pm 〈ε, c1, k1〉||〈h2, c2, k2〉 〈h′, c2, k2〉
[PM -Absorb]

[PM -EqLen] is used when two effects have the same length. [PM -Cut] is
used when one of the effects is shorter than the other and raises an exception.
[PM -Absorb] is used when one of the effects is shorter than another yet without any
exceptions.

4.4.2 Soundness Theorem of the Forward Rules

Theorem 2 (Soundness of the Forward Rules).
∀p, E, if E ` 〈h, c, k〉 p 〈H ′, C ′, K ′〉, and ϕ |= h,
and p

e0,0−−→
E

∗
p′
∅,1−→
E

p1
e1,0−−→
E1

∗
p′1
∅,1−→
E1

p2
e2,0−−→
E2

∗
p′2
∅,1−→
E2

. . . pn
en,0−−→
En

∗
p′n

∅,kf ( 6=1)−−−−−→
En

(),
then it implies that ∃(h′, c′, kf ) ∈ 〈H ′, C ′, K ′〉 such that ϕ ++ [e0; e1; ...; en] |= h′ · c′.
(Note that, p e,0−→

∗
p′ denotes the reflexive, transitive closure of p e,0−→ p′.)

Proof. By induction on the structure of p:

1. Emit: E ` 〈h, c, k〉 emit S 〈h, c+{S}, k〉, ϕ |= h and
emit S {S},0−−−→

E+{S}
(), implying ϕ ++ [{S}] |= h · (c+{S}), is proved.

2. Yield: E ` 〈h, c, k〉 Yield 〈h · c, {}, k〉, ϕ |= h and
Yield {},1−−→

∅
() {},0−−→

∅
(), implying ϕ ++ [{}] ++ [{}] |= h · c · {}, is proved.

3. Present: E ` 〈h, c, k〉 present S p q 〈H1, C1, K1〉 ∪ 〈H2, C2, K2〉, ϕ |= H, where
E ` 〈h, c+{S}, k〉 p 〈H1, C1, K1〉 and E ` 〈h, c+{S}, k〉 q 〈H2, C2, K2〉.
- When (S) ∈ c, present S p q  p, the inclusion is proved by inductive hypothesis.
- When (S) 6∈ c, present S p q  q, the inclusion is proved by inductive hypothesis.

4. Sequence: E ` 〈h, c, k〉 seq p q 〈H ′, C ′, K ′〉, ϕ |= H, where
E ` 〈h, c, k〉 p 〈H1, C1, K1〉, E ` 〈H1, C1, K1〉 q 〈H2, C2, K2〉 and
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〈H ′, C ′, K ′〉=〈H2, C2, K2〉(K1≤1) or 〈H ′, C ′, K ′〉=〈H1, C1, K1〉(K1>1)
- When K1=0, seq p q e0,0−−→

E

∗
...

en,0−−→
En

∗
q

en∪f0,0−−−−→
E ′

∗
...

fm,0−−→
E ′n

∗
qn
∅,k−→
E ′n

();
therefore ϕ ++ [e0; ...; (en∪f0); ...; fm |= H2·C2.
- When K1=1, seq p q e0,0−−→

E

∗
...

en,0−−→
En

∗
pn

∅,1−→
E

q
f0,0−−→
E ′

∗
...

fm,0−−→
E ′n

∗
qn
∅,k−→
E ′n

();
therefore ϕ ++ [e0; ...; en; f0; ...; fn |= H2·C2.
- When K1>1, seq p q e0,0−−→

E

∗
...

en,0−−→
En

∗
pn

∅,k−→
En

(), therefore ϕ ++ [e0; ...; en |= H1·C1.

5. Exit: E ` 〈h, c, k〉 exit d 〈h, c, d+ 2〉, ϕ|=H and exit d {},d+2−−−−→
E

(),
implying ϕ ++ [{}] |= h · c, is proved.

6. Trap: E ` 〈h, c, k〉 trap p 〈h ·∆〉 and ϕ |= H, and E ` 〈ε, c, k〉p〈H,C,K〉, where
〈∆〉=〈H,C,K〉when K≤1; 〈∆〉=〈H,C, 0〉when K=2; 〈∆〉=〈H,C,K-1〉when K>2
- When K≤1: trap p p, the entailment is proved by inductive hypothesis.
- When K=2: by [Trap-2], trap p {},0−−→

E
(), implying ϕ ++ [{}] |= H · C, is proved.

- When K>2: by [Trap-3], trap p {},K-1−−−−→
E

(), implying ϕ ++ [{}] |= H · C, is proved.

7. Await: E ` 〈h, c, k〉 await S 〈h · (c||S?), {}, k〉 and ϕ |= H,
- When S ∈ E : by [Await-1] await S {},1−−→

E
() {},0−−→
E1

(), ϕ++[{}]++[{}] |= h·c·{}, is proved.
- When (S) 6∈ E : by by [Await-2] let ϕ′ |= S?, ϕ ++ [{}] ++ ϕ′ |= h·c·S?, is proved.

8. Async: E ` 〈h, c, k〉 async S p q 〈H ′, C ′, K ′〉 and ϕ |= H where
E ` 〈h, c, k〉 (p; emit S)||q 〈H ′, C ′, K ′〉 and async S p q  (p; emit S||q), therefore
the entailment is proved by inductive hypothesis.

9. Parallel: E ` 〈h, c, k〉 p||q 〈h ·∆〉 and ϕ |= H where E ` 〈ε, c, k〉 p 〈H1, C1, K1〉
E ` 〈ε, c, k〉 q 〈H2, C2, K2〉 and `pm 〈H1, C1, K1〉||〈H2, C2, K2〉 〈∆〉.
-When p and q exit at the same instant: the entailment is proved by [PM -Unfold]
and [PM -EqLen].
-When p exits with an exception, and earlier than q: the entailment is proved by
[PM -Unfold] and [PM -Cut].
-When p exits earlier than q without any exceptions: the entailment is proved by
[PM -Unfold] and [PM -Absorb].

10. Abort: E ` 〈h, c, k〉 abort p S 〈h·∆〉 and ϕ |= H, where E ` 〈ε, c, k〉p〈H,C,K〉
and 〈∆〉=ℵAbort(S,C ,K)

Interleave (H, ε).
By semantics rules [Abort-1] and [Abort-2]; and Lemma 2.
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11. Suspend: E ` 〈h, c, k〉 suspend p S 〈h·∆〉 and ϕ |= H, where
E ` 〈ε, c, k〉 p 〈H,C,K〉 and 〈∆〉=ℵSuspend(S,C ,K)

Interleave (H). By semantics rules [Suspend-1]
and [Suspend-2]; and Lemma 3.

4.5 Temporal Verification via a TRS

The TRS is inspired by Antimirov and Mosses’s algorithm [AM95] but solving
the language inclusions between ASyncEffs. It is triggered i) prior to module calls
for the precondition checking; and ii) at the end of verifying a module for the post
condition checking. More specifically, given two effects Φ1,Φ2, TRS decides if the
inclusion Φ1 v Φ2 is valid. During the effects rewriting process, the inclusions are in
the form of Γ ` Φ1 vΦ Φ2, a shorthand for: Γ ` Φ · Φ1 v Φ · Φ2.

To prove such inclusions is to check whether all the possible effect traces in
the antecedent Φ1 are legitimately allowed in the possible effects traces from the
consequent Φ2. Γ is the proof context, i.e., effects inclusion hypotheses, Φ is the
history effects from the antecedent that have been used to match the effects from
the consequent. The inclusion checking is initially invoked with Γ={}, Φ=ε.

4.5.1 Auxiliary Functions: Nullable, First and Derivative

Next we provide definitions and implementations of auxiliary functions Nul-
lable(δ), First(fst) and Derivative(D) respectively. Intuitively, the Nullable function
δ(θ) returns a boolean value indicating whether θ contains the empty trace; the First
function fst(θ) computes a set of possible head instants of θ; and the Derivative
function DI(θ) computes a next-state effects after eliminating one instant I from
the head of current effects θ. Here marks the novel definitions – opposite to the
existing ones in [AM95] – using ‘=♣’ in Definitions 6, 7, 9.

Definition 8 (Nullable). Given any effect θ, δ(θ)=true⇔ ε∈θ, where:

δ(⊥)=false δ(ε)=true δ(I)=false δ(S?)=♣false δ(θ?)=true

δ(θ1·θ2)=δ(θ1) ∧ δ(θ2) δ(θ1∨θ2)=δ(θ1)∨δ(θ2) δ(θ1||θ2)=♣δ(θ1) ∧ δ(θ2)
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Definition 9 (First). Let fst(θ):={I | (I · θ′) ∈ JθK} be the set of head instants
derivable from effect θ. (JθK represents all the traces contained in θ)

fst(⊥)={} fst(ε)={} fst(I)={I} fst(θ1 ∨ θ2)=fst(θ1) ∪ fst(θ2)

fst(θ?)=fst(θ) fst(θ1·θ2)=

fst(θ1) ∪ fst(θ2) if δ(θ1)=true

fst(θ1) if δ(θ1)=false

fst(S?)=♣{{S7→present}} fst(θ1||θ2)=♣{(f1+f2) | f1 ∈ fst(θ1), f2 ∈ fst(θ2)}

Definition 10 (Instants Subsumption). Given two instants I and J , we define the
subset relation I⊆J as: the set of present signals in J is a subset of the set of present
signals in I, and the set of absent signals in J is a subset of the set of absent signals
in I, as in having more constraints refers to a smaller set of satisfying instants.
Formally,

I ⊆ J ⇔ {S | (S7→present) ∈ J} ⊆ {S | (S7→present) ∈ I}

and {S | (S7→absent) ∈ J} ⊆ {S | (S7→absent) ∈ I}

Definition 11 (Partial Derivative). The partial derivative DI(θ) of effects θ w.r.t.
an event I computes the effects for the left quotient I -1JθK 6.

DI(⊥)=DI(ε)⊥ DI(J)=

ε if I⊆J

⊥ if I 6⊆J
DI(S?)=♣

ε if I⊆{S7→present}

S? if I 6⊆{S7→present}

DI(θ?)=DI(θ) · θ? DI(θ1 · θ2)=

DI(θ1) · θ2 ∨DI(θ2) if δ(θ1)=true

DI(θ1) · θ2 if δ(θ1)=false

DI(θ1 ∨ θ2)=DI(θ1) ∨DI(θ2) DI(θ1||θ2)=♣DI(θ1)||DI(θ2)

6For example, {A}-1J{A}·{B}K=J{B}K, and {A}-1J{A}∨{B}K=Jε∨⊥K, cf Definition 13.
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4.5.2 Rewriting Rules

Given the well-defined auxiliary functions above, we now discuss the key steps
and related rewriting rules that we may use in effects inclusion proofs.

1. Axiom rules. Analogous to the standard propositional logic, ⊥ (referring to
false) entails any effects, while no non-false effects entails ⊥.

Γ ` ⊥ v Φ [Bot-LHS ]
Φ 6= ⊥

Γ ` Φ 6v ⊥ [Bot-RHS ]

2. Disprove (Heuristic Refutation). We [Disprove] the inclusions when the
antecedent is nullable, while the consequent is not. Intuitively, the antecedent
contains at least one more trace, i.e., ε, than the consequent.

δ(es1) ∧ ¬δ(es2)
Γ ` es1 6v es2

[Disprove]
fst(es1) = {}
Γ ` es1 v es2

[Prove]

3. Prove. We use two rules to prove an inclusion: (i) [Prove] is used when the fst
set of the antecedent is empty; and (ii) [Reoccur] to prove an inclusion when there
exist inclusion hypotheses in the proof context Γ , which are able to soundly prove
the current goal. One of the special cases of this rule is when the identical inclusion
is shown in the proof context, we then terminate the procedure and prove it as a
valid inclusion.

(es1 v es3) ∈ Γ (es3 v es4) ∈ Γ (es4 v es2) ∈ Γ
Γ ` es1 v es2

[Reoccur]

4. Unfolding (Induction). This is the inductive step of unfolding the inclusions.
Firstly, we make use of the auxiliary function fst to get a set of instants F , which
are all the possible initial instants from the antecedent. Secondly, we obtain a new
proof context Γ′ by adding the current inclusion, as an inductive hypothesis, into
the current proof context Γ. Thirdly, we iterate each element I ∈ F , and compute
the partial derivatives (next-state effects) of both the antecedent and consequent
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w.r.t I. The proof of the original inclusion succeeds if all the derivative inclusions
succeeds.

F = fst(es1) Γ′=Γ, (es1 v es2) ∀I ∈ F. (Γ′ ` DI(es1) v DI(es2))
Γ ` es1 v es2

[Unfold]

Theorem 3 (TRS Termination). The rewriting system TRS is terminating.

Proof. Let Set[I] be a data structure representing the sets of inclusions.

We use S to denote the inclusions to be proved, and H to accumulate “inductive
hypotheses", i.e., S,H ∈ Set[I].

Consider the following partial ordering � on pairs 〈S,H〉:

〈S1, H1〉 � 〈S2, H2〉 iff |H1| < |H2| ∨ (|H1| = |H2| ∧ |S1| > |S2|).

where |X| stands for the cardinality of a set X. Let ⇒ donate the rewrite relation,
then ⇒∗ denotes its reflexive transitive closure. For any given S0, H0, this ordering
is well founded on the set of pairs {〈S,H〉|〈S0, H0〉 ⇒∗ 〈S,H〉}, due to the fact that
H is a subset of the finite set of pairs of all possible derivatives in initial inclusion.

Inference rules in our TRS given in subsection 4.5.2 transform current pairs
〈S,H〉 to new pairs 〈S ′, H ′〉. And each rule either increases |H| (Unfolding) or,
otherwise, reduces |S| (Axiom, Disprove, Prove), therefore the system is terminating.

Theorem 4 (TRS Soundness). Given an inclusion Φ1 v Φ2, if the TRS returns
TRUE when proving Φ1 v Φ2, then Φ1 v Φ2 is valid.

Proof. For each inclusion checking rules, if inclusions in their premises are valid, and
their side conditions are satisfied, then goal inclusions in their conclusions are valid.

1. Axiom Rules:

Γ ` ⊥ v Φ [Bot-LHS ]
Φ 6= ⊥

Γ ` Φ 6v ⊥ [Bot-RHS ]

- It is easy to verify that antecedent of goal entailments in the rule [Bot-LHS] is
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unsatisfiable. Therefore, these entailments are evidently valid.
- It is easy to verify that consequent of goal entailments in the rule [Bot-RHS] is
unsatisfiable. Therefore, these entailments are evidently invalid.

2. Disprove Rules:

δ(es1) ∧ ¬δ(es2)
Γ ` es1 6v es2

[Disprove]
fst(es1) = {}
Γ ` es1 v es2

[Prove]

- It’s straightforward to prove soundness of the rule [Disprove], Given that θ1 is
nullable, while θ2 is not nullable, thus clearly the antecedent contains more traces
than the consequent. Therefore, these entailments are evidently invalid.

3. Prove Rules:

(es1 v es3) ∈ Γ (es3 v es4) ∈ Γ (es4 v es2) ∈ Γ
Γ ` es1 v es2

[Reoccur]

- For the rule [Prove], we consider an arbitrary model, ϕ such that: ϕ |= θ1. Given
the side conditions from the promises, we get ϕ |= θ1. When the fst set of θ1 is
empty, θ1 is possible ⊥ or ε; and θ2 is nullable. For both cases, the inclusion is
proved.

- For the rule [Reoccur], we consider an arbitrary model, ϕ such that: ϕ |= θ1.
Given the promises that θ1 v θ3, we get ϕ |= θ3; Given the premise that there exists
a hypothesis θ3 v θ4, we get ϕ |= θ4; Given the promises that θ4 v θ2, we get ϕ |= θ2.
Therefore, the inclusion is proved.

4. Inductive Unfolding Rule:

F = fst(es1) Γ′=Γ, (es1 v es2) ∀I ∈ F. (Γ′ ` DI(es1) v DI(es2))
Γ ` es1 v es2

[Unfold]

- For the rule [Unfold], we consider an arbitrary model, ϕ1 and ϕ2 such that: ϕ1 |= θ1

and ϕ2 |= θ2. For an arbitrary instant I, let ϕ1
′ |= I-1Jθ1K; and ϕ2

′ |= I-1Jθ2K.

Case 1), I /∈F , ϕ1
′ |= ⊥, thus automatically ϕ1

′ |= DI(θ2);

Case 2), I∈F , given that inclusions in the rule’s premise is proved , then ϕ1
′ |= DI(θ2).

By Definition 13, since for all I, DI(θ1) v DI(θ2), the conclusion is proved.

All the entailing checking rules used in the TRS are sound, therefore the TRS is
sound.
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4.5.3 Discussion: highlighting the novelty.

Departing from the original Antimirov algorithm [AM95], this work devises
extended definitions for the auxiliary functions: Nullable(δ), First(fst) and Deriva-
tive(D). These definitions cover extended constructs in the more expressive specifi-
cations formulae, ASyncEffs, which contain operators for the (synchronous) parallel
composition and asynchronous waiting. The comprehensive rewriting system serves
as a back-end engine for the finer-grained verification system for synchronous pro-
gramming languages, which cannot be trivially achieved by the original rewriting
system.

4.6 Demonstration Examples

We now highlight our main methodologies, using the example shown in Figure 4.9
Note that, in this work, we are mainly interested in signal status and control
propagation, which are not related to data, therefore the data variables and data-
handling primitives are abstracted away.

4.6.1 Esterel and ASyncEffs

Specifications are annotated in /*@ ... @*/ for each module, which lead to a
compositional verification strategy, where static checking and temporal verification
can be done locally. ASyncEffs uses curly braces {} to enclose time instants
(reactions). A time instant is a set of signals (possibly empty) with status, happening
at the same reaction. The module Read asynchronously loads a file.

At line 4, the statement async is enriched with a completion signal, here loaded.
When started, async immediately emits loading, and calls fs.readF ile, that is ex-
pected to take time in term of reactions, i.e., not to complete during the current
reaction. async blocks its local control thread but does not block other paral-
lel branches. Therefore at line 7, the program can do other computations, i.e.,
compOther, while loading the file. At line 8, the program waits for the signal loaded
to be emitted. Then, it does data processing via emitting logData and waits for the
environment to close the file.
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1 module Read (in open, close,

2 out loading, loaded, compOther, logData)

3 /*@ requires {}^*.{open} @*/

4 /*@ ensures {loading,compOther}.{loaded}.{logData}.close? @*/

5 { async loaded { //’loaded’ is emitted after the body is completed

6 emit loading;

7 fs.readFile(open.value);}

8 emit compOther; //do things that do not depend on the file

9 await loaded; //await for the signal ’loaded’ to be emitted

10 emit logData; //data processing and logging

11 await close; }

12

13 module Main (out open, close, loading, loaded, compOther, logData)

14 /*@ requires {} @*/

15 /*@ ensures {open}.{}^*.{close} @*/ {

16 emit open("filePath");

17 fork{ Read (close, loading, loaded, compOther, logData); }

18 par { await logData; //await for the signal ’logData’

19 emit close("filePath"); }} //close the file

Figure 4.9: Asynchronously reading a file, using async/await.

Module Read’s precondition {}?·{open} requires that when Read is called, the
signal open should be emitted in the current reaction, indicating that the file is
opened prior to the current function call. Module Main firstly opens the file, then
creates two sub-threads via statement fork{...}par{...}. One thread calls Read,
while another threads waits for the data processing to be done and closes the file.
Note that ASyncEffs is an affine logic in the sense that it only describes the signals
we care about, regardless of the non-mentioned signals.

4.6.2 Forward Verification

Figure 4.10 and Figure 4.11, demonstrate the forward verification process of the
modules defined in Figure 4.9. Program effect states are captured in the form of
〈Φ〉. To facilitate this illustration, we label the verification steps by (1), ..., (17),
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module Read (in open,close, out loading,loaded,compOther,logData){

(1) 〈{open}〉 (– initialize the current effects using precondition’s last instant –)
async loaded {

emit loading; fs.readFile(open.value);

(2) 〈{open, loading}〉 [FV-Emit]

} 〈{open, loading} · {loaded}〉 [FV-Async-Branch-1]

(3) 〈{open}〉 (– inherited from state (1) –)
emit compOther;

(4) 〈{open, compOther}〉 [FV-Emit]
await loaded;

(5) 〈{open, compOther} · loaded?〉 [FV-Await]
emit logData;

(6) 〈{open, compOther} · loaded? · {logData}〉 [FV-Emit]
await close; }

(7) 〈{open, compOther}·loaded?·{logData}·close?〉 [FV-Await][FV-Async-Branch-2]

(8) 〈({loading} · {loaded})||({compOther} · loaded? · {logData} · close?)〉
Φfinal=〈{loading, compOther} · {loaded} · {logData} · close?〉
[FV-Async] [Effects-Parallel-Merge]

(9) Φfinal v ΦRead
post (-TRS: check the postcondition of the module Read; Succeed. -)

Figure 4.10: A demonstration of the forward verification for the module Read.

and mark the deployed forward reasoning rules (cf. section 4.4) in [gray].

To start the verification, states (1)(10) are initialized from the preconditions.
States (2)(4)(6)(11)(15) are obtained by [FV-Emit], which adds the emitted signal to
the current instant. States (5)(7)(14) are obtained by [FV-Await], which concatenates
a blocking signal (with a question mark) to the current effects. States (3)(13) start
the reasoning of the second threads. Steps (8)(16) parallel compose the effects from
both of the branches, and normalize the final effects. Before each function call,
the verifier invokes the TRS to check whether the current effect state satisfies the
precondition of the callee, cf step (12). After these states transformations, steps
(9)(17) invoke the TRS to check the postcondition.
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module Main (out open, close, loading, loaded, compOther, logData){

(10) 〈{}〉 (– initialize the current effects using precondition’s last instant –)
emit open("filePath");

(11) 〈{open}〉 [FV-Emit]
fork{ Read (close, loading, loaded, compOther, logData); }

(12) {}?·{open}vΦRead
pre [FV-Call] (-TRS:Read’s precondition is satisfied-)

〈{open, loading, compOther} · {loaded} · {logData} · close?〉 [FV-Call]

(13) 〈{open}〉 (– inherited from state (11) –)
par { await logData;

(14) 〈{open} · logData?〉 [FV-Await]
emit close("filePath"); }}

(15) 〈{open} · logData? · {close}〉 [FV-Emit]

(16) 〈({open, loading, compOther} · {loaded} · {logData} · close?)
||({open} · logData? · {close})〉 [FV-Fork-Par]

〈{open, loading, compOther} · {loaded} · {logData}·{close}〉[Effects-Parallel-Merge]

(17) (-TRS: check the postcondition of module Main; Succeed. -)
{open, loading, compOther}·{loaded}·{logData}·{close} v {open} · {}? · {close}

Figure 4.11: A demonstration of the forward verification for the module Main.

Detecting Unreachable Promises. We here show that our effects and the
parallel merging can capture the anti-pattern [Ali+18] caused by broken chain of
the interdependent promises. Given the program behavior expressed in ASyncEffs
(defined in Figure 4.6), and the parallel merge algorithm (defined in subsection 4.4.1)
eliminating the parallel operator ||, we can easily capture the unreachable promises
[Ali+18] caused by a broken chain of interdependent promises. For example, the
parallel composition in step (16) leads to the final trace which is well-synchronized
for all the signals. Whereas in step (8), the final trace contains a dangling waiting
for the signal close because there is no locally emitted close.

Definition 12 (Well-Synchronized Effects). After parallel merging, we call effects
without any blocking signals well-synchronized effects. Given any effect θ, well(θ)
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returns a Boolean value, defined recursively:

well(⊥)=well(ε)=well(I) = false well(S?)=true well(θ?)=well(θ)

well(θ1 · θ2)=well(θ1) ∨ well(θ2) well(θ1 ∨ θ2)=well(θ1) ∨ well(θ2)

Definition 12 defines well-synchronized effects. Any poorly-synchronized effects
indicates that there exist registered reactions for unreachable promises. However,
poorly-synchronized effects can be further parallel composed to other thread, and
become well-synchronized. For example, the final effects of module Main is well-
synchronized after parallel composing module Read with another thread.

4.6.3 The TRS

Having the ASyncEffs as the logic, we are interested in the following verification
problem: Given a program P , and a temporal property Φ′, does ΦP v Φ′ hold? In a
typical verification context, checking the inclusion/entailment between the program
effects ΦP and the valid traces Φ′ proves that: the program P will never lead to
unsafe traces which violate Φ′.

Here, we deploy a purely algebraic term rewriting system (TRS), to check
language inclusions between ASyncEffs. Our TRS is an extension of Antimirov and
Mosses’s algorithm [AM95], whose rewriting system decides inequalities of regular
expressions (REs) through an iterated process of checking the inequalities of their
partial derivatives [Ant95]. There are two basic rules: [Disprove], which infers false
from trivially inconsistent inequalities; and [Unfold], which applies Theorem 1 to
generate new inequalities.

Definition 13 (ASyncEffs Inclusion). Given Σ is a finite set of alphabet, for two
ASyncEffs Φ1, Φ2, their inclusion is defined as: Φ1 v Φ2 ⇔ ∀I. I -1(Φ1) v I -1(Φ2).

Similar to Theorem 1, we defined Definition 13 for unfolding the inclusions
between ASyncEffs, where I -1(Φ) is the partial derivative of Φ w.r.t the instant
I. Termination of the rewriting is guaranteed because the set of derivatives to be
considered is finite, and possible cycles are detected using memorization [Bro05a].

Next, we continue with the step (9) in Figure 4.10, to demonstrate how the TRS
handles ASyncEffs. Table 4.3 automatically proves (at step 4©) that the inferred
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Table 4.3: The inclusion proving example for ASyncEffs.

ε v ε 4©[Prove]
3©[Unfold]

��
���{Close} v ��

���{Close}
2©[Unfold]

((((
(((

((((
(

{Loaded, LogData}·{Close} v ��
���

��{LogData}·{Close}
1©[Unfold]

(((
((((

(((
(((({Loading, CompOther}·{Loaded, LogData}·{Close}v

���
���

���{CompOther}·{LogData}·{Close}

{Loading, CompOther}·{Loaded, LogData}·{Close}v{CompOther}·{LogData}·{Close}

effects of module read satisfy the declared postcondition (after several times of
unfolding at steps 1© 2© and 3©). The rewriting rules (cf. subsection 4.5.2) are marked
in [gray].

Note that event {Loading, CompOther} entails (or is subsumed by) event
{CompOther} because the former contains more constraints. We formally define the
subsumption for events in Definition 10. Our TRS is an extension of Antimirov and
Mosses’s algorithm [AM95], whose rewriting system decides inequalities of regular
expressions (REs) through an iterated process of checking the inequalities of their
partial derivatives [Ant95]. There are two basic rules: [Disprove], which infers false
from trivially inconsistent inequalities; and [Unfold], which applies Theorem 1 to
generate new inequalities.

4.7 Implementation and Evaluation

To show the feasibility of our approach, we prototype our automated verification
system using OCaml; prove soundness for both the forward verifier and the TRS;
validate and evaluate the implementation using a microbenchmark [Son22a] 7.

This experiment is done without a baseline comparison because there are no
existing tools for encoding logical-correctness/constructiveness analysis using tem-

7The benchmark is constructed by manually annotating ASyncEffs specifications, including
both succeeded and failed cases. The validation tests are synthetic examples to test the main
contributions, including the preemption interleaving computation and the inclusion checking for
the parallel composition and the waiting operator.

67



CHAPTER 4. (A)SYNCHRONOUS EFFECTS (ASYNCEFFS)

poral verification, and our experimental results show that a modular and efficient
temporal verification for synchronous languages is achievable.

Table 4.4: Experimental Results.

No. LOC Forward(ms) #Prop(3) Avg-Prove(ms) #Prop(7) Avg-Dis(ms)
1 18 0.037 5 0.7634 5 0.0116
2 33 0.145 5 1.3074 5 0.045
3 55 0.34 5 6.0766 5 1.1682
4 84 0.098 5 3.0678 5 0.1058
5 110 0.191 7 1.7544 7 0.5031
6 124 0.323 7 4.0114 7 0.3957
7 138 0.321 7 3.8399 7 0.4261
8 163 0.594 7 6.1009 7 1.5019
9 178 0.941 9 10.7758 9 0.5769
10 185 1.921 9 13.9332 9 0.04422
11 202 3.434 9 27.4447 9 0.0561
12 220 6.439 9 59.2226 9 0.745
13 250 3.6 11 29.5766 11 0.0662
14 261 7.552 11 64.2137 11 0.6121
15 293 14.896 11 115.9795 11 0.5462
16 304 30.889 11 237.2522 11 0.07164

Table 4.4 presents the evaluation results. We select 16 programs, varying from
15 lines to 300 lines, and annotate ASyncEffs specifications with a 1:1 ratio for
succeeded/failed cases. The results record: No. for the index of the program;
LOC for lines of code; Forward(ms) for forward reasoning time; #Prop(3)for the
number of valid properties; Avg-Prove(ms)for the average proving time for the valid
properties; #Prop(7)for the number of invalid properties; and Avg-Dis(ms)for
the average disproving time for the invalid properties. Times are counted using
milliseconds, and the experiment is done on a MacBook Pro with a 2.6 GHz 6-Core
Intel Core i7 processor.

Discussion: Generally, the forward reasoning time increases with a linear com-
plexity. We notice that the disproving times for invalid properties are constantly
low. This finding echoes the insights from prior TRS-based works [SC20; AM95;
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AMR09; KT14a; Hov12], which suggest that TRS is a better average-case algorithm
than those based on the comparison of automata. That is because it only constructs
automata as far as it needs, which makes it more efficient when disproving incorrect
specifications, as we can disprove it earlier without constructing the whole automata.
In other words, the more incorrect specifications are, the more efficient our solver is.

Our proposed effect logic and the abstract semantics for the full-featured Esterel
not only tightly capture the behaviors of a preemptive asynchronous execution models
but also help to mitigate the programming challenges in both worlds. Meanwhile,
the expressive ASyncEffs enable compositional temporal verification at the source
level, which is not yet supported by existing techniques.

4.7.1 Case Studies

In this section, we investigate how ASyncEffs can help with issues related
to both synchronous and asynchronous programs. Then, we demonstrate the
flexibility/expressiveness of ASyncEffs.

4.7.1.1 Detecting Logically Incorrect Programs.

In synchronous programming, a program is logically correct if it has precisely
one safe trace for each input assignment.

This work effectively checks logical correctness. Given a synchronous program,
after been applied to the forward rules, we compute the possible execution traces
in a disjunctive form, then prune the traces contain contradictions, following these
principles: (i) explicit present and absent; (ii) each local signal should have only one
status; (iii) lookahead should work for both present and absent; (iv) signal emissions
are idempotent; (v) signal status should not be contradictory. Finally, upon each
assignment of inputs, programs have none or multiple output traces that will be
rejected, corresponding to no-valid or multiple-valid assignments. To align with the
logically coherent law, we define the contradictory event as follows:

Definition 14 (Contradictory event). Given any event I, it is contradictory is
∃S. (S 7→ absent) ∈ I and (S 7→ present) ∈ I or ∃S. (S 7→ undef ) ∈ I and (S 7→
present) ∈ I.
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1. present S1
〈{S1 7→ undef}〉

2. then
〈{S1 7→ undef, S1 7→ present}〉

3. nothing
〈{S1 7→ undef, S1 7→ present}〉

4. else
〈{S1 7→ undef, S1 7→ absent}〉

5. emit S1
〈{S1 7→ present, S1 7→ absent}〉

6. 〈{S1 7→ undef, S1 7→ present}
∨ {S1 7→ present, S1 7→ absent}〉

〈⊥ ∨ ⊥〉 ⇒ 〈⊥〉

1. present S1
〈{S1 7→ undef}〉

2. then
〈{S1 7→ undef, S1 7→ present}〉

3. emit S1
〈{S1 7→ present, S1 7→ present}〉

4. else
〈{S1 7→ undef, S1 7→ absent}〉

5. nothing
〈{S1 7→ undef, S1 7→ absent}〉

6. 〈{S1 7→ present, S1 7→ present}
∨ {S1 7→ undef, S1 7→ absent}〉

〈{S1 7→ present} ∨ {S1 7→ absent}〉
(a) (b)

Table 4.5: Logically incorrect examples, caught by ASyncEffs.

As shown in Table 4.5 (a) and (b) are both logically incorrect, because there are
no valid assignments of signal S1 and there are two possible assignments of signal
S1, respectively.

4.7.1.2 A Strange Logically Correct Program.

This example for synchronous languages shows that composing programs can
lead to counter-intuitive phenomena.

1 fork { present S1 then emit S1 else nothing }

2 par { present S1

3 then present S2 then nothing else emit S2

4 else nothing }

Figure 4.12: A Strange Logically Correct Esterel Program.

As the program shows in Figure 4.12, the first parallel branch is the logically
incorrect program Table 4.5 (b), while the second branch contains a non-reactive
program enclosed in "present S1" statement. Surprisingly, this program is logically
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correct, since there is only one logically coherent assumption: S1 absent and S2
absent. With this assumption, the first present S1 statement takes its empty else
branch, which justifies S1 absent. The second "present S1" statement also takes its
empty else branch, and "emit S2" is not executed, which justifies S2 absent. And
our effect logic is able to soundly detect above mentioned correctness checking.

4.7.1.3 Rewriting with the Blocking Waiting Operator.

Formally, we define "waiting for the signal A" as: A? ≡ ∃n, n≥0 ∧ {A}n · {A},
where{A} refers to all the events containing A to be absent.

Table 4.6: The example for Await.
ε v ε

6©[Prove]

�
�
�{D} v

�
�
�{D}

5©[Unfold]

�
�
�{B} · {D} v (

�
�
�{B} ∨ ⊥) · {D}

B? · {D} v B? · {D} (‡) 7©[Reoccur]

�
�
�{B} · B? · {D} v (⊥ ∨ (

�
�
�{B} · B?)) · {D}

B? · {D} v B? · {D} (‡)
4©[Normalisation]

�
�
�{C} · B? · {D} v (⊥ ∨ (

�
�
�{B} · B?)) · {D}

3©[Unfold]
{C} · B? · {D} v ({B} ∨ ({B} · B?)) · {D}

2©[Normalisation]

�
�
�{A} · {C} · B? · {D} v

�
�
�{A} · B? · {D}

1©[Unfold]
{A} · {C} · B? · {D} v {A} · B? · {D}

Table 4.6 shows the proof of {A} · {C} · B? · {D} entailing {A} · B? · {D}, as
intuitively {C} ·B? is a special case of B?. In step 1© and 2©, {A} is eliminated. In
step 3©, B? is normalized into {B}∨ ({B} ·B?), By the step of 4©, {C} is eliminated
together with {B} because {C} ⊆ {B}. Now the rest part is B? · {D} v B? · {D}.
Here, we further normalize B? from the LHS into a disjunction, leading to two proof
sub-trees. From the first sub-tree, we keep unfolding the inclusion with {B} ( 5©)
and {D} ( 6©) until we can prove it. Continue with the second sub-tree, we unfold it
with {B}; then in step 7© we observe the proposition is isomorphic with one of the
the previous step, marked with (‡). We prove it and finish the writing process.
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4.7.1.4 Broken Promises Chain.

As the prior works [MLT17; Ali+18] present one of the critical issues of using
promise is the broken chain of the interdependent promises; and they propose the
promise graph, as a graphical aid, to understand and debug promise-based code.
We here show that our algebraic effects can capture not well-synchronized (formally
defined in Definition 12) traces during the parallel merging process presented in
subsection 4.4.1.

For example, the parallel composition of traces: {A}·{B}·{C}·{D} || {E}·C?·{F}
leads to the final behavior of {A,E}·{B}·{C}·{D,F}, which is well-synchronized for
all the events. However, if we were composing traces: {A}·{B}·{D} || {E}·C?·{F}
due to the reasons that forgetting to emit C (In JavaScript, it could be the case
that forgetting to explicitly return a promise result.), it leads to a problematic trace
{A,E}·{B}·{D}·C?·{F}. The final effects contain a dangling signal waiting of C,
which indicates the corresponding anti-pattern.

4.8 Summary

We demonstrate how to give axiomatic semantics for the full-featured Esterel by
trace processing functions, and use ASyncEffs to capture reactive program behaviors
and temporal properties. Our proposal enables a Hoare-style forward verifier (or
an effects system per se), which computes the program effects constructively. The
proposed modular analysis of preemptions and asynchronous interactions are new
and potentially useful for prior constructiveness analysis. We present an efficient
TRS to prove the annotated ASyncEffs properties. We prototype the verification
system and show its feasibility. In summary, our work is the first that formulates the
semantics of a preemptive asynchronous execution model; that automates modular
temporal verification for reactive programs using an expressive effect logic.
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Chapter 5

Symbolic Timed Effects (TimEffs)
The correctness of real-time systems depends both on the correct functionalities

and the realtime constraints. To go beyond the existing Timed Automata based
techniques, we propose a novel solution that integrates a modular Hoare-style forward
verifier with a term rewriting system (TRS) on Timed Effects (TimEffs). The main
purposes are to: increase the expressiveness, dynamically manipulate clocks, and
efficiently solve clock constraints.

We formally define a core language Ct, generalizing the real-time systems, mod-
eled using mutable variables and timed behavioral patterns, such as delay, timeout,
interrupt, deadline. Secondly, to capture real-time specifications, we introduce Tim-
Effs, a new effect logic, that extends regular expressions with dependent values and
arithmetic constraints. Thirdly, the forward verifier reasons temporal behaviors –
expressed in TimEffs – of target Ct programs. Lastly, we present a purely algebraic
TRS, i.e., an extended Antimirov algorithm, to efficiently check language inclusions
between TimEffs.

To demonstrate the feasibility of our proposal, we prototype the verification
system; prove its soundness; report on case studies and experimental results.

5.1 Introduction

During the last three decades, there has been a popular approach based on
Timed Automata (TAs) [AD94] for specifying real-time systems. TAs are powerful
in designing real-time models via explicit clocks, where real-time constraints are
captured by explicitly setting/resetting clock variables. A number of automatic
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verification tools for TAs have been proven to be successful [Wan+17; LPY97; Yov97;
WWH05]. Although TAs’ simple structure made it feasible to deploy efficient model
checking, specifying and verifying compositional real-time systems have become
increasingly challenging due to the increasing complexity. Industrial case studies
show that requirements for real-time systems are often structured into phases, which
are then composed sequentially, in parallel, alternatively [Hav+97; Lar+05]. TAs lack
high-level compositional patterns for hierarchical design; moreover, users often need
to manipulate clock variables with carefully calculated clock constraints manually.
The process is tedious and error-prone.

There have been some translation-based approaches on building verification
support for compositional timed-process representations. For example, Timed Com-
municating Sequential Process (TCSP), Timed Communicating Object-Z (TCOZ)
and Statechart based hierarchical Timed Automata are well suited for presenting
compositional models of complex real-time systems. Prior works [Don+08; DM01]
systematically translate TCSP/TCOZ/Statechart models to flat TAs so that the
model checker Uppaal [LPY97] can be applied.

In this work, we investigate an alternative approach for verifying real-time systems.
We propose a novel temporal specification language, Timed Effects (TimEffs), which
enables a compositional verification via a Hoare-style forward verifier and a term
rewriting system (TRS). More specifically, we specify system behaviors in the form of
TimEffs, which integrates the Kleene Algebra with dependent values and arithmetic
constraints, to provide real-time abstractions into traditional linear temporal logics.
For example, one safety property, “The event Done will be triggered no later than
one time unit"1, is expressed in TimEffs as: Φ , 0≤t<1 ∧ (_?· Done )#t. Here
∧ connects the arithmetic formula and the timed trace; the operator # binds time
variables to traces (here t is a time bound of (_? ·Done)); _ is a wildcard matching to
any event; Kleene star ? denotes a trace repetition. The above formula Φ corresponds
to ‘♦[0,1)Done’ in metric temporal logic (MTL), reads “within one time unit, Done
finally happens". Furthermore, the time bounds can be dependent on the program
inputs, as shown in Figure 5.1.

1Here, we pretend time is discrete and only integral values. However, it’s just as easy to
represent continuous time by letting time variables assume real values [Lam05].
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1 void addOneSugar()

2 /* req: true ∧ _?

3 ens: t>1 ∧ ε # t */

4 {

5 timeout ((), 1);

6 }

7 void addNSugar (int n)

8 /* req: true ∧ _?

9 ens: t≥n ∧ EndSugar # t */

10 { if (n == 0) { event ["EndSugar"];}

11 else {

12 addOneSugar();

13 addNSugar (n-1);}}

Figure 5.1: Value-dependent specification in TimEffs.

Function addNSugar takes a parameter n, representing the portion of the sugar
we need to add. When n equals to 0, it simply raises an event EndSugar to mark
the end of the process. Otherwise, it adds one portion of the sugar by calling
addOneSugar(), then recursively calls addNSugar with parameter n-1. The use of
statement timeout(e, d) is standard [Ltd22], which executes a block of code e

after the specified time d. Therefore, the time spent on adding one portion of the
sugar is more than one time unit. Note that ε#t refers to an empty trace which
takes time t. Both precondition require no arithmetic constraints, and have no
temporal constraints upon the history traces. The postcondition of addNSugar(n)
indicates that the function generates a finite trace where EndSugar takes a no less
than n time-units delay to finish.

Although these examples are simple, they show the benefits of deploying value-
dependent time bounds, which is beyond the capability of TAs. Essentially, TimEffs
define symbolic TAs, which stand for a set (possibly infinite) of concrete transition
systems. Moreover, we deploy a Hoare-style forward verifier to soundly reason about
the behaviors from the source level, with respect to the well-defined operational
semantics. This approach provides a direct (opposite to the techniques which require
manual and remote modeling processes), and modular verification – where modules
can be replaced by their already verified properties – for real-time systems, which are
not possible by any existing techniques. Furthermore, we develop a novel TRS, which
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is inspired by Antimirov and Mosses’s algorithm2 [AM95] but solving the language
inclusions between more expressive TimEffs. In short, the main contributions of
this work are:

1. Language Abstraction: we formally define a core language Ct, by defining its
syntax and operational semantics, generalizing the real-time systems with mutable
variables and timed behavioral patterns, e.g., delay, timeout, deadline.

2. Novel Specification: we propose TimEffs, by defining its syntax and semantics,
gaining the expressive power beyond traditional linear temporal logics.

3. Forward Verifier: we establish a sound effect system to reason about temporal
behaviors of given programs. The verifier triggers the back-end solver TRS.

4. Efficient TRS: we present the rewriting rules to (dis)prove the inclusion relations
between the actual behaviors and the given specifications, both in TimEffs.

5. Implementation and Evaluation: we prototype the automated verification
system, prove its soundness, report on case studies and experimental results.

5.2 Language and Specifications

This section first introduces the target language and then depict the temporal
specification language which supports TimEffs.

5.2.1 The Target Language

We define the core language Ct in Figure 5.2, which is built based on C syntax
and provides support for timed behavioral patterns via implicit clocks.

Here, c and b stand for integer and Boolean constants, mn and x are meta-
variables, drawn from var (the countably infinite set of arbitrary distinct identifiers).
A program P comprises a list of global variable initializations α∗ and a list of

2Antimirov and Mosses’s algorithm was designed for deciding the inequalities of regular
expressions based on an axiomatic algorithm of the algebra of regular sets.
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(Program) P ::= (α∗, fun∗)
(Types) ι ::= int | bool | unit
(Function) fun ::= ι mn (ι x)∗ {req Φpre ens Φpost} {e}
(Values) v ::= () | c | b | x
(Assignment) α ::= x := v

(Expressions) e ::= v | α | [v]e | mn(v∗) | e1; e2 | e1||e2 | if v e1 e2

| event[A(v, α∗)] | delay[v] | e1 timeout[v] e2

| e deadline[v] | e1 interrupt[v] e2

(Terms) t ::= c | x | t1+t2 | t1-t2

c ∈ Z b ∈ B mn, x ∈ var (Action labels) A ∈ Σ

Figure 5.2: A core first-order imperative language with timed constructs.

function declarations fun∗. Here, we use the ∗ superscript to denote a finite list of
items, for example, x∗ refers to a list of variables, x1, ..., xn. Each function fun has a
name mn, an expression-oriented body e, also is associated with a precondition Φpre

and a postcondition Φpost (specification syntax is given in Figure 5.3). Ct allows
each iterative loop to be optimized to an equivalent tail-recursive function, where
the mutation on parameters is made visible to the caller.

Expressions comprise: values v; guarded processes [v]e, where if v is true, it
behaves as e, else it idles until v becomes true; function calls mn(v∗); sequential
composition e1; e2; parallel composition e1||e2, where e1 and e2 may communicate via
shared variables; conditionals if v e1 e2; and event raising expressions event[A(v, α∗)]
where the event A comes from the finite set of event labels Σ. Without loss of
generality, events can be further parameterized with one value v and a set of
assignments α∗ to update the mutable variables. Moreover, a number of timed
constructs can be used to capture common real-time system behaviors, which are
explained via operational semantics rules in subsection 5.2.2.
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5.2.2 Operational Semantics of Ct

To build the semantics of the system model, we define the notion of a configuration
in Definition 15, to capture the global system state during system execution.

Definition 15 (System configuration). A system configuration ζ is a pair (E , e)
where E is a variable valuation function (or a stack) and e is an expression.

A transition of the system is of the form ζ
l−→ ζ ′ where ζ and ζ ′ are the system

configurations before and after the transition respectively. Transition labels l include:
d, denoting a non-negative integer; τ , denoting an invisible event; A, denoting an
observable event. For example, ζ d−→ ζ ′ denotes a d time-units elapse. Next, we
present the firing rules, associated with timed constructs.

Process delay[v] idles for exactly t time units. Rule [delay1] states that the
process may idle for any amount of time given it is less than or equal to t; Rule
[delay2] states that the process terminates immediately when t becomes 0.

d≤v
(E , delay[v]) d−→ (E , delay[v-d])

[delay1]
(E , delay[0]) τ−→ (E , ())

[delay2]

In e1 timeout[v] e2, the first observable event of e1 shall occur before t time
units; otherwise, e2 takes over the control after exactly t time units. Note that the
usage of timeout in Figure 5.1 is a special case where e1 never starts by default.

(E , e1) A−→ (E ′, e′1)

(E , e1 timeout[v]e2) A−→(E ′, e′1)
[to1] (E , e1) τ−→ (E ′, e′1)

(E , e1 timeout[v]e2) τ−→(E ′, e′1 timeout[v]e2)
[to2]

(E , e1) d−→ (E , e′1) (d≤v)
(E , e1 timeout[v] e2) d−→(E , e′1 timeout[v-d]e2)

[to3]
(E , e1 timeout[0]e2) τ−→(E , e2)

[to4]

Process deadline [v] e behaves exactly as e except that it must terminate before
t time units. The guarded process [v]e behaves as e when v is true, otherwise it idles
until v becomes true. Process e1 interrupt[v] e2 behaves as e1 until t time units,
and then e2 takes over. We leave the rest rules in section B.1.

(E , e) A/τ−−→ (E ′, e′)

(E , deadline[v] e) A/τ−−→(E ′, deadline[v] e′)
[ddl1] (E , e) l−→ (E ′, v)

(E , deadline[v] e) l−→(E ′, v)
[ddl2]
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E |= (v=true)
(E , [v]e) τ−→ (E , e)

[gu1] (E , e) d−→ (E , e′) (d≤v)
(E , deadline[v] e) d−→ (E , deadline[v-d] e′)

[ddl3]

E 6|= (v=true)
(E , [v]e) τ−→ (E , [v]e)

[gu2] (E , e1) A/τ−−→ (E ′, e′1)

(E , e1 interrupt[v] e2) A/τ−−→(E ′, e′1 interrupt[v] e2)
[int1]

(E , e1) l−→ (E ′, v)
(E , e1 interrupt[v] e2) l−→(E ′, v)

[int2]
(E , e1 interrupt[0] e2) τ−→ (E , e2)

[int3]

(E , e1) d−→ (E , e′1) (d≤v)
(E , e1 interrupt[v] e2) d−→ (E , e′1 interrupt[v-d] e2)

[int4]

5.2.3 The Specification Language

We plant TimEffs specifications into the Hoare-style verification system, using
Φpre and Φpost to capture the temporal pre/post conditions. As shown in Figure 5.3,
TimEffs can be constructed by a conditioned event sequence π ∧ θ; or an effects
disjunction Φ1 ∨ Φ2. Timed sequences comprise nil (⊥); empty trace ε; single event
ev; concatenation θ1 · θ2; disjunction θ1 ∨ θ2; parallel composition θ1||θ2; a block
waiting for a certain constraint to be satisfied π?θ. We introduce a new operator #,
and θ#t represents the trace θ takes t time units to complete, where t is a real-time
term. A timed sequence also can be constructed by θ?, representing zero or more
times repetition of the trace θ. For single events, A(v, α∗) stands for an observable
event with label A, parameterized by v, and the assignment operations α∗; τ(π) is
an invisible event, parameterized with a pure formula π3.

Events can also be A, referring to all events which are not labeled using A; and a
wildcard _, which matches to all the events. We use π to denote a pure formula which
captures the (Presburger) arithmetic conditions on terms or program parameters. We

3The difference between τ(π) and π? is: τ(π) marks an assertion which leads to false (⊥) if π
is not satisfied, whereas π? waits until π is satisfied.
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(Timed Effects) Φ ::= π ∧ θ | Φ1 ∨ Φ2

(Event Sequences) θ ::= ⊥ | ε | ev | θ1 · θ2 | θ1 ∨ θ2 | θ1||θ2 | π?θ | θ#t | θ?

(Events) ev ::= A(v, α∗) | τ(π) | A | _
(Pure) π ::= True | False | bop(t1, t2) | π1 ∧ π2 | π1∨π2

| ¬π | π1⇒π2

(Real-Time Terms) t ::= c | x | t1+t2 | t1-t2

c ∈ Z x ∈ var (Real Time Bound) # (Kleene Star) ?

Figure 5.3: Syntax of TimEffs.

use bop(t1, t2) to represent binary atomic formulas of terms (including =, >, <, ≥
and ≤). Terms consist of constant integer values c; integer variables x; simple
computations of terms, t1+t2 and t1-t2.

5.2.4 Semantic Model of Timed Effects

Let d, E , ϕ |= Φ denote the model relation, i.e., with the stack E , the concrete
execution trace ϕ take d time units to complete; and they satisfy the specification
Φ. To define the model, var is the set of program variables, val is the set of
primitive values; and d, E , ϕ are drawn from the following concrete domains: d: N, E :
var→val and ϕ: list of event. As shown in Figure 5.4, ++ appends event sequences;
[] describes the empty sequences, [ev] represents the singleton sequence contains
event ev; JπKE=True represents π holds on the stack E . Notice that, simple events,
i.e., without #, are taken to be happening in instant time.

5.2.4.1 Expressiveness.

TimEffs draw similarities to metric temporal logic (MTL), which is derived from
LTL, where a set of non-negative real numbers is added to temporal modal operators.
As shown in Table 5.1, we are able to encode MTL operators into TimEffs, making
it more intuitive and readable. By putting effects in the postcondition, they restrict
future traces; whereas in the precondition, they naturally encode past-time temporal
specifications. The basic modal operators are: � for "globally"; ♦ for "finally"; ©
for "next"; U for "until", and their past time reversed versions: ←−� ; ←−♦ ; and 	 for
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d, s, ϕ |= Φ1 ∨ Φ2 iff d, s, ϕ |= Φ1 or d, s, ϕ |= Φ2

d, s, ϕ |= π ∧ ε iff d=0 and JπKs=True and ϕ=[]

d, s, ϕ |= π ∧ ev iff d=0 and JπKs=True and ϕ=[ev]

d, s, ϕ |= π ∧ (θ1 · θ2) iff ∃ϕ1, ϕ2. ϕ1++ϕ2=ϕ and ∃d1, d2. d1+d2=d
s.t. d1, s, ϕ1|=π ∧ θ1 and d2, s, ϕ2|=π ∧ θ2

d, s, ϕ |= π ∧ (θ1∨θ2) iff d, s, ϕ |= π ∧ θ1 or d, s, ϕ |= π ∧ θ2

d, s, ϕ |= π∧(ev1·θ1)||(ev2·θ2) iff d, s, ϕ |= π ∧ ev1 · (θ1||(ev2 · θ2)) or
d, s, ϕ |= π ∧ ev2 · ((ev1 · θ1)||θ2)

d, s, ϕ |= π∧(ev·θ1)||(ev·θ2) iff d, s, ϕ |= π ∧ ev · (θ1||θ2)

d, s, ϕ |= π ∧ (ev#t1)||(ε#t2) iff d, s, ϕ |= (π ∧ t1≥t2) ∧ (ev#t1) or
d, s, ϕ |= (π ∧ t1<t2) ∧ (ev#t1) · (ε#(t2-t1))

d, s, ϕ |= π ∧ π1?θ iff Jπ1Ks=True, d, s, ϕ |= π ∧ θ or
Jπ1Ks=False, d, s, ϕ |= π ∧ π1?θ

d, s, ϕ |= π ∧ θ#t iff Jπ ∧ t≥0Ks=True, ∃θ1, θ2. θ1 · θ2=θ,
s.t. d, s, ϕ|=(π ∧ t1≥0∧t2≥0∧t1+t2=t)
∧(θ1#t1) · (θ2#t2) (fresh t1, t2)

d, s, ϕ |= π ∧ θ? iff d, s, ϕ |= π ∧ ε or d, s, ϕ |= π ∧ θ · θ?

d, s, ϕ |= false iff JπKs=False or ϕ=⊥

Figure 5.4: Semantics of TimEffs.

"previous"; S for "since". I in MTL is the time interval with concrete upper/lower
bounds; whereas in TimEffs they can be symbolic bounds which are dependent on
program inputs.

Table 5.1: Examples for converting MTL formulae into TimEffs with t∈I applied.

Φpost �IA ≡ (A?)#t ♦IA ≡ (_? ·A)#t ©IA ≡ (_)#t ·A AUIB ≡ (A?)#t ·B

Φpre
←−
� IA ≡ (A?)#t←−♦ IA ≡ (A · _?)#t 	IA ≡ A · ((_)#t) ASIB ≡ B · ((A?)#t)

The paradigmatic non-regular linear language: t>0∧A#t · B#t is context-free,
and can be naturally expressed by TimEffs. Moreover, suppose we have a traffic
light control system, we could have a specification n>0∧m>0 ∧ (Red#n ·Yellow#m
·Green#n)?, which specifies that all the colors will occur at each life circle; and the
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duration of the green light and the red light are always the same. This example is
context-sensitive which can not be easily expressed by finite state automata.

5.3 Automated Forward Verification

5.3.1 Forward Rules

Forward rules syntactically accumulate the effects of each statement, which
are in the Hoare-style triples ` 〈Π,Θ〉 e 〈Π′,Θ′〉, where e is the given state-
ment; 〈Π,Θ〉 and 〈Π′,Θ′〉 are program states, i.e., disjunctions of conditioned
event sequence π ∧ θ. The meaning of the transition rules, can be described as:
〈Π′,Θ′〉 = ⋃|〈Π,Θ〉|-1

i=0 〈Π′i,Θ′i〉 where (πi∧θi) ∈ 〈Π,Θ〉 and ` 〈πi, θi〉 e 〈Π′i,Θ′i〉4.

We here present the selected forward rules in Figure 5.5, for time-related con-
structs and leave the rest rules in section B.2. Rule [FV -Delay] creates a trace ε#t,
where t is fresh, and concatenates it to the current program state, together with the
additional constraint t=v. Rule [FV -Deadline] computes the effects from e and adds
an upper time-bound to the results. Rule [FV -Timeout] computes the effects from
e1 and e2 using the starting state 〈π, ε〉. The final state is an union of possible effects
with their corresponding time bounds and arithmetic constraints. Note that, hd(Θ1)
and tl(Θ1) return the event head (cf. Definition 17), and the tail of Θ1 respectively.
Rule [FV -Interrupt] computes the interruption interleaves of e1’s effects, which
come from the over-approximation of all the possibilities. For example, for trace
A ·B, the interruption with time t creates three possibilities: (ε#t)∨ (A#t)∨ ((A ·B)#t).
Then the rule continues to compute the effects of e2; lastly, it prepends the original
history θ to the final results. Algorithm 2 presents the interleaving algorithm for
interruptions, where + unions program states (cf. Definition 18 and Definition 19 for
fst and D functions).

Theorem 5 (Soundness of the Forward Rules). Given any system configuration
ζ=(E , e), by applying the operational semantics rules, if (E , e)→∗(E ′, v) has ex-
ecution time d and produces event sequence ϕ; and for any history effect π∧θ,

4|〈Π,Θ〉| is the size of 〈Π,Θ〉, i.e., the count of conditioned event sequence π∧θ.
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[FV -Delay]
θ′ = θ · (ε#t) (t is fresh)

E ` 〈π, θ〉 delay[v] {π∧(t=v), θ′}

[FV -Deadline]
E ` {π, ε} e {Π1,Θ1} (t is fresh)

E ` 〈π, θ〉 deadline[v] e 〈Π1∧(t≤v), θ · (Θ1#t)〉

[FV -Timeout]
E ` {π, ε} e1 {Π1,Θ1} E ` {π, ε} e2 {Π2,Θ2} (t1, t2 are fresh)
〈Πf ,Θf〉 = 〈Π1∧t1<v, (hd(Θ1)#t1) · tl(Θ1)〉 ∪ 〈Π2∧t2=v, (ε#t2) ·Θ2〉

E ` 〈π, θ〉 e1 timeout[v] e2 〈Πf , θ ·Θf〉

[FV -Interrupt]
E ` {π, ε} e1 {Π,Θ} ∆ = ⋃|〈Π,Θ〉|-1

i=0 ℵInterrupt(v,πi)
Interleave (θi, ε) E ` {∆} e2 {Π′,Θ′}

E `〈π, θ〉 e1 interrupt[v] e2 〈Π′, θ ·Θ′〉

Figure 5.5: Selected Forward Rules for TimEffs

Algorithm 2: Interruption Interleaving
Input: v, π, θ, θhis
Output: Program States: ∆

1: function ℵInterrupt(v,π)
Interleave (θ, θhis)

2: ∆← []
3: foreach f∈fstπ(θ) do
4: φ← π∧(t<v) ∧ (θhis#t)
5: θ′ ← Dπ

f (θ)
6: θ′his ← θhis · f
7: ∆′←ℵInterrupt(v,π)

Interleave (θ′, θ′his)
8: ∆← ∆ + φ + ∆′

9: return ∆

such that d1, E , ϕ1|=(π∧θ), and the forward verifier reasons E`〈π, θ〉e〈Π,Θ〉, then
∃(π′∧θ′) ∈ 〈Π,Θ〉 such that (d1+d), E ′, (ϕ1++ϕ)|=(π′∧θ′). (Note that, ζ−→∗ζ ′ denotes
the reflexive, transitive closure of ζ −→ ζ ′.)

Proof. By induction on the structure of e:

1. Value: (E , v) τ−→(E , v) [v]
When ((E , v)→(E , v)), it takes 0 time and produces am empty sequence []. By
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rule [FV-Value], E ` {π, θ} v {π, θ}, then the post effect is the witness that
(d1+0), E , (ϕ1++[]) |= π∧θ is valid.

2. Event: (E , event[A(v, α∗)]) A(v)−−−→(E [α∗], ()) [ev]

When (E , event[A(v, α∗)])→∗(E [α∗], ()), it takes 0 time and produces the event
sequence [A(v, α∗)]. By rule [FV-Value], E ` {π, θ} A(v, α∗) 〈π, θ ·A(v, α∗)〉, then
the post effect is the witness that (d1+0), E [α∗], (ϕ1++[A(v, α∗)]) |= π ∧ θ ·A(v, α∗).

3. Guard:

E |= (v=true)
(E , [v]e) τ−→ (E , e)

[gu1] E 6|= (v=true)
(E , [v]e) τ−→ (E , [v]e)

[gu2]

When (E , [v]e)→∗(E , v′), it produces the sequence ϕ(e). By [FV -Guard], E `
〈π, θ〉 [v]e 〈Π, θ · (v=True)?Θ〉 where E ` {π, ε}e{Π,Θ}. Then the post effect is the
witness that (d1+dwait+de), E , (ϕ1++[ϕ(e)]) |= Π ∧ θ · (v=True)?Θ is valid.

4. Delay:

d≤v
(E , delay[v]) d−→ (E , delay[v-d])

[delay1]
(E , delay[0]) τ−→ (E , ())

[delay2]

When (E , delay[v])→∗(E , ()), by applying rules [delay1], [delay2], it produces
am empty sequence [], and takes time E(v). By [FV -Delay], E ` 〈π, θ〉 delay[v]
〈π∧(t=d), θ · ε#t〉. Then the post effect π∧(t=d) ∧ θ · ε#t is the witness that
(d1+E(v)), E , (ϕ1++[]) |= π∧(t=v) ∧ θ · ε#t is valid.

5. Timeout:

(E , e1) A−→ (E ′, e′1)

(E , e1 timeout[v]e2) A−→(E ′, e′1)
[to1] (E , e1) τ−→ (E ′, e′1)

(E , e1 timeout[v]e2) τ−→(E ′, e′1 timeout[v]e2)
[to2]

(E , e1) d−→ (E , e′1) (d≤v)
(E , e1 timeout[v] e2) d−→(E , e′1 timeout[v-d]e2)

[to3]
(E , e1 timeout[0]e2) τ−→(E , e2)

[to4]

When (E , e1 timeout[v] e2)→∗(E ′, v′), there are two possibilities:
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- e1 started before time bound E(v): by applying rules [to2], [to3] and [to1], it
produces the concrete sequence [A; tl(ϕ(e1))], and A takes t1 time-units, which
is less than E(v). By [FV -Timeout], E ` 〈π, θ〉 e1 timeout[v] e2 〈Π1∧t1<v, θ ·
(hd(Θ1)#t1) · tl(Θ1)〉 where E ` {π, ε}e1{Π1,Θ1}. Then the post effect is the witness
such that (d1+t1), E ′, (ϕ1++[A; tl(ϕ(e1))]) |= Π1∧(t1<v) ∧ θ · (hd(Θ1)#t1) · tl(Θ1). -
e1 never started, by applying rules [to4], it takes time d and produces the concrete
sequence [ϕ(e2)]. By [FV -Timeout], E ` 〈π, θ〉 e1 timeout[v] e2 〈Π2∧t2=v, θ ·(ε#t2) ·
Θ2〉 where E ` {π, ε}e2{Π2,Θ2}. Then the post effect is the witness such that
(d1+d), E ′, (ϕ1++[ϕ(e2)]) |= Π2∧t2=v ∧ θ · (ε#t2) ·Θ2 is valid.

6. Deadline:

(E , e) A/τ−−→ (E ′, e′)

(E , deadline[v] e) A/τ−−→ (E ′, deadline[v] e′)
[ddl1] (E , e) l−→ (E ′, v)

(E , deadline[v] e) l−→ (E ′, v)
[ddl2]

(E , e) d−→ (E , e′) (d≤v)
(E , deadline[v] e) d−→ (E , deadline[v-d] e′)

[ddl3]

When (E , deadline[v] e)→∗(E ′, v′), by applying rules [ddl1], [ddl2] and [ddl3], it
produces the concrete sequence [ϕ(e)], and it takes d time-units which is less than
E(v). By [FV -Deadline], E ` 〈π, θ〉 deadline[v] e 〈Π1∧(t≤v), θ · (Θ1#t)〉 where E `
{π, ε} e {Π1,Θ1}. Then the post effect is the witness such that (d1+d), E ′, (ϕ1++[ϕ(e)])
|= Π1∧(t≤v) ∧ θ · (Θ1#t) is valid.

7. Interrupt:

(E , e1) A/τ−−→ (E ′, e′1)

(E , e1 interrupt[v] e2) A/τ−−→ (E ′, e′1 interrupt[v] e2)
[int1]

(E , e1) l−→ (E ′, v)
(E , e1 interrupt[v] e2) l−→(E ′, v)

[int2]
(E , e1 interrupt[0] e2) τ−→ (E , e2)

[int3]

When (E , e1 interrupt[v] e2)→∗(E ′, v′), by applying rules [int1], [int2] and [int3],
it produces many possible sequences, which depends of how many events e1 can trigger
before time bound v. For example, - when there is only one event triggered before
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the time bound, by Algorithm 1, ∆=π∧(t<v)∧ θ · hd(ϕ(e1))#t. By [FV -Interrupt],
E `〈π, θ〉 e1 interrupt[v] e2 〈Π′, θ ·Θ′〉 where E ` {∆} e2 {Π′,Θ′}. Then the post
effect is the witness such that (d1+t+de2), E ′, (ϕ1++[hd(ϕ(e1))]++[ϕ(e2)]) |= π∧(t <
v) ∧ θ · hd(ϕ(e1))#t ·Θ′. is valid. Similar proofs for other possibilities.

8. Conditional:

E(v) = True
(E , if v e1 e2) τ−→(E , e1)

[cond1]
E(v) = False

(E , if v e1 e2) τ−→(E , e2)
[cond2]

When (E , if v e1 e2)→∗(E ′, v′), there are two possibilities:

- when E(v)=True, it takes de1 time units and produces sequence ϕ(e1). By
[FV -Cond-Local], E ` 〈π, θ〉 if v then e1 else e2 〈Π1, θ · τ(v=True) · Θ1〉 where
E ` {π, ε} e1 {Π1,Θ1}. Then the post effect is the witness such that
(d1+de1), E ′, (ϕ1++[ϕ(e1)]) |= Π1, θ · τ(v=True) ·Θ1 is valid.
- when E(v)=False it takes de2 time units and produces sequence ϕ(e2). By
[FV -Cond-Local], E ` 〈π, θ〉 if v then e1 else e2 〈Π2, θ · τ(v=True) · Θ2〉 where
E ` {π, ε} e2 {Π2,Θ2}.
Then the post effect is the witness such that (d1+de2), E ′, (ϕ1++[ϕ(e2)]) |= Π2, θ ·
τ(v=False) ·Θ2 is valid.

9. Function Call:

mnx∗ {e}∈P (E , e[v∗/x∗]) l−→(E ′, e′)

(E ,mn(v∗)) l−→ (E ′, e′)
[call]

When (E ,mn(v∗)→∗(E ′, v′), it takes de time units and produces sequence ϕ(e).
By [FV -Call], E ` 〈π, θ〉 mn(v∗) 〈Φf〉 where Φf=〈π, θ〉 · Φpost[v∗/x∗]. The post
effect is the witness of (d1+de), E ′, (ϕ1++[ϕ(e)]) |= 〈π, θ〉 · Φpost[v∗/x∗].
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5.4 Temporal Verification via a TRS

The TRS is an automated entailment checker to prove language inclusions
between TimEffs. It is triggered prior to function calls for the precondition checking;
and by the end of verifying a function, for the post condition checking.

Given two effects Φ1 and Φ2, the TRS decides if the inclusion Φ1 v Φ2 is valid.
During the effects rewriting process, the inclusions are in the form of Γ ` Φ1 vΦ Φ2,
a shorthand for: Γ ` Φ · Φ1 v Φ · Φ2. To prove such inclusions is to check whether
all the possible timed traces in the antecedent Φ1 are legitimately allowed in the
timed traces described by the consequent Φ2. Here Γ is the proof context, i.e., a
set of effects inclusion hypothesis; and Φ is the history effects from the antecedent
that have been used to match the effects from the consequent. Note that Γ, Φ are
derived during the inclusion proof. The inclusion checking is initially invoked with
Γ=∅ and Φ=True ∧ ε.

Effects Disjunctions. An inclusion with a disjunctive antecedent succeeds if
both disjunctions entail the consequent. An inclusion with a disjunctive consequent
succeeds if the antecedent entails either of the disjunctions.

Γ ` Φ1 v Φ Γ ` Φ2 v Φ
Γ ` Φ1 ∨ Φ2 v Φ [LHS -OR]

Γ ` Φ v Φ1 or Γ ` Φ v Φ2

Γ ` Φ v Φ1 ∨ Φ2
[RHS -OR]

Now, the inclusions are disjunction-free formulas. Next we provide definitions and
key implementations of auxiliary functions Nullable, First and Derivative. Intuitively,
the Nullable function δπ(θ) returns a Boolean value indicating whether π∧θ contains
the empty trace; the First function fstπ(θ) computes a set of initial heads, denoted
as h, of π∧θ; the Derivative function Dπ

h(θ) computes
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Definition 16 (Nullable 5). Given any Φ=π∧θ, δπ(θ) : bool=

true if ε ∈ Jπ∧θK

false if ε /∈ Jπ∧θK

δπ(⊥)=δπ(ev)=δπ(π′?) = false δπ(ε)=δ(θ?)=true δπ(θ · θ2)=δ(θ1) ∧ δ(θ2)

δπ(θ1 ∨ θ2) = δ(θ1) ∨ δ(θ2) δπ(θ1||θ2) = δ(θ1) ∧ δ(θ2) δπ(θ#t) = SAT (π∧(t=0))

Definition 17 (Heads). If h is a head of π ∧ θ, then there exist π′ and θ′, such
that π ∧ θ = π′ ∧ (h · θ′). A head can be t, denoting a pure time passing; A(v, α∗),
denoting an instant event passing; or (A(v, α∗), t), denoting an event passing which
takes time t.

Definition 18 (First). Given any Φ=π ∧ θ, fstπ(θ) returns a set of heads, be the
set of initial elements derivable from effects π ∧ θ, where (t′ is fresh):

fstπ(⊥)=fstπ(ε)={} fstπ(A(v, α∗))={A(v, α∗)} fstπ(ε#t)={t}

fstπ(θ#t)={(A(v, α∗), t′) | A(v, α∗)∈fstπ(θ)} fstπ(θ1∨θ2)=fstπ(θ1) ∪ fstπ(θ2)

fstπ(π′?θ)=fstπ(θ) fstπ(θ1||θ2)=fstπ(θ1) ∪ fstπ(θ2)

fstπ(θ?)=fstπ(θ) fstπ(θ1 · θ2)=

fstπ(θ1) ∪ fstπ(θ2) if δ(θ1)=true

fstπ(θ1) if δ(θ1)=false

Definition 19 (TimEffs Partial Derivative). Given any Φ=π∧ θ, the partial deriva-
tive Dπ

h(θ) computes the effects for the left quotient h-1(π ∧ θ), cf. Definition 1.

Dπ
h(⊥)=Dπ

h(ε)=False∧⊥ Dπ
h(A(v, α∗))=(π∧(h=A(v, α∗)))∧ε Dπ

h(θ?)=Dπ
h(θ)·θ?

Dπ
τ(π1)(π′?θ)=

π∧π′? if α∗ 6⇒π′

π∧ε if α∗⇒π′
Dπ
h(θ1·θ2)=

Dπ
h(θ1)·θ2∨Dπ

h(θ2) if δπ(θ1)=true

Dπ
h(θ1)·θ2 if δπ(θ1)=false

Dπ
(A(v,α∗),t)(θ) =

∨
{Dπ′

A(v,α∗)(θ
′) | (π′ ∧ θ′) ∈ Dπ

t (θ)}

Dπ
t (θ#t′)=(π ∧ t+t′′=t′) ∧ θ#t′′ (t′′ is fresh) Dπ

h(θ1∨θ2)=Dπ
h(θ1) ∨Dπ

h(θ2)

Dπ
A(v,α∗)(θ#t)=

∨
{(π′∧(θ′#t)) | (π′∧θ′)∈Dπ

A(v,α∗)(θ)} Dπ
h(θ1||θ2)= ¯̄Dπ

h(θ1)|| ¯̄Dπ
h(θ2)

5SAT (π) stands for querying the Z3 theorem prover to check the satisfiability of π.

88



CHAPTER 5. SYMBOLIC TIMED EFFECTS (TIMEFFS)

Notice that the derivatives of a parallel composition makes use of the Parallel

Derivative ¯̄Dπ
h(θ), defined as follows: ¯̄Dπ

h(θ)=

π∧θ if Dπ
h(π ∧ θ) = (False∧⊥)

Dπ
h(θ) otherwise

5.4.1 Rewriting Rules.

Given the well-defined auxiliary functions above, we now discuss the key rewriting
rules that deployed in effects inclusion proofs.

1. Axiom rules. Analogous to the standard propositional logic, ⊥ (referring to
false) entails any effects, while no non-false effects entails ⊥.

Γ ` π ∧ ⊥ v Φ [Bot-LHS ]
Φ 6= π ∧ ⊥

Γ ` Φ 6v π ∧ ⊥
[Bot-RHS ]

2. Disprove (Heuristic Refutation). This rule is used to disprove the inclusions
when the antecedent is nullable, while the consequent is not nullable. Intuitively, the
antecedent contains at least one more trace (the empty trace) than the consequent.
Therefore, the inclusion is invalid.

δπ1(θ1) ∧ ¬δπ2(θ2)
Γ ` π1 ∧ θ1 6v π2 ∧ θ2

[DISPROVE ]
π1 ⇒ π2 fstπ1(θ1) = {}

Γ ` π1 ∧ θ1 v π2 ∧ θ2
[PROVE ]

3. Prove. We use two rules to prove an inclusion: (i) [PROVE ] is used when the
antecedent has no head; and (ii) [REOCCUR] proves an inclusion when there exist
inclusion hypotheses in the proof context Γ , which are able to soundly prove the
current goal. The special case of [REOCCUR] is when the identical inclusion is
shown in the proof context, then the TRS then terminates and proves it valid.

[REOCCUR]
(π1∧θ1 v π3∧θ3) ∈ Γ (π3∧θ3 v π4∧θ4) ∈ Γ (π4∧θ4 v π2∧θ2) ∈ Γ

Γ ` π1 ∧ θ1 v π2 ∧ θ2
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4. Unfolding (Induction). This is the inductive step of unfolding the inclusions.
Firstly, we make use of the fst function to get H, which are all the possible initial
events from the antecedent. Secondly, we obtain a new proof context Γ′ by extending
Γ with the current inclusion, as an inductive hypothesis. Thirdly, we iterate each
element h ∈ H, and compute the partial derivatives (next-state effects) of both the
antecedent and consequent with respect to h. The proof of the original inclusion
succeeds if all the derivative inclusions succeed.

[UNFOLD]
H=fstπ1(θ1) Γ′=Γ, (π1∧θ1 v π2∧θ2) ∀h∈H. (Γ′ ` Dπ1

h (θ1) v Dπ2
h (θ2))

Γ ` π1 ∧ θ1 v π2 ∧ θ2

Theorem 6 (Termination of the TRS). The TRS is terminating.

Proof. See section B.3.

Theorem 7 (Soundness of the TRS). Given an inclusion Φ1 v Φ2, if the TRS
returns TRUE with a proof, then Φ1 v Φ2 is valid.

Proof. See section B.4.

5.4.2 Discussion: highlighting the novelty.

Departing from the original Antimirov algorithm [AM95], this work devises
extended definitions for the auxiliary functions: Nullable(δ), First(fst) and Deriva-
tive(D). These definitions cover extended constructs in the more expressive specifica-
tions formulae, TimEffs, which use arithmetic constraints to quantify the symbolic
time bounds for the effect traces. The comprehensive rewriting system serves
as a back-end engine for the finer-grained timed verification with symbolic time
requirements, which cannot be trivially achieved by the original rewriting system.

5.5 Demonstration Examples

We use Figure 5.6 to highlight our main methodologies, which simulates a coffee
machine, that dynamically adds sugar based on the user’s input number.
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5.5.1 TimEffs.

We define Hoare-triple style specifications (enclosed in /*...*/) for each function,
which lead to a compositional verification strategy, where static checking can be
done locally. The precondition of makeCoffee specifies that the input value n is
non-negative, and it requires that before entering into this function, this history
trace must contain the event CupReady on the tail. The verification fails if the
precondition is not satisfied at the caller sites. Line 17 sets a five time-units deadline
(i.e., maximum 5 portion of sugar per coffee) while calling addNSugar (defined in
Figure 5.1); then emits event Coffee with a deadline, indicating the pouring coffer
process takes no more than four time-units. The precondition of main requires
no arithmetic constraints (expressed as true) and an empty history trace. The
postcondition of main specifies that before the final Done happens, there is no any
occurrence of Done (! indicates the absence of events); and the whole process takes
at most nine time-units to hit the final event.

14 void makeCoffee (int n)

15 /* req: n≥0 ∧ _?· CupReady
16 ens: n≤t≤5 ∧ t’≤4 ∧(EndSugar # t) · (Coffee # t’) */

17 { deadline (addNSugar(n), 5);

18 deadline (event["Coffee"],4);}

19

20 int main ()

21 /* req: true ∧ ε

22 ens: t≤9 ∧ ((!Done)? # t) · Done */

23 { event["CupReady"];

24 makeCoffee (3);

25 event["Done"];}

Figure 5.6: To make coffee with three portions of sugar within nine time units.

TimEffs support more features such as disjunctions, guards, parallelism and
assertions, etc (cf. subsection 5.2.3), providing detailed information upon: branching
properties: different arithmetic conditions on the inputs lead to different effects;
and required history traces: by defining the prior effects in the precondition. These
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capabilities are beyond traditional timed verification, and cannot be fully captured by
any prior works [Don+08; DM01; Wan+17; LPY97; Yov97; WWH05]. Nevertheless,
the increase in expressive power needs support from finer-grind reasoning and a
more sophisticated back-end solver, discharged by our forward verifier and TRS,
respectively.

5.5.2 Forward Verification.

Figure 5.7 demonstrates the forward verification of functions addOneSugar and
addNSugar, defined in Figure 5.1.

The effect states are captured in the form of {ΦC}. To facilitate the illustra-
tion, we label the steps by (1) to (11), and mark the deployed forward rules (cf.
subsection 5.3.1) in [gray]. The initial states (1) and (4) are obtained from the
precondition, by the [FV -Fun] rule. States (5)(7)(10) are obtained by [FV -Cond],
which enforces the conditional constraints into the effect states, and unions the
effects accumulated from two branches. State (6) is obtained by [FV -Event], which
concatenates an event to the current effects. The intermediate states (8) and (9) are
obtained by [FV -Call].

Before each function call, [FV -Call] invokes the TRS to check whether the
current effect states satisfy callee’s precondition. If it is not satisfied, the verification
fails; otherwise, it concatenates the callee’s postcondition to the current states
(the precondition check for step (8) is omitted here). State (2) is obtained by
[FV -Timeout], which adds a lower time-bound to an empty trace. After these state
transformations, steps (3) and (11) invoke the TRS to check the inclusions between
the final effects and the declared postcondition. Here t1 and t2 are fresh time
variables.

5.5.3 The TRS.

Having TimEffs to be the specification language, and the forward verifier to
reason about the actual behaviors, we are interested in the following verification
problem: Given a program P , and a temporal specification Φ′, does the inclusions
ΦP v Φ′ holds? Typically, checking the inclusion/entailment between the concrete
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1. void addOneSugar() { // initialize the state using the function precondition.
ΦC=ΦaddOneSugar(n)

pre = {true ∧ _? } [FV-Fun]

2. timeout ((), 1);}
Φ′C={t1>1 ∧ _? · (ε # t1)} [FV-Timeout]

3. Φ′C v ΦaddOneSugar(n)
pre ·ΦaddOneSugar(n)

post ⇔ t1>1 ∧ _? · (ε#t1) v t>1 ∧ _? · (ε#t)

4. void addNSugar (int n) { //initialize the state using the function precondition.
ΦC=ΦaddNSugar(n)

pre = {true ∧ _?} [FV-Fun]

5. if (n == 0) {
{n=0 ∧ _?} [FV-Cond]

6. event ["EndSugar"];}
{n=0 ∧ _?· EndSugar} [FV-Event]

7. else {
{n 6=0 ∧ _?} [FV-Cond]

8. addOneSugar();
{n 6=0∧t2>1 ∧ _? · (ε # t2)} [FV-Call]

9. addNSugar (n-1);}}
n6=0∧t2>1 ∧ _? · (ε # t) v ΦaddNSugar(n-1)

pre // TRS: precondition checked.
{n 6=0∧t2>1 ∧ _? · (ε # t2) · ΦaddNSugar(n-1)

post } [FV-Call]

10. Φ′C= (n=0 ∧ _?·Sugar) ∨(n6=0∧t2>1 ∧ _?·(ε#t2)·ΦaddNSugar(n-1)
post ) [FV-Cond]

11. Φ′C v ΦaddNSugar(n)
pre · ΦaddNSugar(n)

post ⇔ //TRS: postcondition checked, cf. Ta-
ble 5.2

(n=0 ∧ Sugar) ∨ (n6=0∧t2>1 ∧ (ε # t2) · ΦaddNSugar(n-1)
post ) v ΦaddNSugar(n)

post

Figure 5.7: Forward verification for functions addOneSugar and addNSugar .

program effects ΦP and the expected property Φ′ proves that: the program P will
never lead to unsafe traces which violate Φ′.

Our TRS is an extension of Antimirov and Mosses’s algorithm [AM95], which
can be deployed to decide inclusions of two regular expressions (REs) through an
iterated process of checking inclusions of their partial derivatives [Ant95]. There
are two basic rules: [Disprove] infers false from trivially inconsistent inclusions; and
[Unfold] applies Theorem 1 to generate new inclusions.
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Similarly, we defined Definition 20 for unfolding the inclusions between TimEffs,
where (A#t)-1Φ is the partial derivative of Φ with respect to the event A with the
time bound t.

Definition 20 (TimEffs Inclusion). Given Σ is a finite set of alphabet, for two
TimEffs Φ1 and Φ2, their inclusion is defined as:

Φ1 v Φ2 ⇔ ∀A.∀t≥0. (A#t)-1Φ1 v (A#t)-1Φ2.

Termination of the rewriting is guaranteed because the set of derivatives to be
considered is finite, and possible cycles are detected using memorization [Bro05a].
Next, we use Table 3.3 to demonstrate how the TRS automatically proves the final
effects of main satisfying its postcondition (shown at step (11) in Figure 5.7). We
mark the rewriting rules (cf. section 3.4) in [gray].

Table 5.2: An inclusion proving example. (I) is the right hand side sub-tree of the
the main rewriting proof tree.

4© [PROV E]
n=0 ∧ ε v tR≥0 ∧ ε # tR

3©[UNFOLD]

n=0 ∧ �
�ES v tR≥0 ∧ �

�ES#tR (I)
2©[LHS-OR]

(n=0∧ES) ∨ (n6=0∧t2>1∧tL≥(n-1)∧ ε#t2 · ES#tL) v tR≥n ∧ ES#tR
1©[RENAME]

(n=0 ∧ ES) ∨ (n6=0∧t2>1 ∧ (ε # t2) · ΦaddNSugar(n-1)
post ) v ΦaddNSugar(n)

post

(I)
t2>1∧tL≥(n-1) ∧ tL=(tR-t2) ⇒ tR≥n

7©[PROV E]
n6=0∧t2>1∧tL≥(n-1) ∧ ε v tR≥n ∧ ε

6©[UNFOLD] πu:tL=(tR-t2)
n 6=0∧t2>1∧tL≥(n-1) ∧ ��

���ES#tL v tR≥n ∧ ((((
((((

((
ES#(tR-t2)

5©[UNFOLD]

n6=0∧t2>1∧tL≥(n-1) ∧ ���
�ε#t2· ES#tL v tR≥n ∧ ES��

�#tR

In Table 3.3, step 1© renames the time variables to avoid the name clashes between
the antecedent and the consequent. ES stands for the event EndSugar. Step 2© splits
the proof tree into two branches, according to the different arithmetic constraints, by
rule [LHS -OR]. In the first branch, step 3© eliminates the event ES from the head
of both sides, by rule [UNFOLD]. Step 4© proves the inclusion, because evidently
the consequent tR≥0 ∧ ε#tR contains ε when tR=0. In the second branch, step 5©
eliminates the a time duration ε#t2 from both sides. Therefore the rule [UNFOLD]
subtracts a time duration from the consequent, i.e., (tR-t2). Similarly, step 6©
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eliminates ES#tL from both sides, adding tL=(tR-t2) to the unification constraints.
Step 7© manages to prove that t2>1∧tL≥(n-1)∧tL=(tR-t2)⇒tR≥n at the end of
the rewriting6; therefore, the proof succeeds.

5.5.4 Verifying the Fischer’s Mutual Exclusion Protocol.

Figure 5.8 presents the classical Fischer’s mutual exclusion algorithm, in Ct.
Global variables x and ct indicate ‘which process attempted to access the critical
section most recently’ and ‘the number of processes accessing the critical section’
respectively.

1 var x := -1;

2 var cs:= 0;

3

4 void proc (int i) {

5 [x=-1] //block waiting until true

6 deadline(event["Update"(i)]{x:=i},d);

7 delay (e);

8 if (x==i) {

9 event["Critical"(i)]{cs:=cs+1};

10 event["Exit"(i)]{cs:=cs-1;x:=-1};

11 proc (i);

12 } else {proc (i);}}

13

14 void main ()

15 /* req: d<e ∧ ε

16 ensa:true ∧ (cs≤1)? ensb:true ∧ ((_?).Critical.Exit.(_?))? */

17 { proc(0) || proc(1) || proc(2); }

Figure 5.8: Fischer’s mutual exclusion algorithm.

The main procedure is a parallel composition of three processes, where d and e

are two integer constants. Each process attempts to enter the critical section when

6The proof obligations for arithmetic constraints are discharged by the Z3 solver [dMB08].
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x is -1, i.e. no other process is currently attempting. Once the process is active
(i.e., reaches line 6), it sets x to its identity number i within d time units, captured
by deadline(...,d). Then it idles for e time units, captured by delay(e) and
then checks whether x still equals to i. If so, it safely enters the critical section.
Otherwise, it restarts from the beginning. Quantitative timing constraint d<e plays
an important role in this algorithm to guarantee mutual exclusion. In order to verify
mutual exclusion, one way is to show that ct≤1 is always true. The specification
implies that this implementation is indeed mutual exclusive. Our prototype system
(cf section 5.6) is able to effectively verify such time-critical algorithms.

5.6 Implementation and Evaluation

To show the feasibility, we prototype our automated verification system using
OCaml (∼5k LOC); and prove soundness for both the forward verifier and the
TRS. We set up two experiments to evaluate our implementation: i) functionality
validation via verifying symbolic timed programs; and ii) comparison with PAT
[Sun+09] and Uppaal [LPY97] using real-life Fischer’s mutual exclusion algorithm.
Experiments are done on a MacBook with a 2.6 GHz 6-Core Intel i7 processor. The
source code and the evaluation benchmark are openly accessible from [Son22b].

5.6.1 Experimental Results for Symbolic Timed Models.

We manually annotate TimEffs specifications for a set of synthetic examples (for
about 54 programs), to test the main contributions, including: computing effects
from symbolic timed programs written in Ct; and the inclusion checking for TimEffs
with the parallel composition, blok waiting operator and shared global variables.

This experiment is done without a baseline comparison because there are no
existing tools for solving inclusion problems for symbolic timed automata, and our
experimental results show that a modular and efficient temporal verification for
symbolic time-critical systems is achievable.

Table 5.3 presents the evaluation results for another 16 Ct programs7, and the

7All programs contain timed constructs, conditionals, and parallel compositions.
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Table 5.3: Experimental Results for Manually Constructed Synthetic Examples.

No. LOC Forward(ms) #Prop(3) Avg-Prove(ms) #Prop(7) Avg-Dis(ms) #AskZ3

1 26 0.006 5 52.379 5 21.31 77
2 37 43.955 5 83.374 5 52.165 188
3 44 32.654 5 52.524 5 33.444 104
4 72 202.181 5 82.922 5 55.971 229
5 98 42.706 7 149.345 7 60.325 396
6 134 403.617 7 160.932 7 292.304 940
7 133 51.492 7 17.901 7 47.643 118
8 173 57.114 7 40.772 7 30.977 128
9 182 872.995 9 252.123 9 113.838 1142
10 210 546.222 9 146.341 9 57.832 570
11 240 643.133 9 146.268 9 69.245 608
12 260 1032.31 9 242.699 9 123.054 928
13 265 12558.05 11 150.999 11 117.288 2465
14 286 12257.834 11 501.994 11 257.800 3090
15 287 1383.034 11 546.064 11 407.952 1489
16 337 49873.835 11 1863.901 11 954.996 15505

annotated temporal specifications are in a 1:1 ratio for succeeded/failed cases. The
table records: No., index of the program; LOC, lines of code; Forward(ms),
effects computation time; #Prop(3), number of valid properties; Avg-Prove(ms),
average proving time for the valid properties; #Prop(7), number of invalid properties;
Avg-Dis(ms), average disproving time for the invalid properties; #AskZ3, number
of querying Z3 through out the experiments.

Observations: i) the proving/disproving time increases when the effect computa-
tion time increases because larger Forward(ms) indicates the higher complexity
with respect to the timed constructs, which complicates the inclusion checking; ii)
while the number of querying Z3 per property (#AskZ3/(#Prop(3)+#Prop(7)))
goes up, the proving/disproving time goes up. Besides, we notice that iii) the
disproving times for invalid properties are constantly lower than the proving process,
regardless of the program’s complexity, which is as expected in a TRS.
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5.6.2 Verifying Fischer’s Mutual Exclusion Algorithm.

As shown in Table 5.4, the data in columns PAT(s) and Uppaal(s) are drawn
from prior work [LSD11], which indicate the time to prove Fischer’s mutual exclusion
with respect to the number of processes (#Proc) in PAT and Uppaal respectively. For
our system, based on the implementation presented in Figure 5.8, we are able to prove
the mutual exclusion properties, given the arithmetic constraint d<e. Besides, the
system disproves mutual exclusion when d≤e. We record the proving (Prove(s))
and disproving (Disprove(s)) time and their number of uniquely querying Z3
(#AskZ3-u).

Table 5.4: Comparison with PAT via verifying Fischer’s mutual exclusion algorithm

#Proc Prove(s) #AskZ3-u Disprove(s) #AskZ3-u PAT(s) Uppaal(s)

2 0.09 31 0.110 37 ≤0.05 ≤0.09
3 0.21 35 0.093 42 ≤0.05 ≤0.09
4 0.46 63 0.120 47 0.05 0.09
5 25.0 84 0.128 52 0.15 0.19

Observations: i) automata-based model checkers (both PAT and Uppaal) are
vastly efficient when given concrete values for constants d and e; however ii) our
proposal is able to symbolically prove the algorithm by only providing the constraints
of d and e, which cannot be achieved by existing model checkers; ii) our verification
time largely depends on the number of querying Z3, which is optimized in our
implementation by keeping a table for recording the queried constraints.

5.6.3 Case Study: Prove it when Reoccur.

Termination of TRS is guaranteed because the set of derivatives to be considered
is finite, and possible cycles are detected using memorization [Bro05a], demonstrated
in Table 5.5. In step 2©, in order to eliminate the first event B, A?#tR has to be
reduced to ε, therefore the RHS time constraint has been strengthened to tR=0.
Looking at the sub-tree (I), in step 5©, tL and tR are split into tL1+tL2 and tR1+tR2.
Then in step 6©, A#tL1 together with A#tR1 are eliminated, unifying tL1 and tR1

by adding the side constraint tL1=tR1. In step 8©, we observe the proposition is
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Table 5.5: The reoccurrence proving example in TimEffs. (I) is the left hand side
sub-tree of the main rewriting proof tree.

(I)

tL<3∧(A?#tL)·B v tR<4∧(A?#tR)·B

4© [PROVE ]
True ∧ ε v tR=0 ∧ ε

3©[Normal]
True ∧ �B v tR=0 ∧ ���ε · B

2©[UNFOLD]
True ∧ B v tR<4 ∧ (A?#tR) · B

1©[OR-LHS]
(tL<3 ∧ (A?#tL) · B) ∨ (True ∧ B) v tR<4 ∧ (A?#tR) · B

(I) :
tL<3∧tL1+tL2=tL∧tR=tR1+tR2∧tL1=tR1∧tL2=tR2⇒tR<4

8©[REOCCUR]
tL<3 ∧ (A?#tL2) · B v tR<4 ∧ (A?#tR2) · B (‡)

7©[UNFOLD]
tL<3∧ ����A#tL1 · A?#tL2·BvtR<4∧ ����A#tR1· A?#tR2·B

6©[UNFOLD] πu:tL1=tR1

tL<3∧(A#tL1· A?#tL2)·BvtR<4∧(A#tR1· A?#tR2)·B
5©[SPLIT ]tL1+tL2=tL∧tR1+tR2=tR

tL<3 ∧ (A?#tL) · B v tR<4 ∧ (A?#tR) · B (‡)

isomorphic with one of the the previous step, marked using (‡). Hence we apply the
rule [REOCCUR] to prove it with a succeed side constraints entailment.

5.6.4 Discussion.

Our implementation is the first tool that proves the inclusion of symbolic TAs,
which is considered significant because it overcomes the following main limitations
of traditional timed model checking: i) TAs cannot be used to specify/verify incom-
pletely specified systems (i.e., whose timing constants have yet to be known) and
hence cannot be used in early design phases; ii) verifying a system with a set of
timing constants usually requires enumerating all of them if they are supposed to
be integer-valued; iii) TAs cannot be used to verify systems with timing constants
to be taken in a real-valued dense interval.

Besides, our results echo the insights from prior TRS-based works [SC20; AM95;
AMR09; KT14a; Hov12; Bjø+01; KMP00; ÖM02; Ölv00], which suggest that TRS
is a better average-case algorithm than those based on the comparison of automata.
That is because it only constructs automata as far as it needs, which makes it more
efficient when disproving incorrect specifications, as it can disprove it earlier without
constructing the whole automata. In other words, the more incorrect specifications
are, the more efficient a TRS is.
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5.7 Summary

This work provides an alternative approach for verifying real-time systems,
where temporal behaviors are reasoned at the source level, and the specification
expressiveness goes beyond traditional Timed Automata. We define the novel effect
logic TimEffs, to capture real-time behavioral patterns and temporal properties.
We demonstrate how to build axiomatic semantics (or rather an effects system) for
Ct via timed-trace processing functions. We use this semantic model to enable a
Hoare-style forward verifier, which computes the program effects constructively. We
present an effects inclusion checker – the TRS – to prove the annotated temporal
properties efficiently. We prototype the verification system and show its feasibility.
To the best of our knowledge, our work proposes the first algebraic TRS for solving
inclusion relations between timed specifications.

Limitations And Future Work. Our TRS is incomplete, meaning there exist
valid inclusions which will be disproved in our system. That is mainly because of
the insufficient unification in favor of achieving automation. We also foresee the
possibilities of adding other logics into our existing trace-based temporal logic, such
as separation logic for verifying heap-manipulating distributed programs.
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Chapter 6

Continuation Based Effects (Cont-
Effs)

Although effect handlers offer a versatile abstraction for user-defined effects, they
produce complex and less restricted execution traces due to the composable non-local
control flow mechanisms. This paper is interested in the temporal behaviors of effect
sequences, such as unhandled effects, termination of the communication, safety,
fairness, etc. Specifically, this chapter proposes a novel effect logic ContEffs, to write
precise and modular specifications for programs in the presence of user-defined effect
handlers and primitive effects. As a second contribution, we devise a forward verifier
together with a fixpoint calculator to infer the behaviors of such programs. Lastly,
our automated verification framework provides a purely algebraic term-rewriting
system (TRS) as the back-end solver, efficiently checking the entailments between
ContEffs assertions.

To demonstrate the feasibility, we prototype a verification system where zero-
shot, one-shot, and multi-shot continuations coexist; prove its correctness; present
experimental results; and report on case studies.

6.1 Introduction

User-defined effects and effect handlers are advertised and advocated as a rela-
tively easy-to-understand and modular approach to delimited control. They offer the
ability to suspend and resume computations, allowing information to be transmitted
both ways. More specifically, an effect handler resembles an exception handler, i.e.,
control is transferred to an enclosing handler. Unlike the exception handlers, the key
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difference is that effects handlers have access to a continuation. By invoking this
continuation, the handler can communicate a reply to the suspended computation
and resume its execution.

For example, effect Yield : int -> unit, declares the Yield effect, to be
used in the generator functions. When it is performed, the program suspends its
current execution and returns the yielded int value to the handler. Such usages
separate the logic, e.g., iterating a list, from the effectful operations, such as "printing
on the console" or "sending an element to a consumer", thereby improving code reuse
and memory efficiency. Functions perform effects without needing to know how
the handlers are implemented, and the computation may be enclosed by different
handlers that handle the same effect differently.

Recently, effect handlers are found in several research programming languages,
such as Eff [BP15], Frank [Con+20], Links [HLA20], Multicore OCaml [Siv+21],
and Scala [BSO20], etc. There is a growing need for programmers and researchers
to reason about the combination of primitive effects and user-defined handlers. In
particular, we are interested in the techniques for inferring and verifying temporal
behaviors of such non-local control flows, which have not been extensively studied.
Here, we tackle the following verification challenges:

1. The coexistence of zero-shot, one-shot and multi-shot continuations. The de-
sign decisions of various implementations [Lei14a; Siv+21] and verification solutions
[Lan98; dVP21] diverge upon the question that, should it be permitted or forbidden
to invoke a captured continuation more than once? Here, our forward reasoning
rules shows the generality to incorporate both one-shot and multi-shot continuations.
Furthermore, it naturally supports reasoning on exceptions by treating them as
zero-shot, i.e., that abandon the continuations completely.

2. Non-terminating behaviors. Figure 6.1 presents the so-called "recursive cow"
program drawn from the benchmark [Git22], which looks like it is terminating but
it actually cycles. Function f() performs the predefined effect Foo; then loop()

handles effect Foo by resuming a closure which in turn performs Foo when applied.
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1 effect Foo : (unit -> unit)

2

3 let f() = perform Foo ()

4

5 let loop()

6 = match f () with

7 | _ -> () (* normal return *)

8 | effect Foo k -> continue k (fun () -> perform Foo ())

Figure 6.1: A loop caused by the effects handler.

With higher-order effect signatures and in the setting of deep handlers1, the
communications between the computation and handlers potentially lead to infinite
traces. It is useful yet challenging to automatically infer/verify the termination of
the communication. Here, we devise ContEffs, i.e., extended regular expressions
with arithmetic constraints, to provide more precise specifications by integrating: ?
for finite traces; ω for infinite traces; ∞ for possibly finite or infinite traces.

3. Linear temporal properties. For decades monads have dominated the scene of
pure functional programming with effects, and the recent popularization of algebraic
effects and handlers promises to change the landscape. However, with rapid change
also comes confusion. In monads, the effectful behavior is defined in bind and
return, statically determining the behavior inside the do block. Whereas algebraic
effects call effectful operations with no inherent behavior. Instead, the behavior is
determined dynamically by the encompassing handler. Although this gives greater
flexibility in the composition of effectful code, it requires further specifications and
verification to enforce the temporal requirements.

In this work, ContEffs smoothly encode and go beyond the linear temporal logic
(LTL). For examples: "Effect A will never be followed by effect B" is a fairness
property, and it is expressed as: (_? ·A · B)?, where _ is a wildcard matching to
any events; ? denotes a repeated pattern; B denotes the negation of an effect B.

1A deep handler is persistent: after it has handled one effect, it remains installed, as the
topmost frame of the captured continuation [HL18; KLO13].
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"Function send(int n) terminates when n is non-negative, otherwise it does not
terminate" is expressed as: n≥0∧(_)? ∨ n<0∧(_)ω, which is beyond LTL 2.

Having ContEffs as the specification language, we are interested in the following
verification problem: Given a program P , and a temporal property Φ′, does ΦP v Φ′

hold3? In a typical verification context, checking the inclusion/entailment between
the program effects ΦP and the valid traces Φ′ proves that: the program P will
never lead to unsafe traces which violate Φ′.

To effectively check ΦP v Φ′, we deploy a purely algebraic TRS inspired by
Antimirov and Mosses’s algorithm [AM95], which was originally designed for deciding
the inequalities of regular expressions. Our TRS shows the ability to solve inclusions
beyond the expressiveness of finite-state automata, also suggests that it is a better
average-case algorithm than those based on automata theory.

We aim to lay the foundation for a practical verification system that is precise,
concise, and modular to prove temporal properties of effectful programs. To the best
of the author’s knowledge, this work is the first to provide an extensive temporal
verification framework for programs with user-defined effects and handlers. We
summarize our main contributions as follows:

1. The Continuous Effect (ContEffs): We define the syntax and semantics of
ContEffs, to be the specification language, which captures the temporal behaviors of
given higher-order programs with algebraic effects.

2. Front-End Effects Inference: Targeting a ML-like language with the presence
of algebraic effects [Siv+21; Nan+18], we establish a set of forward rules, to compo-
sitionally infer the program’s temporal behaviors. The forward reasoning process
makes use of a fixpoint calculator and the back-end solver TRS.

3. The Term Rewriting System (TRS): To check the entailments (i.e., the
language inclusion relation) between two ContEffs, we present the rewriting rules,
to prove the inferred effects against given temporal specifications.

2The classic LTL does not distinguish the termination of traces.
3The inclusion notation v is formally defined in Definition 26.
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4. Implementation and Evaluation: We prototype the proposed verification
system based on the latest Multicore OCaml (4.12.0) implementation. We prove its
correctness and present case studies investigating ContEffs’ expressiveness and the
potential for various extensions.

6.2 Language and Specifications

This section first introduces the target language and then depict the temporal
specification language which supports ContEffs.

6.2.1 The Target Language

Syntax. We target a minimal, ML-like (typed, higher-order, call-by-value) core
pure language, defined in Figure 6.2 Here, c, x and A are meta-variables ranging
respectively over integer constants, variables, and labels of effects.

A program P comprises a list of effect declarations eff ∗ and a list of function
definitions fun∗; the ∗ superscript denotes a finite, possibly empty list of items.
Programs are typed according to basic types τ . Each function fun has a name mn,
an expression body e, and pre and postcondition Φpre and Φpost (the syntax of effect
specifications Φ is given in Figure 6.4). Constructs like sequencing are defined via
elaboration to more primitive forms.

6.2.1.1 Operational Semantics of λh.

As shown in Figure 6.3, the reduction rules up to those for match are standard.
Matching on a pure value results in the body of the always-present return handler
being executed, with x bound to the value. The next two cases define how effects
are performed and handled, but before covering them, we first explain how the
expression perform A(v, λx⇒ e) works informally: it performs the effect A (e.g. a
shared-memory read) with argument v (e.g. the memory location to be read). The
result value of the effect (e.g. the contents of the memory location) is then bound
to x and evaluation resumes with the continuation e. Note that how exactly the
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(Program) P ::= eff ∗ fun∗

(Effect Declarations) eff ::= A : τ
(Function Definition) fun ::= τ mn (τ v) [req Φpre ens Φpost] {e}
(Types) τ ::= bool | int | unit | τ1 → τ2

(Values) v ::= c | x | λx⇒ e

(Handler) h ::= (return x 7→ e | ocs)
(Operation Cases) ocs ::= ∅ | {effect A(x, κ) 7→ e} ] ocs
(Expressions) e ::= v | v1 v2 | let x=v in e | if v then e1 else e2

| perform A(v, λx⇒ e) | match e with h | resume v

(Selected Elaborations)
e1; e2 =⇒ let ()=e1 in e2

e1 e2 =⇒ let f=e1 in let x=e2 in (f x)
perform A(e1, λy ⇒ e2) =⇒ let x=e1 in perform A(x, λy ⇒ e2)

let x=perform A(v, λy ⇒ e1) in e2 =⇒ perform A(v, λy ⇒ let x=e1 in e2)
perform A(v) =⇒ perform A(v, λx⇒ x)

c ∈ Z ∪ B ∪ unit x, y,mn, κ ∈ var A ∈ Σ

Figure 6.2: Syntax of λh, a minimal, ML-like language with user-defined effects and
handlers.

read is implemented is defined by handlers which enclose the perform.

With that in mind, there are two cases when matching on an effectful expression.
If the effect A is handled by an appropriate case in an enclosing handler, both
value and continuation are substituted into the body of the case – note that the
continuation contains an identical handler (making the enclosing handler deep).
Otherwise, if the effect is unhandled, reduction proceeds with the current match
"pushed" into the continuation, to handle subsequent performs.
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(Evaluation contexts) E ::= box | let x=E in e | match E with h

(Reduction rules) E[e1]−→E[e2] if e1 −→ e2

let x=v in e−→e[v/x]
(λx⇒ e) v−→e[v/x]

if true then e1 else e2−→e1

if false then e1 else e2−→e2

match v with h−→e[v/x] if (return x 7→ e) ∈ h
match (perform A(v, λy ⇒ e1)) with h−→e2[v/x][(λy ⇒ match e1 with h)/κ]

if (effect A(x, κ) 7→ e2) ∈ h
match (perform A(v, λy ⇒ e1)) with h−→perform A(v, λy ⇒ match e1 with h)

if A /∈ h

Figure 6.3: Evaluation contexts and reduction rules

6.2.2 The Specification Language

Syntax. We enrich a Hoare-style verification system with effect specifications,
using the notation {req Φpre ens Φpost} for function pre and postcondition. As
defined in Figure 3.2, Φ is a set of disjunctive tuples including a pure formula π, an
event sequence θ, and a return value v.

A is an effect label drawn from Σ, a finite set of user-defined effect labels. A
parameterized label is an effect label together with a value argument v. An event ev
is an assertion about the (non-)occurrence of an individual, handled effect.

Placeholders Q stand for traces (sequences of events). The two kinds of place-
holders are unhandled effects l!, which may give rise to further effects upon being
handled, and l?(v), which describes the trace that results when l is resumed with a
higher-order function, and this function is applied to v. Placeholders enable modular
verification, allowing higher-order perform sites to be described independently of
any particular handler. They are only instantiated while verifying handlers, using
the fixed-point reasoning (subsection 6.3.2).
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(ContEffs) Φ ::= ∨(π, θ, v)
(Parameterized Label) l ::= Σ(v)

(Event Sequences) θ ::= ⊥ | ε | ev | Q | θ1·θ2 | θ1∨θ2 | θ? | θ∞ | θω

(Single Events) ev ::= _ | l | l
(Placeholders) Q ::= l! | l?(v)

(Pure formulae) π ::= True | False | R(t1, t2) | π1∧π2 |π1∨π2

|¬π |π1⇒π2

(Terms) t ::= n | x | t1+t2 | t1-t2

x ∈ var (Finite Kleene Star) ? (Finite/Infinite) ∞ (Infinite) ω

Figure 6.4: Syntax of ContEffs.

Effect sequences θ can be constructed by false (⊥); the empty trace ε; a single
event ev; a placeholder Q; a sequence concatenation θ1·θ2; and sequence disjunction
θ1∨θ2. Effect sequences can be also constructed by ?, representing finite (zero or
more) repetition of a trace; by ω, representing an infinite repetition of a trace; or
by ∞, representing an over-approximation of both finite and infinite possibilities
[LS07]. Although θ? and θω are subsumed by θ∞, integrating all of the operators
makes the specification language more flexible and precise. It also makes the logic
conveniently subsume traditional linear temporal logics.

Pure formulae π are Presburger arithmetic formulae. R(t1, t2) is a binary relation
(R ∈ {=, >,<,≥,≤}). Terms are constant integer values n, integer variables x, and
additions and subtractions of terms.

6.2.2.1 Semantic Model of ContEffs.

To define the model, var is the set of program variables, val is the set of primitive
values, α is the set of concrete events drawn from single events l or placeholders Q.
Let E , ϕ |= Φ denote the models relation, i.e., the context E and linear temporal
events ϕ satisfy the effect specification Φ, where E records the stack status and
the bindings from variables to placeholders, E , var→(val ∪Q); and ϕ is a list of
events, ϕ , [α].
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E , ϕ |= Φ iff ∃(π, θ, v) ∈ Φ. E , ϕ |= (π, θ, v)

E , ϕ |= (π, ε) iff JπKE=True and ϕ=[]

E , ϕ |= (π,_) iff JπKE=True and ∃l ∈ Σ(v), ϕ=[l]

E , ϕ |= (π, l) iff JπKE=True and ϕ=[l]

E , ϕ |= (π, l) iff JπKE=True and E , ϕ |=
∨
j where j ∈ Σ(v) and j 6=l

E , ϕ |= (π,Q) iff JπKE=True and ϕ=[Q]

E , ϕ |= (π, θ1·θ2) iff ∃ϕ1, ϕ2. ϕ=ϕ1++ϕ2 and E , ϕ1|=(π, θ1) and E , ϕ2|=(π, θ2)

E , ϕ |= (π, θ1∨θ2) iff E , ϕ |= (π, θ1) or E , ϕ |= (π, θ2)

E , ϕ |= (π, θ?) iff E , ϕ |= (π, ε) or E , ϕ |= (π, θ · θ?)

E , ϕ |= (π, θ∞) iff E , ϕ |= (π, θ?) or E , ϕ |= (π, θω)

E , ϕ |= (π, θω) iff E , ϕ |= (π, θ · θω)

E , ϕ |= (False,⊥) iff false

Figure 6.5: Semantics of ContEffs.

Since the return value in effect specifications is irrelevant to the semantic model,
we define E , ϕ |= (π, θ) to be E , ϕ |= (π, θ, v) for some return value v.

The semantics of effect sequences is defined in Figure 6.5: [] is an empty se-
quence; [l] is the sequence that contains one parameterized label l; ++ is the append
operation of two effect sequences; and ∨

j is a disjunction of parameterized labels j.
Comparisons between labels use simple lexical equivalence.

6.2.3 Instrumented Semantics of the Target Language.

To facilitate the soundness proof in Theorem 8 for the verification rules presented
in section 6.3, we also define an instrumented reduction relation i−→, which operates
on program states of the form

⌈
e, E , ϕ

⌉
, where an expression is associated with a

context and the trace of effects performed in the course of its execution. i−→∗ denotes
its reflexive, transitive closure. Here, given e −→ e′ and a most general high-order
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effects signature (A : τ1→(τ2→τ3)) ∈ P :

e = v1 v2 E(v1)=A(v)?⌈
e, E , ϕ

⌉ i−→
⌈
e′, E , ϕ++[A(v)?(v2)]

⌉ [Inst-App]

e = let x=v in e1⌈
e, E , ϕ

⌉ i−→
⌈
e′, (x 7→v)::E , ϕ

⌉ [Inst-Bind]

e = match perform A(v, λx⇒e1) with h A /∈ h⌈
e, E , ϕ

⌉ i−→
⌈
e′, (x 7→A(v)?)::E , ϕ++[A(v)!]

⌉ [Inst-Escape]

e = match perform A(v, λx⇒e1) with h A ∈ h⌈
e, E , ϕ

⌉ i−→
⌈
e′, E , ϕ++[A(v)]

⌉ [Inst-Caught]

6.3 Automated Forward Verification

The automated verification system consists of a Hoare-style forward verifier and a
TRS. The input of the forward verifier is a target program annotated with temporal
specifications written in ContEffs.

We formalize a set of syntax-directed forward verification rules for the core lan-
guage, in Figure 6.6. P denotes the program being checked. With pre/postcondition
declared for each function in P , we apply modular verification to a function’s body
using Hoare-style triples E ` 〈Φ〉 e 〈Φ′〉 where E is the context; if Φ describes the
effects which have been performed since the beginning of P, if e terminates, Φ′

describes the effects that will have been performed after.

6.3.1 Forward Verification Rules

In [FV -Fun], the rule computes the final effects Φ from the function body,
and checks the inclusion between Φ and the declared specifications. Note that for
succinctness, the user-provided Φpost only denotes the extension of the effects from
executing the function body. Formally, E ` 〈Φpre〉 e 〈Φpre · Φpost〉 is a valid triple.
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E ` 〈Φpre〉 e 〈Φ〉 Φ v Φpre · Φpost

` τ mn (τ v) [req Φpre ens Φpost] {e}
[FV -Fun]

Φ′=Φ ·A(v)! (x 7→A(v)?)::E ` 〈Φ′〉 e 〈Φ′′〉
E ` 〈Φ〉 perform A(v, λx.e) 〈Φ′′〉 [FV -Perform]

E(v1)=τ mn (τ v) [req Φpre ens Φpost] {e} Φ v Φpre[v2/v]
E ` 〈Φ〉 v1 v2 〈Φ · Φpost[v2/v]〉 [FV -Call]

E(v1)=l? θ′=l?(v2)
E ` 〈Φ〉 v1 v2 〈Φ · θ′〉

[FV -App]
Φ′ = {(π, θ, v′) | (π, θ, v) ∈ Φ}

E ` 〈Φ〉 v′ 〈Φ′〉 [FV -Value]

E ` 〈Φ∧(v=true)〉 e1 〈Φ1〉 E ` 〈Φ∧(v=false)〉 e2 〈Φ2〉
E ` 〈Φ〉 if v then e1 else e2 〈Φ1〉 ∪ 〈Φ2〉

[FV -If -Else]

(x 7→v)::E ` 〈Φ〉 e 〈Φ′〉
E ` 〈Φ〉 let x=v in e 〈Φ′〉 [FV -Let]

E ` 〈(True, ε, ())〉 e 〈Φ′〉 Φ′={(π, θ · ♥, v) | (π, θ, v) ∈ Φ′}
E , h `fix Φ′  Φfix

E ` 〈Φ〉 match e with h 〈Φ · Φfix〉
[FV -Match]

Figure 6.6: Selected Forward Rules for ContEffs

Definition 21 (ContEffs Concatenation). Given two ContEffs Φ1 and Φ2, Φ1 · Φ2

= {(π1 ∧ π2, θ1 · θ2, v2) | (π1, θ1, v1) ∈ Φ1, (π2, θ2, v2) ∈ Φ2}

[FV -Perform] concatenates a placeholder to the current effects, where Φ·A(v)!
≡ {(π, θ · A(v)!, v) | (π, θ, v) ∈ Φ}, then extends the environment by binding x
to A(v)?, referring to the resumed value of performing A(v). For applications
v1 v2, if v1 is a function definition with annotated specifications, [FV -Call] checks
whether the instantiated precondition of callee, Φpre[v2/v], is satisfied by the current
effect state, then it obtains the next effects state by concatenating the instantiated
postcondition, Φpost[v2/v], to the current effect state; if v1 maps to l?, [FV -App]
concatenates l?(v2) into the current effect state, referring to the effects generated
by applying v2 to the value resumed from performing l. [FV -Value] updates the
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current return value. [FV -If -Else] unions the effects from both branches, where
Φ ∧ π′ ≡ {(π ∧ π′, θ, v) | (π, θ, v) ∈ Φ}. [FV -Let] extends E with x binding to v.
[FV -Match] computes the effects of e using the initial state {(True, ε, ())}, then
deploys the fixpoint algorithm to compute the final effects after been handled by
h. ♥ is a special event marking the end of the traces, which is essential while
distinguishing the zero/one/multi-shots continuations.

6.3.2 Fixpoint Computation.

Given any effect Φ and a fixed handler H, the relation E ,H `fix Φ′  Φfix

concludes the fixpoint effects Φfix via the following rule:

∀(π, θ, v) ∈ Φ. ‖E , ε,H‖ `fix (π, θ, v) Φ′

E ,H `fix Φ ⋃ Φ′ [Fix-Disj]

For all the execution tuples (π, θ, v), given H, it is reduced to Φ′. Their relation
is captured by: ‖E , θhis,H‖ `fix Φ Φ′, where θhis is the history trace and initialized
by ε. The final result Φfix is a union set of all the Φ′.

Rule [Fix-Normal] is applied when the trace is reduced to the ending mark ♥,
which indicates that the execution of the handled program is finished. In this case,
the resulting state Φ′ is achieved by computing the strongest post condition of
eret [v/x] from the starting state 〈(π, θhis, v)〉.

(return x 7→ eret) ∈ H E ` 〈(π, θhis, v)〉 eret [v/x] 〈Φ′〉
‖E , θhis,H‖ `fix (π,♥, v) Φ′ [Fix-Normal]

Rule [Fix-Unfold-Skip] is applied when the starting events α are handled effects
ev, or placeholders corresponding to the effects cannot be handled by the current
handler. In this case, the rule simple achieves α into the history context θhis and
continues to reason about the tail of the trace, i.e., θ.

α ∈ {ev, l!, l?(v′)} (l /∈ H) ‖E , θhis·f,H‖ `fix (π, θ, v) Φ′

‖E , θhis,H‖ `fix (π, α · θ, v) Φ′ [Fix-Unfold-Skip]
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Rule [Fix-Unfold-Skip] is applied when the starting events α are unhandled
effects l! which can be handled by the current handler. In this case, the rule
uses the relation E ,H,D `h 〈Φ〉 e 〈Φ′〉 to reason about the instantiated handling
code e[v/x, κ/resume]. Note that, here the rule achieves l into the history context,
indicating that the emission l! is handled.

α ∈ {l!} (effect A(x, κ) 7→ e) ∈ H (l=A(v))
E ,H, θ `h 〈(π, θhis · l, v)〉 e[v/x, κ/resume] 〈Φ〉

‖E , θhis,H‖ `fix (π, α · θ, v) Φ′ [Fix-Unfold-Handle]

6.3.3 Reasoning in the Handling Program.

Rules for E ,H,D `h 〈Φ〉 e 〈Φ′〉 (where D stands for the not-yet-handled continua-
tion, of the type θ) are mostly similar to the top-level forward relation E ` 〈Φ〉 e 〈Φ′〉,
except for the rules:

∀(π, θ, v) ∈ Φ ‖E , θ,H‖ `fix (π,D[v′/l?], v) Φ′

E ,H,D `h 〈Φ′〉 e 〈Φ′′〉
E ,H,D `h 〈Φ〉 let x=κ v′ in e 〈Φ′′〉 [Handle-Resume]

Φ′={(π, θ, v′) | (π, θ, v) ∈ Φ}
E ,H,D `h 〈Φ〉 v′ 〈Φ′〉

[Handle-Value]

In [Handle-Resume], all the placeholders l? shown in the continuation D can
be finally instantiated by κ’s argument value, v′. Possible loops are also captured
in this step, when D[v′/l?] produces the effects’ emissions which has already been
handled. The final result Φ′′ is achieved by reasoning e after handling the rest
continuation. Note that if the handling program directly returns a single value, the
rule [Handle-Value] abandons the continuation D completely, which is intuitively
why we are able to handle exceptions (zero-shot continuations). The rest of the rules
and a demonstration example are presented in section C.1.

Lemma 1 (Soundness of the Fixpoint Computation). Given an effect Φ, with the
environment E and handler H. Φfix is the updated version of Φ, where all Φ’s
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placeholders – which can be handled by H – are handled as H defines.

Formally,∀E ,∀H,∀Φ, if E ,H `fix Φ Φfix is valid, then:

when Φ is a set,Φfix={‖E , ε,H‖ `fix (π, θ, v) Φ′ | (π, θ, v) ∈ Φ}; (1)

when Φ=(π, θ, v), α=fst(θ), θhis is the handled trace,

if α=♥:([x 7→v])::E`〈(π, θhis, v)〉eret〈Φ′〉 is valid, given (return x 7→eret)∈H; (2)

if α∈{ev, l!, l?(v′)} (l/∈H) : ‖E , θhis · α,H‖ `fix (π,Dα(θ), v) Φ′ is valid; (3)

if α∈{l!} (l∈H) : (x 7→v)::E ,H,Dα(θ) `h 〈(π, θhis · l, v)〉 e 〈Φ′〉 is valid,

given (effect A(x, κ) 7→ e)∈H. (4)

Proof. See section C.2.

Theorem 8 (Soundness of Verification Rules). Given an expression e, the linear
effect trace produced by the real execution of e satisfies the effect specification derived
via the forward verification rules.

Formally,∀e, ∀E ,∀ϕ,∀Φ given
⌈
e, E , ϕ

⌉ i−→∗
⌈
v, E ′, ϕ′

⌉
and E ` 〈Φ〉 e 〈Φ′〉,

if E , ϕ |= Φ then E ′, ϕ′ |= Φ′.

Proof. By induction on the structure of e.
- When e=(v1 v2):

e = v1 v2 E(v1)=A(v)?⌈
e, E , ϕ

⌉ i−→
⌈
e′, E , ϕ++[A(v)?(v2)]

⌉ [Inst-App]
E(v1)=l? θ′=l?(v2)
E ` 〈Φ〉 v1v2 〈Φ · θ′〉

[FV -App]

By the rule [Inst-App], we have:
⌈
e, E , ϕ

⌉ i−→
⌈
v′, E , ϕ++[A(v)?(v2)]

⌉
. Next since

E , ϕ |= Φ, we can obtain E , ϕ++[A(v)?(v2) |= Φ · A(v)?(v2). And in the same E ,
E(v1)=A(v)?=l?. Therefore E , ϕ++[A(v)?(v2) |= Φ·l?(v2), where the goal E ′, ϕ′ |= Φ′

is proved.
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- When e=(let x=v in e1):

e = let x=v in e1⌈
e, E , ϕ

⌉ i−→
⌈
e1, (x 7→v)::E , ϕ

⌉ [Inst-Bind]
(x 7→v)::E ` 〈Φ〉 e1 〈Φ′〉
E ` 〈Φ〉 let x=v in e1 〈Φ′〉

[FV -Let]

By the rule [Inst-Bind], we have:
⌈
e, E , ϕ

⌉ i−→
⌈
e1, (x 7→v)::E , ϕ

⌉ i−→∗
⌈
v′, E ′, ϕ′

⌉
.

By the rule [FV -Let], we have (x 7→v)::E ` 〈Φ〉 e1 〈Φ′〉. Given, E , ϕ |= Φ, therefore
(x 7→v)::E , ϕ |= Φ By the inductive hypothesis on e1, we get E ′, ϕ′ |= Φ′, where the
goal E ′, ϕ′ |= Φ′ is proved.

- When e = match perform A(v, λx⇒e1) with h and A /∈ h:

e = match perform A(v, λx⇒e1) with h A /∈ h⌈
e, E , ϕ

⌉ i−→
⌈
e1, (x 7→A(v)?)::E , ϕ++[A(v)!]

⌉ [Inst-Escape]

By the rule [Inst-Escape], we have:
⌈
e, E , ϕ

⌉ i−→
⌈
e1, (x 7→A(v)?)::E , ϕ++[A(v)!]

⌉ i−→∗⌈
v′, E ′, ϕ′

⌉
. Then by the rule [FV -Match] E ` 〈Φ〉 e 〈Φ′〉, and Φ′=Φ · Φfix , where

E ` 〈(True, ε, ())〉 perform A(v, λx⇒e1) 〈Φ′〉
Φ′={(π, θ · ♥, v) | (π, θ, v) ∈ Φ′} E , h `fix Φ′  Φfix

E ` 〈Φ〉 match perform A(v, λx⇒e1) with h 〈Φ · Φfix〉
[FV -Match]

E , h `fix (A(v)! · Φe1) Φfix , and A(v)?::E`〈A(v)!〉 e1 〈A(v)! ·Φe1〉, by [FV -Perform].

Φ′=Φ ·A(v)! (x 7→A(v)?)::E ` 〈Φ′〉 e1 〈Φ′′〉
E ` 〈Φ〉 perform A(v, λx⇒e1) 〈Φ′′〉 [FV -Perform]

Then by rules [Fix-Disj] and [Fix-Unfold-Skip], Φfix=A(v)! · Φfix
e1 .

∀(π, θ, v) ∈ Φ. ‖E , ε,H‖ `fix (π, θ, v) Φ′

E ,H `fix Φ ⋃ Φ′ [Fix-Disj]

α ∈ {ev, l!, l?(v′)} (l /∈ H) ‖E , θhis·f,H‖ `fix (π, θ, v) Φ′

‖E , θhis,H‖ `fix (π, α · θ, v) Φ′ [Fix-Unfold-Skip]
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Given, E , ϕ |= Φ, therefore (x 7→A(v)?)::E , ϕ++[A(v)!] |= Φ ·A(v)!. By the inductive
hypothesis on e1, we get E ′, ϕ′ |= Φ ·A(v)! ·Φfix

e1 , where the goal E ′, ϕ′ |= Φ′ is proved.

- When e = match perform A(v, λx⇒e1) with h and A ∈ h:

e = match perform A(v, λx⇒e1) with h A ∈ h⌈
e, E , ϕ

⌉ i−→
⌈
e1, E , ϕ++[A(v)]

⌉ [Inst-Caught]

By the rule [Inst-Caught], we have:
⌈
e, E , ϕ

⌉ i−→
⌈
e1, E , ϕ++[A(v)]

⌉ i−→∗
⌈
v′, E ′, ϕ′

⌉
.

Then by the rule [FV -Match] E ` 〈Φ〉 e 〈Φ′〉, and Φ′=Φ · Φfix , where E , h `fix

(A(v)! · Φe1) Φfix , and A(v)?::E ` 〈A(v)!〉 e1 〈A(v)! · Φe1〉, by [FV -Perform].
Then by rules [Fix-Disj] and [Fix-Unfold-Handle], Φfix=A(v) · Φfix

e1 .

α ∈ {l!} (effect A(x, κ) 7→ e) ∈ H (l=A(v))
E ,H, θ `h 〈(π, θhis · l, v)〉 e[v/x, κ/resume] 〈Φ〉

‖E , θhis,H‖ `fix (π, α · θ, v) Φ′ [Fix-Unfold-Handle]

Given, E , ϕ |= Φ, therefore E , ϕ++[A(v)] |= Φ ·A(v). By the inductive hypothesis on
e1, we get E ′, ϕ′ |= Φ ·A(v) · Φfix

e1 , where the goal E ′, ϕ′ |= Φ′ is proved.

6.4 Temporal Verification via a TRS

A TRS checks inclusions among logical terms, via an iterated process of checking
the inclusions of their partial derivatives [Ant95]. It is triggered i) prior to function
calls for the precondition checking; and ii) at the end of verifying a function for
postcondition checking. Given two effects Φ1 and Φ2, the TRS decides if the
inclusion Φ1 v Φ2 is valid. During the rewriting process, the inclusions are of
the form Ω ` Φ1vθΦ2, a shorthand for: Ω ` θ · Φ1 v θ · Φ2. To prove such
inclusions amounts to checking whether all the possible traces in the antecedent
Φ1 are legitimately allowed in the possible traces from the consequent Φ2. Ω is the
proof context, i.e., a set of effect inclusion hypotheses, and θ is the history of effects
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from the antecedent that have been used to match the effects from the consequent.
The inclusion checking is initially invoked with Ω={} and θ=ε.

6.4.0.1 Effect Disjunction.

An inclusion with a disjunctive antecedent succeeds if both disjunctions entail the
consequent. An inclusion with a disjunctive consequent succeeds if the antecedent
entails any of the disjunctions. Note that the event sequences’ inclusion checking is
irrelevant to the returning values.

[LHS -OR]
Ω ` (π, θ) v Φ′ and Ω ` Φ v Φ′

Ω ` (π, θ, v) :: Φ v Φ′

[RHS -OR]
Ω ` (π, θ) v (π′, θ′) or (π, θ) v Φ′

Ω ` (π, θ) v (π′, θ′, v′) :: Φ′

Next we provide definitions and implementations of auxiliary functions4 Nul-
lable(δ), Infinitable(κ), First(fst) and Derivative(D) respectively. Intuitively, the
Nullable function δ(Φ) returns a boolean value indicating whether θ contains the
empty trace; the Infinitable function κ(θ) returns a boolean value indicating whether
θ is possibly infinite; the First function fst(θ) computes possible initial elements of
θ; and the Derivative function Dα(θ) eliminates an event α5 from the head of θ and
returns what remains.

Definition 22 (Nullable). Given any sequence θ, we recursively define δ(θ)6:

δ(ε)=δ(θ?)=δ(θ∞)=true δ(θ1·θ2)=δ(θ1)∧δ(θ2) δ(θ1∨θ2)=δ(θ1)∨δ(θ2)

Definition 23 (Infinitiable). Given any sequence θ, we recursively define κ(θ)7:

κ(θ∞)=κ(θω)=true κ(θ1·θ2)=κ(θ1)∨κ(θ2) κ(θ1∨θ2)=κ(θ1)∨κ(θ2)

4The definitions are extended from [Ant95], to be able to deal with placeholders and infinite
traces, proposed in this work.

5α could be a single label l, a negated label l, a wildcard _, or a placeholder Q.
6false for unmentioned constructs
7false for unmentioned constructs
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Definition 24 (First). Let fst(θ) be the set of initial elements derivable from
sequence represents all the traces contained in θ.

fst(⊥)=fst(ε)={} fst(ev)={ev} fst(Q)={Q} fst(θ1∨θ2)=fst(es1) ∪ fst(es2)

fst(θ1·θ2)=

fst(es1) ∪ fst(es2) if δ(θ1)=true

fst(θ1) if δ(θ1)=false
fst(θ?)=fst(θ∞)=fst(θω)=fst(θ)

Definition 25 (Partial Derivative). The partial derivative Dα(θ) of effects θ with
respect to an element α computes the effects for the left quotient, α-1JθK8.

Dα(⊥)=⊥ Dα(ε)=⊥ Dα(θ1∨θ2)=Dα(θ1) ∨Dα(θ2) Dα(θ?)=Dα(θ) · θ?

Dα(ev)=

ε if α ⊆ ev

⊥ else
Dα(Q)=

ε if α=Q

⊥ else
Dα(θ∞)=Dα(θ) · θ∞

Dα(θ1·θ2)=

(Dα(θ1) · θ2) ∨Dα(θ2) if δ(θ1)=true

Dα(θ1) · θ2 if δ(θ1)=false
Dα(θω)=Dα(θ) · θω

6.4.1 Rewriting Rules.

1. Axioms. Analogous to the standard propositional logic, ⊥ (referring to false)
entails any effects, while no non-false effects entails ⊥.

Ω ` (π1,⊥) v (π2, θ)
[Bot-LHS ]

θ 6= ⊥
Ω ` (π1, θ) 6v (π2,⊥) [Bot-RHS ]

2. Disprove (Heuristic Refutation). These rules are used to disprove the inclu-
sions when the antecedent obviously contains more traces than the consequent. Here
nullable and infinitiable witness the empty trace and infinite traces respectively.

δ(θ1) ∧ ¬δ(θ2)
Ω ` (π1, θ1) 6v (π2, θ2) [Dis-Nullable]

κ(θ1) ∧ ¬κ(θ2)
Ω ` (π1, θ1) 6v (π2, θ2) [Dis-Infinitable]

8JθK represents all the traces contained in θ.
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3. Prove. We use the rule [Reoccur] to prove an inclusion when there exist inclusion
hypotheses in the proof context Ω, which are able to soundly prove the current goal.
One of the special cases of this rule is when the identical inclusion is shown in the
proof context, we then prove it valid.

(π1, θ1)v(π3, θ3) ∈ Ω (π3, θ3)v(π4, θ4) ∈ Ω (π4, θ4)v(π2, θ2) ∈ Ω
Ω ` (π1, θ1) v (π2, θ2) [Reoccur]

4. Unfolding (Induction). This is the inductive step of unfolding the inclusions.
Firstly, we make use of the auxiliary function fst to get a set of effects F , which
are all the possible initial elements from the antecedent. Secondly, we obtain a new
proof context Ω′ by adding the current inclusion, as an inductive hypothesis, into
the current proof context Ω. Thirdly, we iterate each element α ∈ F , and compute
the partial derivatives (next-state effects) of both the antecedent and consequent
with respect to α. The proof of the original inclusion succeeds if all the derivative
inclusions succeed.

F = fst(θ1) π1⇒π2 ∀α ∈ F. (θ1vθ2) :: Ω ` Dα(θ1) v Dα(θ2)
Ω ` (π1, θ1) v (π2, θ2) [Unfold]

Theorem 9 (TRS-Termination). The rewriting system TRS is terminating.

Proof. See section C.3.

Theorem 10 (TRS-Soundness). Given an inclusion Φ1 v Φ2, if the TRS returns
TRUE when proving Φ1 v Φ2, then Φ1 v Φ2 is valid.

Proof. See section C.4.

6.4.2 Discussion: highlighting the novelty.

This work extends the original Antimirov algorithm [AM95], to prove the inclu-
sions between the more expressive specifications formulae, ContEffs, which contains
placeholders for both triggering effects and receiving responses from the handler. The
placeholders are necessary and will be instantiated by the concrete effect handlers,
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enabling a modular verification approach for effect handlers. Another contribution of
this work is using the concept of derivatives for effectively reasoning about multi-shot
effect handlers.

6.5 Demonstration Examples

6.5.1 A Sense of ContEffs in File I/O

We define Hoare-triple style specifications, marked in lavender, for each program,
which lead to a compositional verification strategy, where temporal reasoning can
be done locally. We model an abstract form of file I/O in Figure 6.7. Effects Open
and Close are both declared to be performed with a value of type int, indexing the
operated file.

1 effect Open : int -> unit

2 effect Close: int -> unit

3

4 let open_file n

5 /*@ req _^* @*/

6 /*@ ens Open(n)! @*/

7 = perform (Open n)

8 let close_file n

9 /*@ req _^*.Open(n)! .(~Close(n)!)^* @*/

10 /*@ ens Close(n)! @*/

11 = perform (Close n)

12

13 let file_9 ()

14 /*@ req emp @*/

15 /*@ ens Open(9)!.Close(9)!@*/

16 = open_file 9;

17 close_file 9

Figure 6.7: A simple file I/O example.

Function open_file takes an argument n. Its precondition uses a wildcard ‘_’
under a Kleene star, indicating that any finite number/kind of effects is allowed to
have occurred before the call to open_file. In other words, it is always possible
to open a file. Its postcondition indicates that it performs the effect Open applied
with n. The precondition of close_file states that it can only be called after such
a history trace where the nth file has been requested to be Opened, and not been
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requested to be Closeed9.

We use . to denote the sequential composition of effect traces, ! denotes the
emission of a certain effect, and ~ denotes the negation of a certain effect label.

The precondition of file_9: emp, stands for an empty trace, which means no
history trace is allowed by the calling site of function file_9. We formalize this
idea of being allowed as an entailment relation between specifications in section 6.4.
The verification fails when the real implementation violates the specifications.

6.5.2 Effects Inferences via a Fixpoint Calculation

We continue to examine a variant of the so-called "recursive cow" benchmark
program [Git22] in Figure 6.8, which generates an infinite trace.

1 effect Goo : (unit -> unit)

2

3 let f_g ()

4 /*@ req _^* @*/

5 /*@ ens Foo!.Goo!.Foo?() @*/

6 = let f = perform Foo in

7 let g = perform Goo in

8 f () (* g is abandoned *)

9

10 let loop ()

11 /*@ req _^* @*/

12 /*@ ens _^*.(Foo.Goo)^w @*/

13 = match f_g () with

14 | _ -> ()

15 | effect Foo k -> continue k (fun () -> perform Goo ())

16 | effect Goo k -> continue k (fun () -> perform Foo ())

Figure 6.8: Another Loop caused by the effects handler.

9close_file’s precondition prevents closing files that are not opened. The constraints can
be strengthened or loosened as needed. For example, to prevent opening a file which is already
opened, we need to strengthen open_file’s precondition accordingly
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The handling of effects Foo and Goo are notable because their resumption carry
closures back to the suspended points, which in turn perform effects when fully
applied. We argue informally that loop is non-terminating. This is because the
invocation of f_g () performs Foo, which obtains the resumed closure (defined in
line 15) and stores it in the variable f. Then the application to f in turn performs
Goo. The performing of Goo brings us to the handler at line 18, which resumes a
closure that performs Foo when applied. The resulting postcondition, deploys the ω
operator, states that loop finally performs an infinite succession of alternating Foo

and Goo effects. In fact, our fixpoint calculator computes the final effects for loop
as Foo · Goo · Goo · Foo · (Goo · Foo)ω, which entails the declared postcondition (c.f.
Figure 6.9).

Loops like these between handler and callee are generally caused by performing
effects in the recovery closure when handling an effect, that results in a cycle back
to that same (deep) handler. However, resuming with a closure, is a useful pattern
for inverting control between handler and callee, does give rise to this trap. Our
fixpoint analysis and specifications are aimed at capturing such situations, which
have not been extensively explored.

6.5.3 The TRS: to prove effects inclusions

The rewriting system proposed by Antimirov and Mosses [AM95] decides in-
equalities of regular expressions (REs) through an iterated process of checking the
inequalities of their partial derivatives [Ant95]. There are two basic rules: [DISPROVE
], which infers false from trivially inconsistent inequalities; and [UNFOLD], which
applies Theorem 1 to generate new inequalities.

Similarly, we formally define the inclusion of ContEffs in Definition 26.

Definition 26 (ContEffs Inclusion). Given Σ is a finite set of alphabet, for two
effects (π1, θ1) and (π2, θ2), their inclusion is defined as:

(π1, θ1) v (π2, θ2) ⇔ π1⇒π2 ∧ (∀α ∈ Σ). α-(θ1) v α-(θ2) .

Next we present the effects inclusion, generated from Figure 6.8, proving process
for the post condition checking in Figure 6.9 Termination is guaranteed because the
set of derivatives to be considered is finite, and possible cycles are detected using
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Foo · (Goo · Foo )ω v _? · (Goo · Foo )ω ♠ ∨ (Foo · Goo )ω
fst = Goo

Goo · Foo · (Goo · Foo )ω v _? · (Goo · Foo )ω ∨ Goo · (Foo · Goo )ω
fst = Foo

Foo · (Goo · Foo )ω v _? · (Goo · Foo )ω ♠
fst = Goo

Goo · Foo · (Goo · Foo )ω v _? · (Foo · Goo )ω ∨ (Foo · Goo )ω
fst = Goo

Goo · Goo · Foo · (Goo · Foo )ω v _? · (Foo · Goo )ω ∨ Goo · (Foo · Goo )ω
fst = Foo

Foo · Goo · Goo · Foo · (Goo · Foo )ω v _? · (Foo · Goo )ω

Figure 6.9: Proving the postcondition of the function loop in Figure 6.8.

memorization. We use ♠ to indicate such pairings. The rewriting rules are defined
in section 6.4. In particular, the rule [Reoccur ] finds the syntactic identity from the
internal proof tree, for the current open goal [Bro05b].

6.6 Implementation and Evaluation

To show the feasibility of our approach, we have prototyped our automated
verification system using OCaml. The arithmetic proof obligations generated by the
TRS are discharged using Z3 [dMB08]. We prove termination and soundness of the
TRS. We validate the front-end forward verifier against the latest Multicore OCaml
(4.12.0) implementation for conformance.

This experiment is done without a baseline comparison because there are no
existing tools for reasoning about the algebraic effects using temporal verification
techniques, and our experimental results show that a modular and efficient temporal
verification for user-defined effects and unrestricted effect handlers is achievable.

Table 6.1 presents the evaluation results of a microbenchmark, to demonstrate
how verification scales with program size. We annotate 12 synthetic test programs
with temporal specifications, half of which fail to verify. The experiments were
done on a MacBook Pro with a 2.6 GHz 6-Core Intel Core i7 processor. The table
records: No., the index of the program; LOC, lines of code; Forward(ms), forward
reasoning time; #Prop(3), number of valid properties; Avg-Prove(ms), average
proving time for the valid properties; #Prop(7), number of invalid properties; and
Avg-Dis(ms), average disproving time for the invalid properties.
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Table 6.1: Experimental Results for ContEffs.

No. LOC Forward(ms) #Prop(3) Avg-Prove(ms) #Prop(7) Avg-Dis(ms)
1 32 14.128 5 7.7786 5 6.2852
2 48 14.307 5 7.969 5 6.5982
3 71 15.029 5 7.922 5 6.4344
4 98 14.889 5 18.457 5 7.9562
5 156 14.677 7 10.080 7 4.819
6 197 15.471 7 8.3127 7 6.8101
7 240 18.798 7 18.559 7 7.468
8 285 20.406 7 23.3934 7 9.9086
9 343 26.514 9 22.5666 9 13.9667
10 401 26.893 9 18.3899 9 14.2169
11 583 49.931 14 17.203 15 14.4443
12 808 75.707 25 21.6795 24 13.9064

Discussion: Generally, forward reasoning and proving time increase linearly with
program length. Furthermore, we notice that disproving times for invalid properties
are consistently lower than those for proved properties, regardless of program
complexity. This finding echos the insights from prior TRS-based works [SC20;
AM95; AMR09; KT14a; Hov12], which suggest that TRS is a better average-case
algorithm than those based on the comparison of automata.

A summary: A TRS is efficient because it only constructs automata as far as it
needs, which makes it more efficient when disproving incorrect specifications, as we
can disprove it earlier without constructing the whole automata. In other words,
the more invalid inclusions are, the more efficient our solver is.

6.6.1 Case Studies

I. Encoding LTL. Classical LTL uses the temporal operators G ("globally") and
F ("in the future"), which we also write � and ♦, respectively; and introduced
the concept of fairness, which places additional constraints on infinite paths. LTL
was subsequently extended to include the U ("until") operator and the X ("next
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time") operator. As shown in Table 6.2, we encode these basic operators into our
effects (here l, j are labels), making the specification more intuitive and readable,
mainly when nested operators occur. Furthermore, by putting the effects in the
precondition, our approach naturally subsumes past-time LTL along the way10.

Table 6.2: Examples for converting LTL formulae into ContEffs.

�l ≡ l∞ ♦l ≡ _? · l l U j ≡ l? · j l→ ♦j ≡ ¬l ∨ _? · j

X l ≡ _ · l �♦l ≡ (_? · l)∞ ♦�l ≡ _? · l∞ ♦l ∨ ♦j ≡ _? · l ∨ _? · j

II. Encoding Exceptions. Exceptions are a special case of algebraic effects which
never resume, and Figure 6.10 demonstrates how our framework soundly reasons
about exceptions together with other kinds of effects. Here raise() performs Exc
first, then does some other operations afterwards, represented by performing effect
Other.

1 effect Exc: unit

2 effect Other: unit

3

4 let raise ()

5 /*@ req _^* @*/

6 /*@ ens Exc!.Other! @*/

7 = perform Exc;

8 perform Other

9 let excHandler

10 /*@ req _^* @*/

11 /*@ ens Exc @*/

12 = match raise () with

13 | _ -> (* Abandoned *)

14 | effect Exc k -> ()

Figure 6.10: Encoding Exceptions using ContEffs.

The handler at line 15 discharges Exc and returns, leaving the continuation k

completely unused. Our fixpoint calculator computes the final trace of excHandler
as simply Exc. We observe that the handler defined in the normal return (line
14) will be completely abandoned – because execution flow does not go back to

10Our implementation supports specifications written in LTL formulae, by providing a translator
from LTL to ContEffs. The translation schema is taken from [LS07].
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raise() after handling Exc. The verified postcondition of excHandler matches how
we would intuitively expect traditional exceptions to work11.

6.7 Summary

This work is mainly motivated by how to modularly specify and verify programs
in the presence of both user-defined primitive effects and effect handlers.

To provide a practical proposal to verify such higher-order programs with crucial
temporal constraints, we present a novel effect logic, ContEffs, to specify user-defined
effects and effect handlers. This logic enjoys two key benefits that enable modular
reasoning: the placeholder operator and the disjunction of finite and infinite traces.
We demonstrate several small but non-trivial case studies to show ContEffs’ feasibility.
Our code and specification are particularly compact and generic; furthermore, as
far as we know, this is the first temporal specification and proof of correctness of
control inversion with the presence of algebraic effects.

11In general, each procedure has a set of circumstances for which it will terminate normally. An
exception breaks the normal flow (these circumstances) of execution and executes a pre-registered
exception handler instead [Wik22b].
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis introduces a novel temporal verification framework, which tackles
possible insufficiencies of the existing automata-based temporal verification.

To emphasize the applicability of this framework, this thesis proposes novel
effect logics: DependentEffs, ASyncEffs, TimEffs and ContEffs for different target
languages: a C-like language, the full-featured Esterel, Ct and λh, varying in different
programming domains: general effectful programs; preemptive asynchronous reactive
programs; time-critical distributed programs; and programs with user-defined effects
and handlers, respectively. Altogether we show that this framework is:

1. more modular , because of its compositional verification strategy, where func-
tions can be replaced by their already verified properties and temporal reasoning
can be done locally and then combined to reason about the whole program;

2. finer-grained, because of the expressive effect logics, which are designed based
on regular expressions, but capable of capturing more detailed (domain-related)
information, such as branching properties relying on the arithmetic constraints;
dependent values to represent the number of trace repetition; real-time bounds; and
effects emission and handling, etc; and

3. more efficient, because of the deployed term rewriting systems, serving as the
back-end solvers, which are based directly on constraint-solving techniques. The
TRSs can be reasonably efficient in verifying systems consisting of many components
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as it avoids the complex translation into automata and thus avoiding exploring the
whole state-space, when possible.

It is also worth pointing out that the proposed framework attempts to conduct
verification for the source code without any modeling phases. Although the formu-
lated target languages abstract the implementation languages in a certain way, the
practice is to attempt to verify the source code directly. For example, the work in
Chapter 6 is built on top of the OCaml compiler and takes the source code as the
direct input, which cannot be trivially achieved by the model-checking techniques.

7.1.1 Repositories of the Open-sourced Implementations

We have developed four related prototype systems for the four effect logics that
we have proposed in this thesis. Their open-sourced implementations can be found
here:

1. For DependentEffs:
https://github.com/songyahui/EFFECTS

2. For ASyncEffs:
https://github.com/songyahui/SyncedEffects

https://github.com/songyahui/Semantics_HIPHOP

3. For TimEffs:
https://github.com/songyahui/Timed_Verification

4. For ContEffs:
https://github.com/songyahui/AlgebraicEffect

7.2 Future Work

From this thesis, one can continue with many possible directions:

1. Temporal Verification with Spatial Information: The works presented
in this thesis dedicate to control propagation, where data variables and data-
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manipulating primitives are mostly abstracted away. However, it can be difficult to
prove many interesting properties without modeling data mutations and heap usage.
Separation logic [OHe06] has been proposed as an extension of Hoare logic, providing
precise and concise reasoning for pointer-based programs. One direct future work is
to add heap abstractions to ContEffs and provide automated verification support
for heap-manipulating programs with user-defined effects and handlers.

2. Temporal Verification with Incorrectness Logic: The works presented in
this thesis are in the context of the classical over-approximation verification, which is
intended to prove the absence of bugs. A recently advanced technique, Incorrectness
Logic (IL) [OHe20], provides a theoretical foundation for bug-finding and has been
proven to be practically successful in some systems, such as Infer [Fac22]. Temporal
verification with IL is a promising direction to provide more efficient and practical
support for various programming domains. A possible extension of this thesis is
to specify bugs as post-conditions and deploy the under-approximation context in
the forward rules; then, leveraging the current solvers (the TRSs), the automated
verification tool becomes a proof engine for the presence of bugs.

3. Program Synthesis via More Expressive Temporal logics: Control syn-
thesis for mobile robots under complex tasks, captured by linear temporal logic
(LTL) formulas, builds upon either bottom-up approaches when independent LTL
expressions are assigned to robots [BKV10; KFP07; UMB13] or top-down approaches
when a global LTL formula describing a the collaborative task is assigned to a team of
robots [CDB]. Therefore, it is worth exploring scalable control synthesis algorithms
from logics beyond LTL, as we proposed in this thesis. Meanwhile, combining the
finer-grained verification and synthesis techniques may lead to finer-grained program
repair.

That said, the proposed temporal verification framework is a promising and
flexible approach to provide more fine-grained verification support for different
complex control-flow mechanisms, which are hard to model using existing techniques.

129



BIBLIOGRAPHY

Bibliography
[Ali+18] S. Alimadadi, D. Zhong, M. Madsen, and F. Tip, "Finding broken

promises in asynchronous javascript programs", Proc. ACM Program.
Lang., vol. 2, no. OOPSLA, 162:1–162:26, 2018. [Online]. Available:
https://doi.org/10.1145/3276532.

[AMR09] M. Almeida, N. Moreira, and R. Reis, "Antimirov and mosses’s rewrite
system revisited", Int. J. Found. Comput. Sci., vol. 20, no. 4, pp. 669–684,
2009. [Online]. Available: https://doi.org/10.1142/S0129054109006802.

[AD94] R. Alur and D. L. Dill, "A theory of timed automata", Theor. Comput.
Sci., vol. 126, no. 2, pp. 183–235, 1994. [Online]. Available: https:
//doi.org/10.1016/0304-3975(94)90010-8.

[ANN99] T. Amtoft, H. R. Nielson, and F. Nielson, "Type and effect systems -
behaviors for concurrency", Imperial College Press, 1999, isbn: 978-1-
86094-154-2.

[And+14] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen, C.
Schlesinger, and D. Walker, "Netkat: Semantic foundations for net-
works", in The 41st Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’14, San Diego, CA, USA,
January 20-21, 2014, S. Jagannathan and P. Sewell, Eds., ACM, 2014,
pp. 113–126. [Online]. Available: https://doi.org/10.1145/2535838.
2535862.

[Ant95] V. Antimirov, "Partial derivatives of regular expressions and finite
automata constructions", in Annual Symposium on Theoretical Aspects
of Computer Science, Springer, 1995, pp. 455–466.

130

https://doi.org/10.1145/3276532
https://doi.org/10.1142/S0129054109006802
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1145/2535838.2535862
https://doi.org/10.1145/2535838.2535862


BIBLIOGRAPHY

[AM95] V. M. Antimirov and P. D. Mosses, "Rewriting extended regular expres-
sions", Theor. Comput. Sci., vol. 143, no. 1, pp. 51–72, 1995. [Online].
Available: https://doi.org/10.1016/0304-3975(95)80024-4.

[Ard22] Arduino, "Arduino", https : / / create . arduino . cc / projecthub /
projects/tags/control, 2022.

[BC13] S. Balaguer and T. Chatain, "Avoiding shared clocks in networks of
timed automata", Log. Methods Comput. Sci., vol. 9, no. 4, 2013. [Online].
Available: https://doi.org/10.2168/LMCS-9(4:13)2013.

[BDF05] M. Bartoletti, P. Degano, and G. L. Ferrari, "Enforcing secure service
composition", in 18th IEEE Computer Security Foundations Workshop,
(CSFW-18 2005), 20-22 June 2005, Aix-en-Provence, France, IEEE
Computer Society, 2005, pp. 211–223. [Online]. Available: https://doi.
org/10.1109/CSFW.2005.17.

[BP14] A. Bauer and M. Pretnar, "An effect system for algebraic effects and
handlers", Log. Methods Comput. Sci., vol. 10, no. 4, 2014. [Online].
Available: https://doi.org/10.2168/LMCS-10(4:9)2014.

[BP15] A. Bauer and M. Pretnar, "Programming with algebraic effects and
handlers", J. Log. Algebraic Methods Program., vol. 84, no. 1, pp. 108–
123, 2015. [Online]. Available: https://doi.org/10.1016/j.jlamp.
2014.02.001.

[Ben+03] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. Le Guernic,
and R. de Simone, "The synchronous languages 12 years later", Proc.
IEEE, vol. 91, no. 1, pp. 64–83, 2003. [Online]. Available: https://doi.
org/10.1109/JPROC.2002.805826.

[BLJ91] A. Benveniste, P. Le Guernic, and C. Jacquemot, "Synchronous pro-
gramming with events and relations: The SIGNAL language and its
semantics", Sci. Comput. Program., vol. 16, no. 2, pp. 103–149, 1991.
[Online]. Available: https://doi.org/10.1016/0167-6423(91)90001-
E.

131

https://doi.org/10.1016/0304-3975(95)80024-4
https://create.arduino.cc/projecthub/projects/tags/control
https://create.arduino.cc/projecthub/projects/tags/control
https://doi.org/10.2168/LMCS-9(4:13)2013
https://doi.org/10.1109/CSFW.2005.17
https://doi.org/10.1109/CSFW.2005.17
https://doi.org/10.2168/LMCS-10(4:9)2014
https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1109/JPROC.2002.805826
https://doi.org/10.1109/JPROC.2002.805826
https://doi.org/10.1016/0167-6423(91)90001-E
https://doi.org/10.1016/0167-6423(91)90001-E


BIBLIOGRAPHY

[Ber93] G. Berry, "Preemption in concurrent systems", in Foundations of Soft-
ware Technology and Theoretical Computer Science, 13th Conference,
Bombay, India, December 15-17, 1993, Proceedings, R. K. Shyamasun-
dar, Ed., ser. Lecture Notes in Computer Science, vol. 761, Springer,
1993, pp. 72–93. [Online]. Available: https://doi.org/10.1007/3-
540-57529-4%5C_44.

[Ber99] G. Berry, "The constructive semantics of pure Esterel-draft version 3",
Draft Version, vol. 3, 1999.

[Ber+00] G. Berry, A. Bouali, X. Fornari, E. Ledinot, E. Nassor, and R. de Simone,
"ESTEREL: a formal method applied to avionic software development",
Sci. Comput. Program., vol. 36, no. 1, pp. 5–25, 2000. [Online]. Available:
https://doi.org/10.1016/S0167-6423(99)00015-5.

[BG92] G. Berry and G. Gonthier, "The esterel synchronous programming
language: Design, semantics, implementation", Sci. Comput. Program.,
vol. 19, no. 2, pp. 87–152, 1992. [Online]. Available: https://doi.org/
10.1016/0167-6423(92)90005-V.

[BS20] G. Berry and M. Serrano, "Hiphop.js: (a)synchronous reactive web
programming", in Proceedings of the 41st ACM SIGPLAN International
Conference on Programming Language Design and Implementation,
PLDI 2020, London, UK, June 15-20, 2020, A. F. Donaldson and
E. Torlak, Eds., ACM, 2020, pp. 533–545. [Online]. Available: https:
//doi.org/10.1145/3385412.3385984.

[BV06] B. Berthomieu and F. Vernadat, "Time petri nets analysis with TINA",
in Third International Conference on the Quantitative Evaluation of
Systems (QEST 2006), 11-14 September 2006, Riverside, California,
USA, IEEE Computer Society, 2006, pp. 123–124. [Online]. Available:
https://doi.org/10.1109/QEST.2006.56.

[BKV10] A. Bhatia, L. E. Kavraki, and M. Y. Vardi, "Sampling-based motion
planning with temporal goals", in IEEE International Conference on
Robotics and Automation, ICRA 2010, Anchorage, Alaska, USA, 3-

132

https://doi.org/10.1007/3-540-57529-4%5C_44
https://doi.org/10.1007/3-540-57529-4%5C_44
https://doi.org/10.1016/S0167-6423(99)00015-5
https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1145/3385412.3385984
https://doi.org/10.1145/3385412.3385984
https://doi.org/10.1109/QEST.2006.56


BIBLIOGRAPHY

7 May 2010, IEEE, 2010, pp. 2689–2696. [Online]. Available: https:
//doi.org/10.1109/ROBOT.2010.5509503.

[Bie+12] G. Bierman, C. Russo, G. Mainland, E. Meijer, and M. Torgersen, "Pause
n play: Formalizing asynchronous c sharp", in European Conference on
Object-Oriented Programming, Springer, 2012, pp. 233–257.

[Bie+19] D. Biernacki, M. Piróg, P. Polesiuk, and F. Sieczkowski, "Abstracting
algebraic effects", Proceedings of the ACM on Programming Languages,
vol. 3, no. POPL, pp. 1–28, 2019.

[Bjø+01] N. S. Bjørner, Z. Manna, H. Sipma, and T. E. Uribe, "Deductive verifica-
tion of real-time systems using step", Theor. Comput. Sci., vol. 253, no. 1,
pp. 27–60, 2001. [Online]. Available: https://doi.org/10.1016/S0304-
3975(00)00088-8.

[BSO20] J. I. Brachthäuser, P. Schuster, and K. Ostermann, "Effekt: Capability-
passing style for type-and effect-safe, extensible effect handlers in scala",
Journal of Functional Programming, vol. 30, 2020.

[Bro+15] S. Broda, S. Cavadas, M. Ferreira, and N. Moreira, "Deciding syn-
chronous kleene algebra with derivatives", in Implementation and Appli-
cation of Automata - 20th International Conference, CIAA 2015, Umeå,
Sweden, August 18-21, 2015, Proceedings, F. Drewes, Ed., ser. Lecture
Notes in Computer Science, vol. 9223, Springer, 2015, pp. 49–62. [Online].
Available: https://doi.org/10.1007/978-3-319-22360-5%5C_5.

[Bro05a] J. Brotherston, "Cyclic proofs for first-order logic with inductive defi-
nitions", in Automated Reasoning with Analytic Tableaux and Related
Methods, International Conference, TABLEAUX 2005, Koblenz, Ger-
many, September 14-17, 2005, Proceedings, B. Beckert, Ed., ser. Lecture
Notes in Computer Science, vol. 3702, Springer, 2005, pp. 78–92. [Online].
Available: https://doi.org/10.1007/11554554%5C_8.

[Bro05b] J. Brotherston, "Cyclic proofs for first-order logic with inductive def-
initions", in International Conference on Automated Reasoning with
Analytic Tableaux and Related Methods, Springer, 2005, pp. 78–92.

133

https://doi.org/10.1109/ROBOT.2010.5509503
https://doi.org/10.1109/ROBOT.2010.5509503
https://doi.org/10.1016/S0304-3975(00)00088-8
https://doi.org/10.1016/S0304-3975(00)00088-8
https://doi.org/10.1007/978-3-319-22360-5%5C_5
https://doi.org/10.1007/11554554%5C_8


BIBLIOGRAPHY

[Bub+15] R. Bubel, C. C. Din, R. Hähnle, and K. Nakata, "A dynamic logic with
traces and coinduction", in Automated Reasoning with Analytic Tableaux
and Related Methods - 24th International Conference, TABLEAUX 2015,
Wrocław, Poland, September 21-24, 2015. Proceedings, H. de Nivelle,
Ed., ser. Lecture Notes in Computer Science, vol. 9323, Springer, 2015,
pp. 307–322. [Online]. Available: https://doi.org/10.1007/978-3-
319-24312-2%5C_21.

[Cal+09] C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang, "Compositional
shape analysis by means of bi-abduction", in Proceedings of the 36th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2009, Savannah, GA, USA, January 21-23, 2009,
Z. Shao and B. C. Pierce, Eds., ACM, 2009, pp. 289–300. [Online].
Available: https://doi.org/10.1145/1480881.1480917.

[CDB] Y. Chen, X. C. Ding, and C. Belta, "Synthesis of distributed control
and communication schemes synthesis of distributed control and com-
munication schemes from global ltl specifications", in IEEE Conference
on Decision and Control, pp. 2718–2723.

[Chi+12] W.-N. Chin, C. David, H. H. Nguyen, and S. Qin, "Automated verifi-
cation of shape, size and bag properties via user-defined predicates in
separation logic", Sci. Comput. Program., vol. 77, no. 9, pp. 1006–1036,
2012. [Online]. Available: https://doi.org/10.1016/j.scico.2010.
07.004.

[Con+20] L. Convent, S. Lindley, C. McBride, and C. McLaughlin, "Doo bee
doo bee doo", J. Funct. Program., vol. 30, e9, 2020. [Online]. Available:
https://doi.org/10.1017/S0956796820000039.

[Coq22] Coq, "The coq proof assistant", https://coq.inria.fr/, 2022.

[Daa17] L. Daan, "Type directed compilation of row-typed algebraic effects", in
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages, 2017, pp. 486–499.

134

https://doi.org/10.1007/978-3-319-24312-2%5C_21
https://doi.org/10.1007/978-3-319-24312-2%5C_21
https://doi.org/10.1145/1480881.1480917
https://doi.org/10.1016/j.scico.2010.07.004
https://doi.org/10.1016/j.scico.2010.07.004
https://doi.org/10.1017/S0956796820000039
https://coq.inria.fr/


BIBLIOGRAPHY

[Dar+19] B. Dariusz, P. Maciej, P. Piotr, and S. Filip, "Binders by day, labels by
night: Effect instances via lexically scoped handlers", Proceedings of the
ACM on Programming Languages, vol. 4, no. POPL, pp. 1–29, 2019.

[DM01] A. David and M. D. Möller, "From huppaal to uppaal–a translation
from hierarchical timed automata to flat timed automata",, 2001.

[DY96] C. Daws and S. Yovine, "Reducing the number of clock variables of
timed automata", in Proceedings of the 17th IEEE Real-Time Systems
Symposium (RTSS ’96), December 4-6, 1996, Washington, DC, USA,
IEEE Computer Society, 1996, pp. 73–81. [Online]. Available: https:
//doi.org/10.1109/REAL.1996.563702.

[dMB08] L. M. de Moura and N. Bjørner, "Z3: an efficient SMT solver", in
Tools and Algorithms for the Construction and Analysis of Systems,
14th International Conference, TACAS 2008, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS
2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings, C. R.
Ramakrishnan and J. Rehof, Eds., ser. Lecture Notes in Computer
Science, vol. 4963, Springer, 2008, pp. 337–340. [Online]. Available:
https://doi.org/10.1007/978-3-540-78800-3%5C_24.

[dVP21] P. E. de Vilhena and F. Pottier, "A separation logic for effect handlers",
Proc. ACM Program. Lang., vol. 5, no. POPL, pp. 1–28, 2021. [Online].
Available: https://doi.org/10.1145/3434314.

[Don+08] J. S. Dong, P. Hao, S. Qin, J. Sun, and W. Yi, "Timed automata
patterns", IEEE Trans. Software Eng., vol. 34, no. 6, pp. 844–859, 2008.
[Online]. Available: https://doi.org/10.1109/TSE.2008.52.

[Ecm99] E. Ecma, "262: Ecmascript language specification", ECMA (European
Association for Standardizing Information and Communication Sys-
tems), pub-ECMA: adr,, 1999.

[Fac22] Facebook, "Infer static analyzer", https://fbinfer.com/, 2022.

[Flo+19] S. P. Florence, S.-H. You, J. A. Tov, and R. B. Findler, "A calculus
for esterel: If can, can. if no can, no can", Proc. ACM Program. Lang.,

135

https://doi.org/10.1109/REAL.1996.563702
https://doi.org/10.1109/REAL.1996.563702
https://doi.org/10.1007/978-3-540-78800-3%5C_24
https://doi.org/10.1145/3434314
https://doi.org/10.1109/TSE.2008.52
https://fbinfer.com/


BIBLIOGRAPHY

vol. 3, no. POPL, 61:1–61:29, 2019. [Online]. Available: https://doi.
org/10.1145/3290374.

[FTA02] J. S. Foster, T. Terauchi, and A. Aiken, "Flow-sensitive type qualifiers",
in Proceedings of the ACM SIGPLAN 2002 Conference on Programming
language design and implementation, 2002, pp. 1–12.

[Git22] Github-effect-handlers, "Recursive cow", https://github.com/effect-
handlers/effects-rosetta-stone/tree/master/examples/recursive-

cow, 2022.

[Gon88] G. Gonthier, "Sémantiques et modèles d’exécution des langages réactifs
synchrones: Application à Esterel", Ph.D. dissertation, Paris 11, 1988.

[GNA14] S. Guha, C. Narayan, and S. Arun-Kumar, "Reducing clocks in timed
automata while preserving bisimulation", in CONCUR 2014 - Concur-
rency Theory - 25th International Conference, CONCUR 2014, Rome,
Italy, September 2-5, 2014. Proceedings, P. Baldan and D. Gorla, Eds.,
ser. Lecture Notes in Computer Science, vol. 8704, Springer, 2014,
pp. 527–543. [Online]. Available: https://doi.org/10.1007/978-3-
662-44584-6%5C_36.

[Hav+97] K. Havelund, A. Skou, K. G. Larsen, and K. Lund, "Formal model-
ing and analysis of an audio/video protocol: An industrial case study
using UPPAAL", in Proceedings of the 18th IEEE Real-Time Systems
Symposium (RTSS ’97), December 3-5, 1997, San Francisco, CA, USA,
IEEE Computer Society, 1997, pp. 2–13. [Online]. Available: https:
//doi.org/10.1109/REAL.1997.641264.

[HL18] D. Hillerström and S. Lindley, "Shallow effect handlers", in Asian Sympo-
sium on Programming Languages and Systems, Springer, 2018, pp. 415–
435.

[HLA20] D. Hillerström, S. Lindley, and R. Atkey, "Effect handlers via generalised
continuations", J. Funct. Program., vol. 30, e5, 2020. [Online]. Available:
https://doi.org/10.1017/S0956796820000040.

136

https://doi.org/10.1145/3290374
https://doi.org/10.1145/3290374
https://github.com/effect-handlers/effects-rosetta-stone/tree/master/examples/recursive-cow
https://github.com/effect-handlers/effects-rosetta-stone/tree/master/examples/recursive-cow
https://github.com/effect-handlers/effects-rosetta-stone/tree/master/examples/recursive-cow
https://doi.org/10.1007/978-3-662-44584-6%5C_36
https://doi.org/10.1007/978-3-662-44584-6%5C_36
https://doi.org/10.1109/REAL.1997.641264
https://doi.org/10.1109/REAL.1997.641264
https://doi.org/10.1017/S0956796820000040


BIBLIOGRAPHY

[HC14] M. Hofmann and W. Chen, "Abstract interpretation from büchi au-
tomata", in Joint Meeting of the Twenty-Third EACSL Annual Confer-
ence on Computer Science Logic (CSL) and the Twenty-Ninth Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-
LICS ’14, Vienna, Austria, July 14 - 18, 2014, T. A. Henzinger and
D. Miller, Eds., ACM, 2014, 51:1–51:10. [Online]. Available: https:
//doi.org/10.1145/2603088.2603127.

[Hov12] D. Hovland, "The inclusion problem for regular expressions", J. Comput.
Syst. Sci., vol. 78, no. 6, pp. 1795–1813, 2012. [Online]. Available: https:
//doi.org/10.1016/j.jcss.2011.12.003.

[JPO95] L. J. Jagadeesan, C. Puchol, and J. V. Olnhausen, "Safety property
verification of ESTEREL programs and applications to telecommuni-
cations software", in Computer Aided Verification, 7th International
Conference, Liège, Belgium, July, 3-5, 1995, Proceedings, P. Wolper,
Ed., ser. Lecture Notes in Computer Science, vol. 939, Springer, 1995,
pp. 127–140. [Online]. Available: https://doi.org/10.1007/3-540-
60045-0%5C_45.

[Jou87] P. Jouvelot, "Semantic parallelization: A practical exercise in abstract
interpretation", in Conference Record of the Fourteenth Annual ACM
Symposium on Principles of Programming Languages, Munich, Germany,
January 21-23, 1987, ACM Press, 1987, pp. 39–48. [Online]. Available:
https://doi.org/10.1145/41625.41629.

[JG89] P. Jouvelot and D. K. Gifford, "Reasoning about continuations with
control effects", in Proceedings of the ACM SIGPLAN’89 Conference on
Programming Language Design and Implementation (PLDI), Portland,
Oregon, USA, June 21-23, 1989, R. L. Wexelblat, Ed., ACM, 1989,
pp. 218–226. [Online]. Available: https://doi.org/10.1145/73141.
74837.

[JG91] P. Jouvelot and D. K. Gifford, "Algebraic reconstruction of types and
effects", in Conference Record of the Eighteenth Annual ACM Sympo-
sium on Principles of Programming Languages, Orlando, Florida, USA,

137

https://doi.org/10.1145/2603088.2603127
https://doi.org/10.1145/2603088.2603127
https://doi.org/10.1016/j.jcss.2011.12.003
https://doi.org/10.1016/j.jcss.2011.12.003
https://doi.org/10.1007/3-540-60045-0%5C_45
https://doi.org/10.1007/3-540-60045-0%5C_45
https://doi.org/10.1145/41625.41629
https://doi.org/10.1145/73141.74837
https://doi.org/10.1145/73141.74837


BIBLIOGRAPHY

January 21-23, 1991, D. S. Wise, Ed., ACM Press, 1991, pp. 303–310.
[Online]. Available: https://doi.org/10.1145/99583.99623.

[KLO13] O. Kammar, S. Lindley, and N. Oury, "Handlers in action", ACM
SIGPLAN Notices, vol. 48, no. 9, pp. 145–158, 2013.

[KT14a] M. Keil and P. Thiemann, "Symbolic solving of extended regular ex-
pression inequalities", in 34th International Conference on Foundation
of Software Technology and Theoretical Computer Science, FSTTCS
2014, December 15-17, 2014, New Delhi, India, V. Raman and S. P.
Suresh, Eds., ser. LIPIcs, vol. 29, Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2014, pp. 175–186. [Online]. Available: https://doi.
org/10.4230/LIPIcs.FSTTCS.2014.175.

[KMP00] Y. Kesten, Z. Manna, and A. Pnueli, "Verification of clocked and hybrid
systems", Acta Informatica, vol. 36, no. 11, pp. 837–912, 2000. [Online].
Available: https://doi.org/10.1007/s002360050177.

[KT14b] E. Koskinen and T. Terauchi, "Local temporal reasoning", in Joint
Meeting of the Twenty-Third EACSL Annual Conference on Computer
Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Sym-
posium on Logic in Computer Science (LICS), CSL-LICS ’14, Vienna,
Austria, July 14 - 18, 2014, T. A. Henzinger and D. Miller, Eds., ACM,
2014, 59:1–59:10. [Online]. Available: https://doi.org/10.1145/
2603088.2603138.

[KFP07] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, "Where’s waldo?
sensor-based temporal logic motion planning", in 2007 IEEE Inter-
national Conference on Robotics and Automation, ICRA 2007, 10-14
April 2007, Roma, Italy, IEEE, 2007, pp. 3116–3121. [Online]. Available:
https://doi.org/10.1109/ROBOT.2007.363946.

[Lam05] L. Lamport, "Real-time model checking is really simple", in Correct
Hardware Design and Verification Methods, 13th IFIP WG 10.5 Ad-
vanced Research Working Conference, CHARME 2005, Saarbrücken,
Germany, October 3-6, 2005, Proceedings, D. Borrione and W. J. Paul,
Eds., ser. Lecture Notes in Computer Science, vol. 3725, Springer,

138

https://doi.org/10.1145/99583.99623
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.175
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.175
https://doi.org/10.1007/s002360050177
https://doi.org/10.1145/2603088.2603138
https://doi.org/10.1145/2603088.2603138
https://doi.org/10.1109/ROBOT.2007.363946


BIBLIOGRAPHY

2005, pp. 162–175. [Online]. Available: https://doi.org/10.1007/
11560548%5C_14.

[Lam+02] L. Lamport, J. Matthews, M. R. Tuttle, and Y. Yu, "Specifying and
verifying systems with TLA+", in Proceedings of the 10th ACM SIGOPS
European Workshop, Saint-Emilion, France, July 1, 2002, G. Muller
and E. Jul, Eds., ACM, 2002, pp. 45–48. [Online]. Available: https:
//doi.org/10.1145/1133373.1133382.

[Lan98] P. J. Landin, "A generalization of jumps and labels", Higher-Order and
Symbolic Computation, vol. 11, no. 2, pp. 125–143, 1998.

[Lar+05] K. G. Larsen, M. Mikucionis, B. Nielsen, and A. Skou, "Testing real-time
embedded software using UPPAAL-TRON: an industrial case study",
in EMSOFT 2005, September 18-22, 2005, Jersey City, NJ, USA, 5th
ACM International Conference On Embedded Software, Proceedings,
W. H. Wolf, Ed., ACM, 2005, pp. 299–306. [Online]. Available: https:
//doi.org/10.1145/1086228.1086283.

[LPY97] K. G. Larsen, P. Pettersson, and W. Yi, "UPPAAL in a nutshell", Int. J.
Softw. Tools Technol. Transf., vol. 1, no. 1-2, pp. 134–152, 1997. [Online].
Available: https://doi.org/10.1007/s100090050010.

[Lei14a] D. Leijen, "Koka: Programming with row polymorphic effect types",
in Proceedings 5th Workshop on Mathematically Structured Functional
Programming, MSFP@ETAPS 2014, Grenoble, France, 12 April 2014,
P. B. Levy and N. Krishnaswami, Eds., ser. EPTCS, vol. 153, 2014,
pp. 100–126. [Online]. Available: https://doi.org/10.4204/EPTCS.
153.8.

[Lei14b] D. Leijen, "Koka: Programming with row polymorphic effect types",
arXiv preprint arXiv:1406.2061, 2014.

[Lei18] D. Leijen, "Algebraic effect handlers with resources and deep finaliza-
tion", Technical Report MSR-TR-2018-10. Microsoft Research, Tech.
Rep., 2018.

139

https://doi.org/10.1007/11560548%5C_14
https://doi.org/10.1007/11560548%5C_14
https://doi.org/10.1145/1133373.1133382
https://doi.org/10.1145/1133373.1133382
https://doi.org/10.1145/1086228.1086283
https://doi.org/10.1145/1086228.1086283
https://doi.org/10.1007/s100090050010
https://doi.org/10.4204/EPTCS.153.8
https://doi.org/10.4204/EPTCS.153.8


BIBLIOGRAPHY

[LS07] M. Leucker and C. Sánchez, "Regular linear temporal logic", in Interna-
tional colloquium on theoretical aspects of computing, Springer, 2007,
pp. 291–305.

[LC12] S. Lindley and J. Cheney, "Row-based effect types for database integra-
tion", in Proceedings of the 8th ACM SIGPLAN Workshop on Types in
Language Design and Implementation, 2012, pp. 91–102.

[LMM16] S. Lindley, C. McBride, and C. McLaughlin, "Do be do be do", CoRR,
vol. abs/1611.09259, 2016. arXiv: 1611.09259. [Online]. Available: http:
//arxiv.org/abs/1611.09259.

[LSD11] Y. Liu, J. Sun, and J. S. Dong, "PAT 3: An extensible architecture for
building multi-domain model checkers", in IEEE 22nd International
Symposium on Software Reliability Engineering, ISSRE 2011, Hiroshima,
Japan, November 29 - December 2, 2011, T. Dohi and B. Cukic, Eds.,
IEEE Computer Society, 2011, pp. 190–199. [Online]. Available: https:
//doi.org/10.1109/ISSRE.2011.19.

[Ltd22] P. L. P. Ltd., https://www.programiz.com/javascript/setTimeout,
2022.

[LG88] J. M. Lucassen and D. K. Gifford, "Polymorphic effect systems", in Pro-
ceedings of the 15th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, 1988, pp. 47–57.

[LGL19] L. Luthmann, H. Göttmann, and M. Lochau, "Checking timed bisim-
ulation with bounded zone-history graphs - technical report", CoRR,
vol. abs/1910.08992, 2019. arXiv: 1910.08992. [Online]. Available: http:
//arxiv.org/abs/1910.08992.

[MLT17] M. Madsen, O. Lhoták, and F. Tip, "A model for reasoning about
javascript promises", Proc. ACM Program. Lang., vol. 1, no. OOPSLA,
86:1–86:24, 2017. [Online]. Available: https://doi.org/10.1145/
3133910.

[Mai22] Z. Maintainers, https://zio.dev/, 2022.

140

https://arxiv.org/abs/1611.09259
http://arxiv.org/abs/1611.09259
http://arxiv.org/abs/1611.09259
https://doi.org/10.1109/ISSRE.2011.19
https://doi.org/10.1109/ISSRE.2011.19
https://www.programiz.com/javascript/setTimeout
https://arxiv.org/abs/1910.08992
http://arxiv.org/abs/1910.08992
http://arxiv.org/abs/1910.08992
https://doi.org/10.1145/3133910
https://doi.org/10.1145/3133910
https://zio.dev/


BIBLIOGRAPHY

[MMW11] G. Malecha, G. Morrisett, and R. Wisnesky, "Trace-based verification
of imperative programs with I/O", J. Symb. Comput., vol. 46, no. 2,
pp. 95–118, 2011. [Online]. Available: https://doi.org/10.1016/j.
jsc.2010.08.004.

[MSS03] K. Marriott, P. J. Stuckey, and M. Sulzmann, "Resource usage verifica-
tion", in Asian Symposium on Programming Languages and Systems,
Springer, 2003, pp. 212–229.

[MWP13] M. Muñiz, B. Westphal, and A. Podelski, "Detecting quasi-equal clocks
in timed automata", in Formal Modeling and Analysis of Timed Sys-
tems - 11th International Conference, FORMATS 2013, Buenos Aires,
Argentina, August 29-31, 2013. Proceedings, V. A. Braberman and L. Fri-
bourg, Eds., ser. Lecture Notes in Computer Science, vol. 8053, Springer,
2013, pp. 198–212. [Online]. Available: https://doi.org/10.1007/978-
3-642-40229-6%5C_14.

[Mur+16] A. Murase, T. Terauchi, N. Kobayashi, R. Sato, and H. Unno, "Temporal
verification of higher-order functional programs", in Proceedings of
the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2016, St. Petersburg, FL, USA,
January 20 - 22, 2016, R. Bodık and R. Majumdar, Eds., ACM, 2016,
pp. 57–68. [Online]. Available: https://doi.org/10.1145/2837614.
2837667.

[NU10] K. Nakata and T. Uustalu, "A hoare logic for the coinductive trace-based
big-step semantics of while", in Programming Languages and Systems,
19th European Symposium on Programming, ESOP 2010, Held as Part
of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings, A. D.
Gordon, Ed., ser. Lecture Notes in Computer Science, vol. 6012, Springer,
2010, pp. 488–506. [Online]. Available: https://doi.org/10.1007/978-
3-642-11957-6%5C_26.

[NU15] K. Nakata and T. Uustalu, "A hoare logic for the coinductive trace-
based big-step semantics of while", Log. Methods Comput. Sci., vol. 11,

141

https://doi.org/10.1016/j.jsc.2010.08.004
https://doi.org/10.1016/j.jsc.2010.08.004
https://doi.org/10.1007/978-3-642-40229-6%5C_14
https://doi.org/10.1007/978-3-642-40229-6%5C_14
https://doi.org/10.1145/2837614.2837667
https://doi.org/10.1145/2837614.2837667
https://doi.org/10.1007/978-3-642-11957-6%5C_26
https://doi.org/10.1007/978-3-642-11957-6%5C_26


BIBLIOGRAPHY

no. 1, 2015. [Online]. Available: https://doi.org/10.2168/LMCS-
11(1:1)2015.

[Nan+18] Y. Nanjo, H. Unno, E. Koskinen, and T. Terauchi, "A fixpoint logic and
dependent effects for temporal property verification", in Proceedings
of the 33rd Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2018, Oxford, UK, July 09-12, 2018, A. Dawar and
E. Grädel, Eds., ACM, 2018, pp. 759–768. [Online]. Available: https:
//doi.org/10.1145/3209108.3209204.

[Nea+08] I. Neamtiu, M. Hicks, J. S. Foster, and P. Pratikakis, "Contextual effects
for version-consistent dynamic software updatingalland safe concurrent
programming", in Proceedings of the 35th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2008, San
Francisco, California, USA, January 7-12, 2008, G. C. Necula and
P. Wadler, Eds., ACM, 2008, pp. 37–49. [Online]. Available: https:
//doi.org/10.1145/1328438.1328447.

[Nie+99] F. Nielson, H. R. Nielson, C. Hankin, F. Nielson, H. R. Nielson, and
C. Hankin, "Type and effect systems", Principles of Program Analysis,
pp. 283–363, 1999.

[OHe06] P. W. O’Hearn, "Separation logic and program analysis", in Static Anal-
ysis, 13th International Symposium, SAS 2006, Seoul, Korea, August
29-31, 2006, Proceedings, K. Yi, Ed., ser. Lecture Notes in Computer
Science, vol. 4134, Springer, 2006, p. 181. [Online]. Available: https:
//doi.org/10.1007/11823230%5C_12.

[OHe20] P. W. O’Hearn, "Incorrectness logic", Proc. ACM Program. Lang., vol. 4,
no. POPL, 10:1–10:32, 2020. [Online]. Available: https://doi.org/10.
1145/3371078.

[Ölv00] P. C. Ölveczky, "Specification and analysis of real-time and hybrid
systems in rewriting logic", Citeseer, 2000.

[ÖM02] P. C. Ölveczky and J. Meseguer, "Specification of real-time and hybrid
systems in rewriting logic", Theor. Comput. Sci., vol. 285, no. 2, pp. 359–

142

https://doi.org/10.2168/LMCS-11(1:1)2015
https://doi.org/10.2168/LMCS-11(1:1)2015
https://doi.org/10.1145/3209108.3209204
https://doi.org/10.1145/3209108.3209204
https://doi.org/10.1145/1328438.1328447
https://doi.org/10.1145/1328438.1328447
https://doi.org/10.1007/11823230%5C_12
https://doi.org/10.1007/11823230%5C_12
https://doi.org/10.1145/3371078
https://doi.org/10.1145/3371078


BIBLIOGRAPHY

405, 2002. [Online]. Available: https://doi.org/10.1016/S0304-
3975(01)00363-2.

[ptc19] D. F. patterns and technical concepts, https://docs.microsoft.com/
en-us/azure/azure-functions/durable, 2019.

[PRS95] S. Pinchinat, É. Rutten, and R. K. Shyamasundar, "Preemption primi-
tives in reactive languages (A preliminary report)", in Algorithms, Con-
currency and Knowledge: 1995 Asian Computing Science Conference,
ACSC ’95, Pathumthani, Thailand, December 11-13, 1995, Proceedings,
K. Kanchanasut and J.-J. Lévy, Eds., ser. Lecture Notes in Computer
Science, vol. 1023, Springer, 1995, pp. 111–125. [Online]. Available:
https://doi.org/10.1007/3-540-60688-2%5C_39.

[Pre13] M. Pretnar, "Inferring algebraic effects", arXiv preprint arXiv:1312.2334,
2013.

[Pri10] C. Prisacariu, "Synchronous kleene algebra", J. Log. Algebraic Methods
Program., vol. 79, no. 7, pp. 608–635, 2010. [Online]. Available: https:
//doi.org/10.1016/j.jlap.2010.07.009.

[RHR91] C. Ratel, N. Halbwachs, and P. Raymond, "Programming and verifying
critical systems by means of the synchronous data-flow language LUS-
TRE", in Proceedings of the conference on Software for citical systems,
SIGSOFT 1991, New Orleans, Louisiana, USA, M. Moriconi, Ed., ACM,
1991, pp. 112–119. [Online]. Available: https://doi.org/10.1145/
125083.123062.

[Rei+11] T. Reinbacher, J. Brauer, M. Horauer, A. Steininger, and S. Kowalewski,
"Past time LTL runtime verification for microcontroller binary code",
in Formal Methods for Industrial Critical Systems - 16th International
Workshop, FMICS 2011, Trento, Italy, August 29-30, 2011. Proceedings,
G. Salaün and B. Schätz, Eds., ser. Lecture Notes in Computer Science,
vol. 6959, Springer, 2011, pp. 37–51. [Online]. Available: https://doi.
org/10.1007/978-3-642-24431-5%5C_5.

143

https://doi.org/10.1016/S0304-3975(01)00363-2
https://doi.org/10.1016/S0304-3975(01)00363-2
https://docs.microsoft.com/en-us/azure/azure-functions/durable
https://docs.microsoft.com/en-us/azure/azure-functions/durable
https://doi.org/10.1007/3-540-60688-2%5C_39
https://doi.org/10.1016/j.jlap.2010.07.009
https://doi.org/10.1016/j.jlap.2010.07.009
https://doi.org/10.1145/125083.123062
https://doi.org/10.1145/125083.123062
https://doi.org/10.1007/978-3-642-24431-5%5C_5
https://doi.org/10.1007/978-3-642-24431-5%5C_5


BIBLIOGRAPHY

[Rep93] J. H. Reppy, "Concurrent ML: design, application and semantics", in
Functional Programming, Concurrency, Simulation and Automated Rea-
soning: International Lecture Series 1991-1992, McMaster University,
Hamilton, Ontario, Canada, P. E. Lauer, Ed., ser. Lecture Notes in Com-
puter Science, vol. 693, Springer, 1993, pp. 165–198. [Online]. Available:
https://doi.org/10.1007/3-540-56883-2%5C_10.

[Siv+21] K. C. Sivaramakrishnan, S. Dolan, L. White, T. Kelly, S. Jaffer, and
A. Madhavapeddy, "Retrofitting effect handlers onto ocaml", in PLDI
’21: 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, Virtual Event, Canada, June
20-25, 2021, S. N. Freund and E. Yahav, Eds., ACM, 2021, pp. 206–221.
[Online]. Available: https://doi.org/10.1145/3453483.3454039.

[SS04a] C. Skalka and S. Smith, "History effects and verification", in Asian
Symposium on Programming Languages and Systems, Springer, 2004,
pp. 107–128.

[SSV08] C. Skalka, S. Smith, and D. Van Horn, "Types and trace effects of
higher order programs", Journal of Functional Programming, vol. 18,
no. 2, pp. 179–249, 2008.

[SS04b] C. Skalka and S. F. Smith, "History effects and verification", in Pro-
gramming Languages and Systems: Second Asian Symposium, APLAS
2004, Taipei, Taiwan, November 4-6, 2004. Proceedings, W.-N. Chin,
Ed., ser. Lecture Notes in Computer Science, vol. 3302, Springer, 2004,
pp. 107–128. [Online]. Available: https://doi.org/10.1007/978-3-
540-30477-7%5C_8.

[Son22a] Y. Song, https://zenodo.org/record/7071374#.Yx8oU-xBydY, 2022.

[Son22b] Y. Song, https://zenodo.org/record/7192718#.Y0emgexBwRR, 2022.

[SC20] Y. Song and W.-N. Chin, "Automated temporal verification of integrated
dependent effects", in Formal Methods and Software Engineering - 22nd
International Conference on Formal Engineering Methods, ICFEM 2020,
Singapore, Singapore, March 1-3, 2021, Proceedings, S.-W. Lin, Z. Hou,
and B. P. Mahony, Eds., ser. Lecture Notes in Computer Science,

144

https://doi.org/10.1007/3-540-56883-2%5C_10
https://doi.org/10.1145/3453483.3454039
https://doi.org/10.1007/978-3-540-30477-7%5C_8
https://doi.org/10.1007/978-3-540-30477-7%5C_8
https://zenodo.org/record/7071374#.Yx8oU-xBydY
https://zenodo.org/record/7192718#.Y0emgexBwRR


BIBLIOGRAPHY

vol. 12531, Springer, 2020, pp. 73–90. [Online]. Available: https://doi.
org/10.1007/978-3-030-63406-3%5C_5.

[SC21] Y. Song and W.-N. Chin, "A synchronous effects logic for temporal
verification of pure esterel", in Verification, Model Checking, and Ab-
stract Interpretation - 22nd International Conference, VMCAI 2021,
Copenhagen, Denmark, January 17-19, 2021, Proceedings, F. Henglein,
S. Shoham, and Y. Vizel, Eds., ser. Lecture Notes in Computer Science,
vol. 12597, Springer, 2021, pp. 417–440. [Online]. Available: https:
//doi.org/10.1007/978-3-030-67067-2%5C_19.

[SC22] Y. Song and W.-N. Chin, "Automated verification for real-time systems
using implicit clocks and an extended antimirov algorithm", in Compan-
ion Proceedings of the 2022 ACM SIGPLAN International Conference
on Systems, Programming, Languages, and Applications: Software for
Humanity, SPLASH Companion 2022, Auckland, New Zealand, De-
cember 5-10, 2022, A. Potanin, Ed., ACM, 2022, pp. 60–62. [Online].
Available: https://doi.org/10.1145/3563768.3563953.

[SC23] Y. Song and W.-N. Chin, "Automated verification for real-time systems",
in Tools and Algorithms for the Construction and Analysis of Systems,
S. Sankaranarayanan and N. Sharygina, Eds., Cham: Springer Nature
Switzerland, 2023, pp. 569–587, isbn: 978-3-031-30823-9.

[SFC22] Y. Song, D. Foo, and W.-N. Chin, "Automated temporal verification
for algebraic effects", in Programming Languages and Systems - 20th
Asian Symposium, APLAS 2022, Auckland, New Zealand, December
5, 2022, Proceedings, I. Sergey, Ed., ser. Lecture Notes in Computer
Science, vol. 13658, Springer, 2022, pp. 88–109. [Online]. Available:
https://doi.org/10.1007/978-3-031-21037-2%5C_5.

[Sun+09] J. Sun, Y. Liu, J. S. Dong, and J. Pang, "PAT: towards flexible ver-
ification under fairness", in Computer Aided Verification, 21st Inter-
national Conference, CAV 2009, Grenoble, France, June 26 - July 2,
2009. Proceedings, A. Bouajjani and O. Maler, Eds., ser. Lecture Notes
in Computer Science, vol. 5643, Springer, 2009, pp. 709–714. [Online].
Available: https://doi.org/10.1007/978-3-642-02658-4%5C_59.

145

https://doi.org/10.1007/978-3-030-63406-3%5C_5
https://doi.org/10.1007/978-3-030-63406-3%5C_5
https://doi.org/10.1007/978-3-030-67067-2%5C_19
https://doi.org/10.1007/978-3-030-67067-2%5C_19
https://doi.org/10.1145/3563768.3563953
https://doi.org/10.1007/978-3-031-21037-2%5C_5
https://doi.org/10.1007/978-3-642-02658-4%5C_59


BIBLIOGRAPHY

[TJ94] J.-P. Talpin and P. Jouvelot, "The type and effect discipline", Inf.
Comput., vol. 111, no. 2, pp. 245–296, 1994. [Online]. Available: https:
//doi.org/10.1006/inco.1994.1046.

[Ter03] Terese, "Term rewriting systems", ser. Cambridge tracts in theoretical
computer science. Cambridge University Press, 2003, vol. 55, isbn:
978-0-521-39115-3.

[Tri99] S. Tripakis, "Verifying progress in timed systems", in Formal Methods
for Real-Time and Probabilistic Systems, 5th International AMAST
Workshop, ARTS’99, Bamberg, Germany, May 26-28, 1999. Proceedings,
J.-P. Katoen, Ed., ser. Lecture Notes in Computer Science, vol. 1601,
Springer, 1999, pp. 299–314. [Online]. Available: https://doi.org/10.
1007/3-540-48778-6%5C_18.

[UMB13] A. Ulusoy, M. Marrazzo, and C. Belta, "Receding horizon control in
dynamic environments from temporal logic specifications", in Robotics:
Science and Systems IX, Technische Universität Berlin, Berlin, Ger-
many, June 24 - June 28, 2013, P. Newman, D. Fox, and D. Hsu, Eds.,
2013. [Online]. Available: http://www.roboticsproceedings.org/
rss09/p13.html.

[WWH05] F. Wang, R.-S. Wu, and G.-D. Huang, "Verifying timed and linear
hybrid rule-systems with RED", in Proceedings of the 17th Interna-
tional Conference on Software Engineering and Knowledge Engineering
(SEKE’2005), Taipei, Taiwan, Republic of China, July 14-16, 2005,
W. C. Chu, N. J. Juzgado, and W. E. Wong, Eds., 2005, pp. 448–454.

[Wan+17] X. Wang, J. Sun, T. Wang, and S. Qin, "Language inclusion checking
of timed automata with non-zenoness", IEEE Trans. Software Eng.,
vol. 43, no. 11, pp. 995–1008, 2017. [Online]. Available: https://doi.
org/10.1109/TSE.2017.2653778.

[Wik22a] Wikipedia, "Cooperative multitasking", https://en.m.wikipedia.
org/wiki/Cooperative_multitasking, 2022.

[Wik22b] Wikipedia, "Exception wiki", https://en.wikipedia.org/wiki/
Exception_handling, 2022.

146

https://doi.org/10.1006/inco.1994.1046
https://doi.org/10.1006/inco.1994.1046
https://doi.org/10.1007/3-540-48778-6%5C_18
https://doi.org/10.1007/3-540-48778-6%5C_18
http://www.roboticsproceedings.org/rss09/p13.html
http://www.roboticsproceedings.org/rss09/p13.html
https://doi.org/10.1109/TSE.2017.2653778
https://doi.org/10.1109/TSE.2017.2653778
https://en.m.wikipedia.org/wiki/Cooperative_multitasking
https://en.m.wikipedia.org/wiki/Cooperative_multitasking
https://en.wikipedia.org/wiki/Exception_handling
https://en.wikipedia.org/wiki/Exception_handling


BIBLIOGRAPHY

[Wul+06] M. D. Wulf, L. Doyen, T. A. Henzinger, and J.-F. Raskin, "Antichains: A
new algorithm for checking universality of finite automata", in Computer
Aided Verification, 18th International Conference, CAV 2006, Seattle,
WA, USA, August 17-20, 2006, Proceedings, T. Ball and R. B. Jones,
Eds., ser. Lecture Notes in Computer Science, vol. 4144, Springer, 2006,
pp. 17–30. [Online]. Available: https://doi.org/10.1007/11817963%
5C_5.

[YPD94] W. Yi, P. Pettersson, and M. Daniels, "Automatic verification of real-
time communicating systems by constraint-solving", in Formal Descrip-
tion Techniques VII, Proceedings of the 7th IFIP WG6.1 International
Conference on Formal Description Techniques, Berne, Switzerland, 1994,
D. Hogrefe and S. Leue, Eds., ser. IFIP Conference Proceedings, vol. 6,
Chapman & Hall, 1994, pp. 243–258.

[Yov97] S. Yovine, "KRONOS: A verification tool for real-time systems", Int. J.
Softw. Tools Technol. Transf., vol. 1, no. 1-2, pp. 123–133, 1997. [Online].
Available: https://doi.org/10.1007/s100090050009.

147

https://doi.org/10.1007/11817963%5C_5
https://doi.org/10.1007/11817963%5C_5
https://doi.org/10.1007/s100090050009


APPENDIX A. APPENDIX FOR ASYNCEFFS

Appendix A

Appendix for ASyncEffs

A.1 Preemption Interleaving Algorithms

The difference between weak and strong preemptions is: in strong preemption,
the body does not run when the preemption condition holds. Whereas in weak
preemption the body is allowed to run in the current instant even when the preemp-
tion condition holds, but are terminated thereafter [Ber93; PRS95]. We present the
weak suspend interleaving in Algorithm 3. Furthermore, it is not hard to encode
strong abort/suspend from our default weak abort/suspend settings. As shown in
Algorithm 3, line 5 and line 13 mark the modifications for encoding strong suspension.
Similarly, we could encode strong abort by modifying Algorithm 1 at lines 3 and 9
to ∆1←[(Φhis, {S}, 0)] and φ←[(Φhis, {S}, 0)] respectively.
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Algorithm 3: Weak Suspend Interleaving
Input: S, (Φ, I, k)
Output: Program States, ∆

1: rec function ℵSuspend(S,I ,k)
Interleave (Φ)

2: if fst(Φ)=∅ then
3: ∆1←[(ε, I+{S}, k)] . Notion + unions two instants
4: ∆2←[(I+{S}, {}, k)]
5: . In strong suspend, line 4 should be: ∆2 ← [({S}, {}, k)]
6: return (∆1 ∪∆2) . Notion ∪ unions two program states
7: else
8: ∆← []
9: foreach f∈fst(Φ) do
10: ∆′←ℵSuspend(S,I ,k)

Interleave (Df (Φ))
11: ∆1 ← (f+{S}) ·∆′

12: ∆2 ← (f+{S}) · {} ·∆′

13: . In strong suspend, line 12 should be: ∆2 ← {S} · {} ·∆′

14: ∆← ∆ ∪∆1 ∪∆2

15: return ∆

Lemma 2 (Soundness of Weak Abort Interleaving).
For function ℵAbort

Interleave, ∀S,Φ, I, k,Φhis,
if Φ=ε, then ∆ = [(Φhis, I+{S}, 0); (Φhis, I+{S}, k)]
else ∆ = ⋃|F |

0 (Φhis, f+{S}, 0) :: ℵAbort
Interleave(Df (Φ),Φhis · (f+{S})) where F=fst(Φ).

Proof. By induction on Φ, with Algorithm 1.

Lemma 3 (Soundness of Weak Suspend Interleaving).
For function ℵSuspend

Interleave, ∀S,Φ, I, k,
if Φ=ε, then ∆ = [(ε, I+{S}, k); (I+{S}, {}, k)]
else ∆ = ⋃|F |

0 ((f+{S})∨(f+{S})·{}))·∆′, where F=fst(Φ) and ∆′=ℵSuspend
Interleave(Df (Φ)).

Proof. By induction on Φ, with Algorithm 3.
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Appendix B

Appendix for TimEffs

B.1 Operational Semantics Rules for the Basic State-
ments

Rules [v], [assign], and [ev] are axioms, which terminate immediately. We use
E [α] to update the environment E with the assignment α.

(E , v) τ−→ (E , v) [v] (E , α) τ−→ (E [α], ()) [assign]

(E , event[A(v, α∗)]) A(v)−−−→ (E [α∗], ()) [ev]

In conditionals, if v is True in the environment, the first branch is executed.
Otherwise, the other branch is executed. The rule [call] retrieves the function body
e of mn from the program, and executes e with instantiated arguments.

[cond1]
E(v) = True

(E , if v e1 e2) τ−→(E , e1)

[cond2]
E(v) = False

(E , if v e1 e2) τ−→(E , e2)

[call]
mnx∗{e}∈P (E , e[v∗/x∗]) l−→(E ′, e′)

(E ,mn(v∗)) l−→ (E ′, e′)

Rules [seq1] and [seq2] state that e1 takes the control when it still can behave;
then the control transfers to e2 when e1 terminates. In process e1||e2, if any of e1 or
e2 can proceed, they proceed on their own. Rule [par3] states that if both branches
can proceed with the same label, they proceed together.
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(E , e1) l−→ (E ′, e′1)
(E , e1; e2) l−→(E ′, e′1; e2)

[seq1]
(E , v; e2) τ−→(E , e2)

[seq2] (E , e1) l−→ (E ′, e′1)
(E , e1||e2) l−→(E ′, e′1||e2)

[par1]

(E , e1) l−→ (E ′, v)
(E , e1||e2) l−→ (E ′, e2)

[par2] (E , e1) l−→ (E , e′1) (E , e2) l−→ (E , e′2)
(E , e1||e2) l−→ (E , e′1||e′2)

[par3]

B.2 The Complete Forward Rules

Rule [FV -Value] obtains the next state by inheriting the current state. Rule
[FV -Event] concatenates the event to the current state and update the environment
for the subsequent statements.

E ` {π, θ} v {π, θ}
[FV -Value] θ

′=θ ·A(v) E [α∗] ` 〈π, θ′〉 e {Π,Θ}
E ` 〈π, θ〉 event[A(v, α∗)]; e {Π,Θ} [FV -Event]

Rule [FV -Call] first checks whether the instantiated precondition of callee,
Φpre[v∗/x∗], is satisfied by the current program state. When the check is succeeded,
the final states are formed by concatenating the instantiated postcondition to the
current states. P denotes the program being checked.

mn x∗ {req Φpre ens Φpost} {e} ∈ P
E ` 〈π, θ〉 v Φpre[v∗/x∗] Φf = 〈π, θ〉 · Φpost[v∗/x∗]

E ` 〈π, θ〉 mn(v∗) 〈Φf〉
[FV -Call]

Rule [FV -Cond-Local] computes an over-approximation of the program states,
by adding different constraints into different branches. π∧ v enforces v into the pure
constraints of every trace in the state, same for π ∧ ¬v. Rule [FV -Cond-Global] is
applied when v is a global variable, the constraints are inserted as τ(π) events into
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the traces, which are determined when other threads are parallel composed.

[FV -Cond-Local]
E ` {π ∧ v, θ} e1 {Π1,Θ1} E ` {π ∧ ¬v, θ} e2 {Π2,Θ2} (v is local)

E ` 〈π, ε〉 if v then e1 else e2 〈Π1,Θ1〉 ∪ 〈Π2,Θ2〉

[FV -Cond-Global]
E ` {π, ε} e1 {Π1,Θ1} E ` {π, θ} e2 {Π2,Θ2} (v is global)

E ` 〈π, θ〉 if v then e1 else e2 〈Π1, θ · τ(v=True) ·Θ1〉 ∪ 〈Π2, θ · τ(v=False) ·Θ2〉

[FV -Fun] initializes the state using the declared precondition, accumulates the
effects from the function body, and checks the inclusion between the final state
〈Π,Θ〉 and the concatenation of the pre- and postcondition1. [FV -Guard] computes
the effects of e and concatenates (v=True)? before e’s effects.

[FV -Fun]
` 〈Φpre〉 e {Π,Θ} {Π,Θ} v Φpre · Φpost

E ` mn x∗ {req Φpre ens Φpost} {e}

[FV -Guard]
E ` {π, ε} e {Π,Θ}

E ` {π, θ} [v]e {Π, θ · (v=True)?Θ}

[FV -Seq] computes {Π1,Θ1} from e1, then further gets {Π2,Θ2} by continuously
computing the behaviors of e2, to be the final state. [FV -Par ] computes behaviors
for e1 and e2 independently, then parallel merges the effects.

E `{π, θ} e1 {Π1,Θ1} E `{Π1,Θ1} e2 {Π2,Θ2}
E ` {π, θ} e1; e2 {Π2,Θ2}

[FV -Seq]

E `{π, θ} e1 {Π1,Θ1} E `{π, θ} e2 {Π2,Θ2}
E ` {π, θ} e1||e2 {Π1 ∧ Π2,Θ1||Θ2}

[FV -Par ]

B.3 Termination of the TRS

The TRS is terminating.

1Note that for succinctness, the user-provided Φpost only denotes the extension of the effects
from executing the function body.
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Proof. Let Set[I] be a data structure representing the sets of inclusions. We use S
to denote the inclusions to be proved, and H to accumulate "inductive hypotheses",
i.e., S,H ∈ Set[I]. Consider the following partial ordering � on pairs 〈S,H〉:
〈S1, H1〉 � 〈S2, H2〉 iff |H1| < |H2| ∨ (|H1| = |H2| ∧ |S1| > |S2|).

Here |X| stands for the cardinality of a set X. Let⇒ denote the rewrite relation,
then ⇒∗ denotes its reflexive transitive closure. For any given S0, H0, this ordering
is well founded on the set of pairs {〈S,H〉 | 〈S0, H0〉⇒∗〈S,H〉}, due to the fact that
H is a subset of the finite set of pairs of all possible derivatives in initial inclusion.
Inference rules in our TRS given in subsection 5.4.1 transform current pairs 〈S,H〉
to new pairs 〈S ′, H ′〉. And each rule either increases |H| (Unfolding) or, otherwise,
reduces |S| (Axiom, Disprove, Prove), therefore the system is terminating.

B.4 Soundness of the TRS

For each inclusion checking rules, if inclusions in their premises are valid, and
their side conditions are satisfied, then goal inclusions in their conclusions are valid.

Proof. By case analysis for each inclusion checking rules:

1. Axiom Rules:

Γ ` π ∧ ⊥ v Φ [Bot-LHS ]
Φ 6= π ∧ ⊥

Γ ` Φ 6v π ∧ ⊥
[Bot-RHS ]

- It is easy to verify that antecedent of goal entailments in the rule [Bot-LHS ] is
unsatisfiable. Therefore, these entailments are evidently valid.
- It is easy to verify that consequent of goal entailments in the rule [Bot-RHS ] is
unsatisfiable. Therefore, these entailments are evidently invalid.

2. Disprove Rules:

δπ1(θ1) ∧ ¬δπ2(θ2)
Γ ` π1 ∧ θ1 6v π2 ∧ θ2

[DISPROVE ]
π1 ⇒ π2 fstπ1(θ1) = {}

Γ ` π1 ∧ θ1 v π2 ∧ θ2
[PROVE ]
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- It’s straightforward to prove soundness of the rule [DISPROVE ], Given that θ1 is
nullable, while θ2 is not nullable, thus clearly the antecedent contains more event
traces than the consequent. Therefore, these entailments are evidently invalid.

3. Prove Rules:

[REOCCUR]
(π1∧θ1 v π3∧θ3) ∈ Γ (π3∧θ3 v π4∧θ4) ∈ Γ (π4∧θ4 v π2∧θ2) ∈ Γ

Γ ` π1 ∧ θ1 v π2 ∧ θ2

- To prove soundness of the rule [PROVE ], we consider an arbitrary model, d, E , ϕ
such that: d, E , ϕ |= π1 ∧ θ1. Given the side conditions from the promises, we get
d, E , ϕ |= π2 ∧ θ2. When the fst set of θ1 is empty, θ1 is possible ⊥ or ε and π2 ∧ θ2

is nullable. For both cases, the inclusion is valid.

- To prove soundness of the rule [REOCCUR], we consider an arbitrary model, d, E , ϕ
such that: d, E , ϕ |= π1 ∧ θ1. Given the promises that π1 ∧ θ1 v π3 ∧ θ3, we get
d, E , ϕ |= π3 ∧ θ3; Given the premise that there exists a hypothesis π3 ∧ θ3 v π4 ∧ θ4,
we get d, E , ϕ |= π4 ∧ θ4; Given the promises that π4 ∧ θ4 v π2 ∧ θ2,
we get d, E , ϕ |= π2 ∧ θ2. Therefore, the inclusion is valid.

4. Unfolding Rule:

[UNFOLD]
H=fstπ1(θ1) Γ′=Γ, (π1∧θ1 v π2∧θ2) ∀h∈H. (Γ′ ` Dπ1

h (θ1) v Dπ2
h (θ2))

Γ ` π1 ∧ θ1 v π2 ∧ θ2

- To prove soundness of [UNFOLD], we consider an arbitrary model, d1, E1, ϕ1 and
d2, E2, ϕ2 such that: d1, E1, ϕ1 |= π1 ∧ θ1 and d2, E2, ϕ2 |= π2 ∧ θ2. For an arbitrary
event h, let d′1, E ′1, ϕ1

′ |= h-1Jπ1 ∧ θ1K; and d′2, E ′2, ϕ2
′ |= h-1Jπ2 ∧ θ2K.

Case 1), h /∈ F , d′1, ϕ1
′ |= ⊥, thus automatically d′1, ϕ1

′ |= Dπ2
h (θ2);

Case 2), h ∈ F , given that inclusions in the rule’s premise is valid,
then d′1, E ′1, ϕ1

′ |= Dπ2
h (θ2).

By Definition 20, since for all h, Dπ1
h (θ1) v Dπ2

h (θ2), the conclusion is valid.
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All the inclusion checking rules used in the TRS are sound, therefore the TRS is
sound.
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Appendix C

Appendix for ContEffs

C.1 The Rest Reasoning Rules for Handlers

Here are the rest rules for "Reasoning in the Handling Program".

[Handle-Perform]
∀(π, θ, v) ∈ Φ.l=A(v) and θ′=θ · l!

(x 7→l?)::E ,H,D `h 〈(π, θ′, v)〉 e 〈Φ′′〉
E ,H,D `h 〈Φ〉 perform A(v, λx⇒e) 〈∨ Φ′′〉

[Handle-Let]
(x 7→v)::E ,H,D `h 〈Φ〉 e 〈Φ〉
E ,H,D `h 〈Φ〉 let x=v in e 〈Φ〉

[Handle-If -Else]
E ,H,D `h 〈Φ∧(v=true〉 e1 〈Φ1〉
E ,H,D `h 〈Φ∧(v=false〉 e2 〈Φ2〉

E ,H,D `h 〈Φ〉 if v then e1 else e2 〈Φ1〉 ∪ 〈Φ2〉

[Handle-App]
E(v1)=l? θ′=l?(v2)
E ,H,D `h 〈Φ〉 v1v2 〈Φ · θ′〉

E(v1)=τ mn (τ v) [req Φpre ens Φpost] {e} Φ v Φpre[v2/v]
E ,H,D `h 〈Φ〉 v1v2 〈Φ · Φpost[v2/v]〉 [Handle-Call]

E ` 〈(True, ε, ())〉 e 〈Φ′〉 E , h `fix Φ′ · ♥ Φfix

E ,H,D `h 〈Φ〉 match e with h 〈Φ · Φfix〉
[Handle-Match]

C.1.1 A Demonstration Example

We use Figure C.1 to demonstrate the effects’ handling process. Suppose the
final effects of f () is Foo!.Foo?().Goo!.Goo()?. By applying the rules presented
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1 let handling f

2 /*@ req: _^* @*/

3 /*@ ens: Foo.BefF!.Goo.Goo.Done!.AftG!.AftF! @*/

4 = match f () with (* Foo!.Foo?().Goo!.Goo()? *)

5 | _ -> perform Done

6 | effect Foo k -> perform BefF;

7 continue k (fun () -> perform Goo ());

8 perform AftF

9 | effect Goo k -> continue k (fun ()->()); perform AftG

Figure C.1: A contrived example to demonstrate the non-local control flow mecha-
nism and the challenges of reasoning about it.

in the fixpoint computation, we are able to get the final trace Foo.BefF!.Goo.Goo.
Done!.AftG!.AftF!, given the presented handler.

C.1.2 Soundness of the Reasoning in the Handler

Lemma 4 (Soundness of the reasoning of the handling program).

∀e, ∀E ,∀H, ∀D,∀Φ if E ,H,D `h 〈Φ〉 e 〈Φ′〉, is valid, then: ∀(π, θ, v) ∈ Φ,

when e=let x=κ v′ in e′ (one shot triggered),

all the l? are substituted by v′ in D, and

‖E , θ,H‖ `fix (π,D, v) Φ′ is valid,

such that E ,H,D `h 〈Φ′〉 e 〈Φ′′〉 is valid; (a)

when e=v′ (zero-shot), v is updated to v′, and D is left unhandled; (b)

otherwise, E ` 〈Φ〉 e 〈Φ′〉 is valid. (c)

Proof. By induction on the structure of e.

- Where e=let x=κ v′ in e′, by applying the rule [Handle-Resume], the conclusion
of case (a) is satisfied.
- Where e=v′, by applying [Handle-Value], the conclusion of case (b) is satisfied.

- For the rest cases, handled by the rules [Handle-Perform], [Handle-If -Else], [Handle-
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Let], [Handle-App], [Handle-Call], and [Handle-Match], which work exactly like rules
[FV -Perform], [FV -If -Else], [FV -Let], [FV -App], [FV -Call], and [FV -Match] respec-
tively; therefore the conclusion of case (c) is satisfied.

C.2 Soundness of the Fixpoint Computation

Given an effect Φ, with the environment E and handler H. Φfix is the updated
version of Φ, where all Φ’s placeholders – which can be handled by H – are handled
as H defines.

Formally,∀E ,∀H,∀Φ, if E ,H `fix Φ Φfix is valid, then:

when Φ is a set,Φfix={‖E , ε,H‖ `fix (π, θ, v) Φ′ | (π, θ, v) ∈ Φ}; (1)

when Φ=(π, θ, v), α=fst(θ), θhis is the handled trace,

if α=♥:([x 7→v])::E`〈(π, θhis, v)〉eret〈Φ′〉 is valid, given (return x7→eret)∈H; (2)

if α∈{ev, l!, l?(v′)} (l/∈H) : ‖E , θhis · α,H‖ `fix (π,Dα(θ), v) Φ′ is valid; (3)

if α∈{l!} (l∈H) : (x 7→v)::E ,H,Dα(θ) `h 〈(π, θhis · l, v)〉 e 〈Φ′〉 is valid,

given (effect A(x, κ) 7→ e)∈H. (4)

Proof. By case analysis on the rules for fixpoint computation, we prove the soundness
of the presented rules.
- For [Fix-Disj], where Φ is a set, by applying the rule itself, the conclusion of case
(1) is satisfied.
- For [Fix-Normal], where α=♥, by applying the rule itself, the conclusion of case
(2) is satisfied.
- For [Fix-Unfold-Skip], where α∈{ev, l!, l?(v′)} (l/∈H), by applying the rule itself,
the conclusion of case (3) is satisfied.
- For [Fix-Unfold-Handle], where α∈{l!} (l∈H), by applying the rule itself and
Lemma 4, the conclusion of case (4) is satisfied.
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C.3 Termination Proof of the TRS

Proof. Let Set[I] be a data structure representing the sets of entailments. We use S
to denote the inclusions to be proved, and H to accumulate "inductive hypotheses",
i.e., S,H ∈ Set[I]. Consider the following partial ordering � on pairs 〈S,H〉:

〈S1, H1〉 � 〈S2, H2〉 iff |H1| < |H2| ∨ (|H1| = |H2| ∧ |S1| > |S2|).

where |X| stands for the cardinality of a set X. Let ⇒ denote the rewrite relation,
then ⇒∗ denotes its reflexive transitive closure.

For any given S0, H0, this ordering is well founded on the set of pairs
{〈S,H〉|〈S0, H0〉 ⇒∗ 〈S,H〉}, due to the fact that H is a subset of the finite set of
pairs of all possible derivatives in initial inclusion.

Rewriting rules in our TRS (given in subsection 6.4.1) transform current pairs
〈S,H〉 to new pairs 〈S ′, H ′〉. And each rule either increases |H| (Unfold) or, otherwise,
reduces |S| (Axioms, Dis-Nullable, Dis-Infinitable, Reoccur), therefore the system is
terminating.

C.4 Soundness Proof of the TRS

Proof. For each rewriting rules, if inclusions in their premises are valid, then goal
inclusions in their conclusions are valid.

1. Axiom Rules:

Ω ` (π1,⊥) v (π2, θ)
[Bot-LHS ]

θ 6= ⊥
Ω ` (π1, θ) 6v (π2,⊥) [Bot-RHS ]

- It is easy to verify that antecedent of goal entailments in the rule [Bot-LHS ] is
unsatisfiable. Therefore, these entailments are evidently valid.
- It is easy to verify that consequent of goal entailments in the rule [Bot-RHS ] is
unsatisfiable. Therefore, these entailments are evidently invalid.
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2. Disprove Rules:

δ(θ1) ∧ ¬δ(θ2)
Ω ` (π1, θ1) 6v (π2, θ2) [Dis-Nullable]

κ(θ1) ∧ ¬κ(θ2)
Ω ` (π1, θ1) 6v (π2, θ2) [Dis-Infinitable]

- It’s straightforward to prove soundness of the rule [Dis-Nullable], Given that
θ1 is possibly empty trace, while π2 ∧ θ2 contains definitely no empty trace, thus
clearly the antecedent contains more event traces than the consequent. Therefore,
these entailments are evidently invalid.
- It’s straightforward to prove soundness of the rule [Dis-Infinitable], Given that
θ1 is possibly infinite trace, while π2 ∧ θ2 contains definitely no infinite trace, thus
clearly the antecedent contains more event traces than the consequent. Therefore,
these entailments are evidently invalid.

3. Prove Rules:

(π1, θ1)v(π3, θ3) ∈ Ω (π3, θ3)v(π4, θ4) ∈ Ω (π4, θ4)v(π2, θ2) ∈ Ω
Ω ` (π1, θ1) v (π2, θ2) [Reoccur]

- To prove soundness of the rule [Reoccur], we consider an arbitrary model,
E , ϕ such that: E , ϕ |= π1 ∧ θ1. Given the premise that θ1 v π3 ∧ θ3, we get
E , ϕ |= π3 ∧ θ3; Given the premise that there exists a hypothesis π3 ∧ θ3 v π4 ∧ θ4,
we get E , ϕ |= θ4; Given the premise that π4 ∧ θ4 v π2 ∧ θ2, we get E , ϕ |= π2 ∧ θ2.
Therefore, the entailment is valid.

4. Unfolding Rule:

F = fst(θ1) π1⇒π2 ∀α ∈ F. (θ1vθ2) :: Ω ` Dα(θ1) v Dα(θ2)
Ω ` (π1, θ1) v (π2, θ2) [Unfold]

- To prove soundness of the rule [Unfold], we consider an arbitrary model, E1, ϕ1

and E2, ϕ2 such that: E1, ϕ1 |= θ1 and E2, ϕ2 |= π2 ∧ θ2. For an arbitrary event α, let
E ′1, ϕ1

′ |= α-1Jθ1K; and E ′2, ϕ2
′ |= α-1Jπ2 ∧ θ2K.

Case 1), α /∈ F , E ′1, ϕ1
′ |= ⊥, thus automatically E ′1, ϕ1

′ |= π2 ∧Dα(θ2);
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Case 2), α ∈ F , given that inclusions in the rule’ premise is valid, then E ′1, ϕ1
′ |=

π2 ∧Dα(θ2).

By Definition 13, since for all α, π1∧Dα(θ1) v π2∧Dα(θ2), the conclusion is valid.

All the rewriting rules used in the TRS are sound, therefore the TRS is sound.
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