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Automated Verification Overview
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Our Work & Contributions
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1. Timed Synchronous Effects

• Extends Synchronous Kleene Algebra with the operator #. 

• Defines a set of exact timed transition systems.

"The event will be triggered no later than 1000 or t milliseconds" 



2. Computation Models

i. Transformational programs compute output values from input values. 

This is the domain of classical sequential programming languages. 

ii. Asynchronous concurrent programs perform interactions between their 

components using typically network-based communication. 

iii. Synchronous reactive programs react to external events in a 

conceptually instantaneous and deterministic way. 



i. Transformational programs compute output values from input values. 

This is the domain of classical sequential programming languages. 

ii. Asynchronous concurrent programs perform interactions between their 

components using typically network-based communication.    (JS)

iii. Synchronous reactive programs react to external events in a 

conceptually instantaneous and deterministic way.                    (Esterel)
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{A} · {B} · {D} || {E} · C? · {F}      -> {A, E} · {B} · {D} · C? · {F} 

“Mixed Sync-Async Concurrency Paradigm”

JS: Broken chain promises.
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3. Effects Inference Add the events 
into the effect state

Check if the current effect
satisfies the callee’s precondition

Checks if the final effects satisfy the 
Program’s postcondition 
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Implementation and Evaluation 

• An open-sourced prototype system using Ocaml.

• Benchmarks, 155 programs (10~300 lines) with manually annotated 

specs:

1. CEC: It is an open-source compiler which provides Esterel programs for testing. 

2. Hiphop.js: It is a DSL for JavaScript. 

• Proven the back-end solver (inclusion checker) sound and complete. 



Summary

• Timed Synchronous Effects (TSE): goes beyond timed automata;

• Automated Forward Verifier: an axiomatic semantics for HipHop.js;

• An Efficient Term Rewriting System (TRS): the back-end prover for 

TSE language inclusions, proven sound and complete; 

• Implementation and Evaluation; 

Thanks a lot for your attention! 


