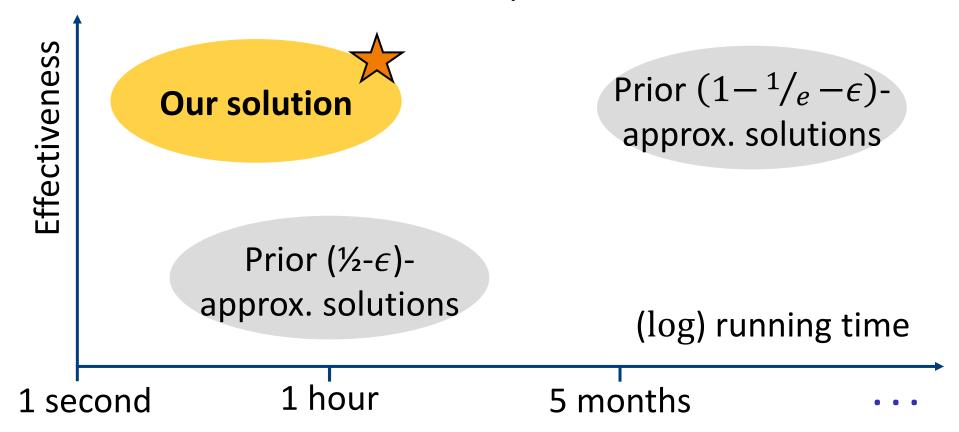
Efficient and Effective Algorithms for A Family of Influence Maximization Problems with A Matroid Constraint

[Research track – Social Networks]

Yiqian Huang, Shiqi Zhang, Laks V.S. Lakshmanan, Wenqing Lin, Xiaokui Xiao, Bo Tang

TL; DR

- We study influence maximization problems with a matroid constraint
- We give a **fast** solution with a $(1 1/e \epsilon)$ -approximation



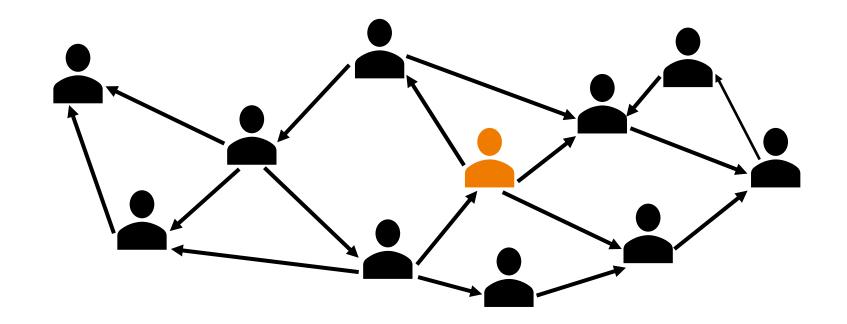
Roadmap

- Influence Maximization (IM)
- Why matroid constraints
- Our idea & guarantees
- Experiments

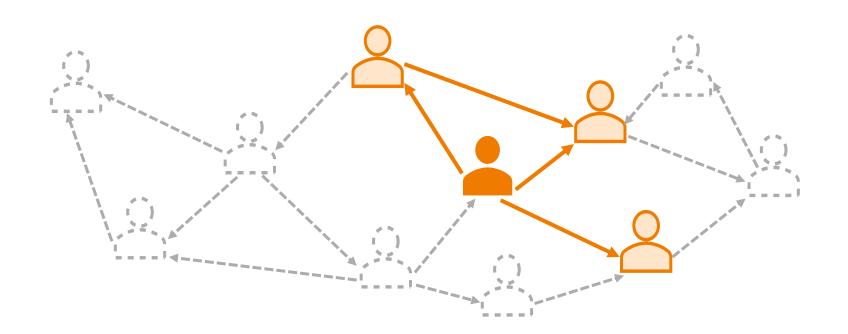
Roadmap

- Influence Maximization (IM)
- Why matroid constraints
- Our idea & guarantees
- Experiments

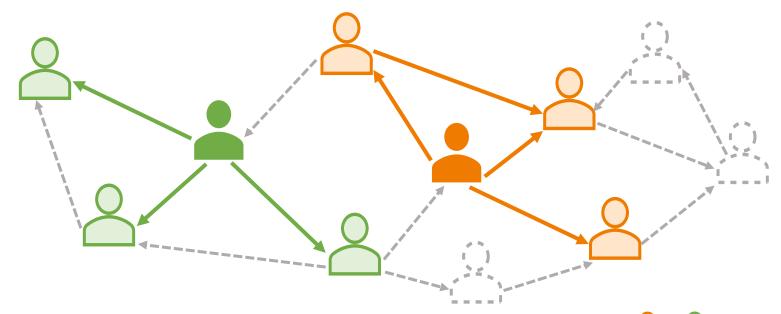
• In a social network, each user (say 🔔) has influence



- In a social network, each user (say 2) has influence
- Think of the influence as a (random) set of users they can reach (i.e., $\frac{2}{2}$)



- In a social network, each user (say 🔔) has influence
- Think of the influence as a (random) set of users they can reach (i.e., $\frac{2}{2}$)
- IM aims to select k users to maximize their joint influence



Example (k = 2; result of selecting

- In a social network, each user (say 2) has influence
- Think of the influence as a (random) set of users they can reach (i.e., $\frac{2}{8}$)
- IM aims to select k users to maximize their joint influence
- Applied in viral marketing, recommendation, power grids management, etc.

- In a social network, each user (say 2) has influence
- Think of the influence as a (random) set of users they can reach (i.e., $\frac{2}{2}$)
- IM aims to select k users to maximize their joint influence
- Applied in viral marketing, recommendation, power grids management, etc.
- Example (viral marketing with ad promotion):
 - = TikTok influencers who we want to endorse an ad
 - = Others who will watch the ad (the more, the better for us!)
 - k = our budget for launching the campaign

Roadmap

- Influence Maximization (IM)
- Why matroid constraints
- Our idea & guarantees
- Experiments

• In (classical) IM, we select a single set of k users

- In (classical) IM, we select a single set of k users
- Real-world scenarios often need multiple such sets

- In (classical) IM, we select a single set of k users
- Real-world scenarios often need multiple such sets
- A matroid (U, \mathbb{I}) can model constraints across them

Example 1 (Classical IM):

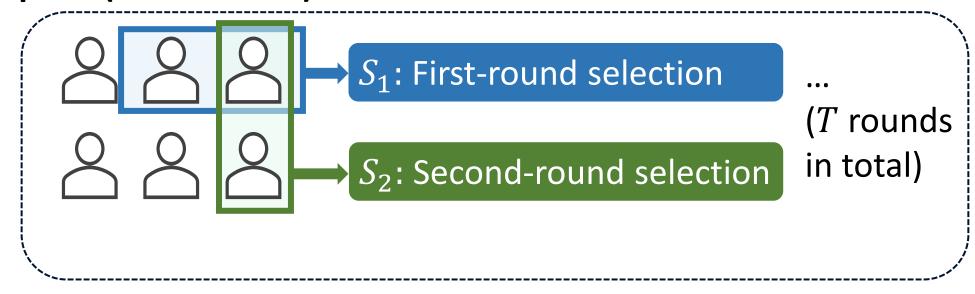


A uniform matroid (U, \mathbb{I}) specifies:

U: all users

 \mathbb{I} : $|S| \leq k$ (at most k users)

• Example 2 (Multi-round):

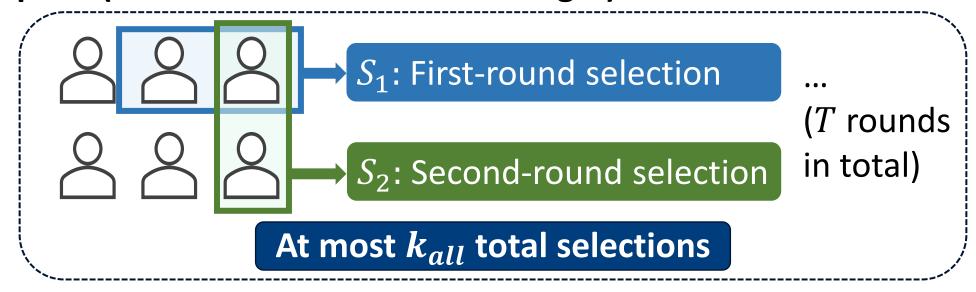


A partition matroid (U, \mathbb{I}) specifies:

U: all users \times [T rounds] \mathbb{I} : $\forall i$, $|S_i| \leq k_i$ (at most k_i users in round i)

VLDB 2025, London

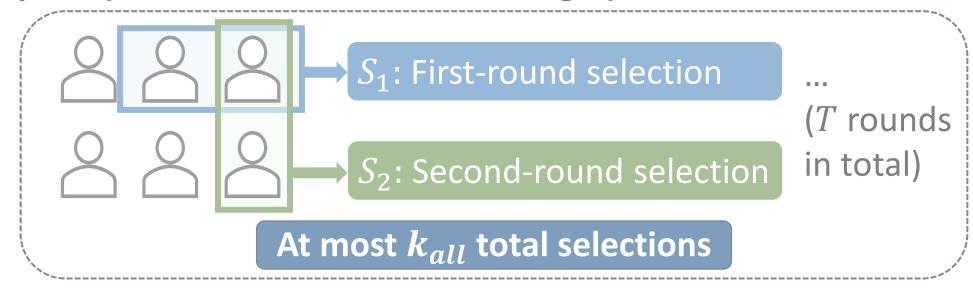
Example 3 (Multi-round + an overall budget):



A (general) matroid (U, \mathbb{I}) specifies:

U: all users \times [T rounds] \mathbb{I} : $\forall i, |S_i| \leq k_i$ and $\sum_{i=1}^{T} |S_i| \leq k_{all}$

Example 3 (Multi-round + an overall budget):



A (general) matroid (U, \mathbb{I}) specifies:

U: all users \times T rounds \mathbb{I} : $\forall i, |S_i| \leq k_i$ and $\sum_{i=1}^T |S_i| \leq k_{all}$

Problem definition:

Maximize $\sigma(S)$ (expected influence) s.t. S ⊆ U, S ∈ I.

Roadmap

- Influence Maximization (IM)
- Why matroid constraints
- Our idea & guarantees
- Experiments

TL; DR (Recap)

- We study influence maximization problems with a matroid constraint
- We give a **fast** solution with a $(1 1/e \epsilon)$ -approximation

Let's get into some math.

Recap of Existing Results

(1) This problem is an instance of **monotone submodular maximization** under a matroid constraint (thus NP-Hard)

Recap of Existing Results

- (1) This problem is an instance of monotone submodular maximization under a matroid constraint (thus NP-Hard)
- (2) Existing $(1 1/e \epsilon)$ -approximation algorithms adopt hill-climbing on the following multilinear extension F of $\sigma(\cdot)$:

$$F([x_1 \dots x_{|U|}]) = \sum_{S \subseteq U} \prod_{i \in S} x_i \prod_{j \notin S} (1 - x_j) \cdot \sigma(S).$$

VLDB 2025, London

Recap of Existing Results

- (1) This problem is an instance of monotone submodular maximization under a matroid constraint (thus NP-Hard)
- (2) Existing $(1 1/e \epsilon)$ -approximation algorithms adopt hill-climbing on the following multilinear extension F of $\sigma(\cdot)$:

$$F([x_1 \dots x_{|U|}]) = \sum_{S \subseteq U} \prod_{i \in S} x_i \prod_{j \notin S} (1 - x_j) \cdot \sigma(S)$$

• Prior work (Calinescu et al. SIAM J. Comput.'11; Badanidiyuru et al. SODA'14) estimates $F([x_1 \dots x_{|U|}])$ by sampling, as it involves all $2^{|U|}$ possible S

Gruia Calinescu, Chandra Chekuri, Martin Pal, and Jan Vondrák. 2011. Maximizing a monotone submodular function subject to a matroid constraint. SIAM J. Comput. 40, 6 (2011), 1740–1766.

Ashwinkumar Badanidiyuru and Jan Vondrák. 2014. Fast algorithms for maximizing submodular functions. In SODA. 1497–1514.

Our Idea & Guarantees

(1) Adapt the previous approach (RR sets) to rewrite $\sigma(S)$ to set cover:

$$\sigma(S) \approx C \cdot \sum_{R} \mathbf{1} \{S \cap R \neq \emptyset\}$$
 (R denotes RR set; C is constant)

(2) Hill-climbing on $F(\cdot)$, with **fast & accurate assessment of its value.**

How?

Our Idea & Guarantees

(1) Adapt the previous approach (RR sets) to rewrite $\sigma(S)$ to set cover:

$$\sigma(S) \approx C \cdot \sum_{R} \mathbf{1} \{S \cap R \neq \emptyset\}$$
 (R denotes RR set; C is constant)

(2) Hill-climbing on $F(\cdot)$, with fast & accurate assessment of its value.

How? Plug the set cover into $F(\cdot)$:

$$F([x_1 \dots x_{|U|}]) \approx C \cdot \sum_{R} \sum_{S \subseteq U} \prod_{i \in S} x_i \prod_{j \notin S} (1 - x_j) \mathbf{1} \{S \cap R \neq \emptyset\}.$$

Observation: $\mathbf{\Phi} = (1 - \prod_{i \in R} (1 - x_i))$ (a computable form).

Our Idea & Guarantees

- Example: Multi-Round IM (n users; T rounds in total, k users per round)
- Approximating $\sigma(\cdot)$ needs $L = \sum_{R} |R|$ time in total (Tang et al. SIGMOD'14)

Algorithm	Time Complexity	Approximation
Calinescu et al. (SIAM J. Comput.'11)	$O(n^7 \cdot L)$	
Badanidiyuru et al. (SODA'14)	$O(nkT \cdot \epsilon^{-4} \cdot L)$	$1-1/e-\epsilon$
Our algorithm (AMP)	$O(k \cdot \epsilon^{-1} \cdot L)$	

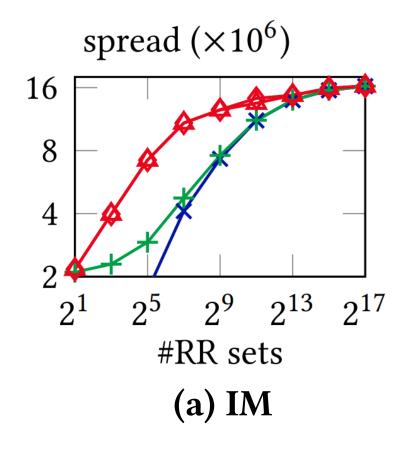
Tang Youze, Xiaokui Xiao, and Yanchen Shi. 2014. Influence maximization: Near-optimal time complexity meets practical efficiency. SIGMOD) Q (>

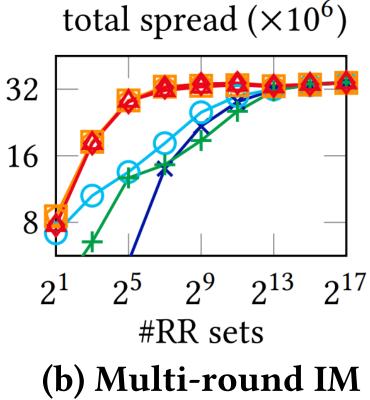
Roadmap

- Influence Maximization (IM)
- Why matroid constraints
- Our idea & guarantees
- Experiments

Experiments

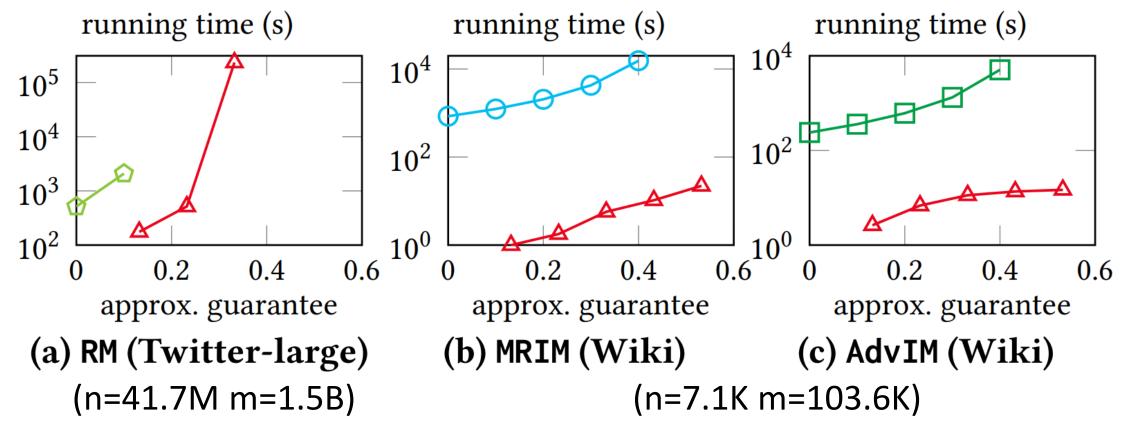
- Offline experiment: 7 public datasets and 4 problem instances
- Our solution **AMP** (main algorithm *given RR sets;* $red \triangle \& orange \square$):





Experiments

- Offline experiment: 7 public datasets and 4 problem instances
- Our solution **RAMP** (RR set generation + main algorithm; $red\triangle$):



Experiments

- Online deployment: a Tencent game
- Task: recommend in-game products (maps) to each user
- Scale: 0.7 million users and 400 maps

Metric: Increase in engaged user—map pairs (vs. control group, $K=10^3$)

Algorithm	RM-A	RAMP (ours)
Δ of pairs	20K	160K

Thanks!

Our paper

Definition Of Matroid

- A matroid is a pair (U, \mathbb{I}) where U is a finite set and \mathbb{I} is a collection of subsets of U satisfying the following axioms:
- 1. $\mathbb{I} \neq \emptyset$
- 2. If $I \in \mathbb{I}$ and $J \subseteq I$, then $J \in \mathbb{I}$
- 3. If $I, J \in \mathbb{I}$ and |I| < |J|, then there exists $x \in J \setminus I$ such that $I \cup \{x\} \in \mathbb{I}$