
Yahui Song and Wei-Ngan Chin

School of Computing, NUS

@Computing Research Week 2021

Automated Timed Temporal Verification for

a Mixed Sync-Async Concurrency Paradigm

Yahui Song and Wei-Ngan Chin

School of Computing, NUS

@Computing Research Week 2021

Automated Timed Temporal Verification for

a Mixed Sync-Async Concurrency Paradigm

Hiphop.js = Esterel + JS

Verification Overview

Source code, P Specification, S

Verification Overview

Source code, P Specification, S

Actual behaviors, B

Inference

Verification Overview

Source code, P Specification, S

Actual behaviors, B Prover, B ⊆ S

Inference

Verification Overview

Source code, P Specification, S

Actual behaviors, B

Inference True

Unknown

False
Prover, B ⊆ S

Automated Verification Overview

Source code, P Specification, S

Actual behaviors, B

Inference True

Unknown

Input

Output

Prover, B ⊆ S
False

Our Work & Contributions

Hiphop.js, P Timed Effects, S

Actual behaviors, B

axiomatic
semantics

True

Unknown

False

Input

Output1.2.

3.

4.
Term writing system, B ⊆ S

1. Timed Synchronous Effects

"The event will be triggered no later than 1000 milliseconds"

1. Timed Synchronous Effects

"The event will be triggered no later than 1000 or t milliseconds"

1. Timed Synchronous Effects

• Extends Synchronous Kleene Algebra with the operator #.

• Defines a set of exact timed transition systems.

"The event will be triggered no later than 1000 or t milliseconds"

2. Computation Models

i. Transformational programs compute output values from input values.

This is the domain of classical sequential programming languages.

ii. Asynchronous concurrent programs perform interactions between their

components using typically network-based communication.

iii. Synchronous reactive programs react to external events in a

conceptually instantaneous and deterministic way.

i. Transformational programs compute output values from input values.

This is the domain of classical sequential programming languages.

ii. Asynchronous concurrent programs perform interactions between their

components using typically network-based communication. (JS)

iii. Synchronous reactive programs react to external events in a

conceptually instantaneous and deterministic way. (Esterel)

Hiphop.js

2. Hiphop.js = Esterel + JS

2. Hiphop.js = Esterel + JS

{A} · {B} · {C} || {W} · {X} · {Y} · {Z} -> {A,W} · {B,X} · {C,Y} · {Z}

{A} · {B} · {C} · {D} || {E} · C? · {F} -> {A, E} · {B} · {C} · {D, F}

{A} · {B} · {D} || {E} · C? · {F} -> {A, E} · {B} · {D} · C? · {F}

“Mixed Sync-Async Concurrency Paradigm”

2. Hiphop.js = Esterel + JS

{A} · {B} · {C} || {W} · {X} · {Y} · {Z} -> {A,W} · {B,X} · {C,Y} · {Z}

{A} · {B} · {C} · {D} || {E} · C? · {F} -> {A, E} · {B} · {C} · {D, F}

{A} · {B} · {D} || {E} · C? · {F} -> {A, E} · {B} · {D} · C? · {F}

“Mixed Sync-Async Concurrency Paradigm”

JS: Broken chain promises.

3. Effects Inference

3. Effects Inference Add the events
into the effect state

3. Effects Inference Add the events
into the effect state

Check if the current effect
satisfies the callee’s precondition

3. Effects Inference Add the events
into the effect state

Check if the current effect
satisfies the callee’s precondition

Checks if the final effects satisfy the
Program’s postcondition

4. Language Inclusion (TRS)

4. Language Inclusion (TRS)

4. Language Inclusion (TRS)

4. Language Inclusion (TRS)

4. Language Inclusion (TRS)

Implementation and Evaluation

• An open-sourced prototype system using Ocaml.

• Benchmarks, 155 programs (10~300 lines) with manually annotated

specs:

1. CEC: It is an open-source compiler which provides Esterel programs for testing.

2. Hiphop.js: It is a DSL for JavaScript.

• Proven the back-end solver (inclusion checker) sound and complete.

Summary

• Timed Synchronous Effects (TSE): goes beyond timed automata;

• Automated Forward Verifier: an axiomatic semantics for HipHop.js;

• An Efficient Term Rewriting System (TRS): the back-end prover for

TSE language inclusions, proven sound and complete;

• Implementation and Evaluation;

Thanks a lot for your attention!

