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Abstract—We consider the problem of how to design and implement communication-efficient versions of parallel kernel support vector
machines, a widely used classifier in statistical machine learning, for distributed memory clusters and supercomputers. The main
computational bottleneck is the training phase, in which a statistical model is built from an input data set. Prior to our study, the parallel
isoefficiency of a state-of-the-art implementation scaled as W = Ω(P 3), where W is the problem size and P the number of
processors; this scaling is worse than even a one-dimensional block row dense matrix vector multiplication, which has W = Ω(P 2).
This study considers a series of algorithmic refinements, leading ultimately to a Communication-Avoiding SVM method that improves
the isoefficiency to nearly W = Ω(P ). We evaluate these methods on 96 to 1536 processors, and show average speedups of 3− 16×
(7× on average) over Dis-SMO, and a 95% weak-scaling efficiency on six real-world datasets, with only modest losses in overall
classification accuracy. The source code can be downloaded at [1].
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1 INTRODUCTION

This paper concerns the development of communication-
efficient algorithms and implementations of kernel support
vector machines (SVMs). The kernel SVM is a state-of-the-
art algorithm for statistical nonlinear classification prob-
lems [2], with numerous practical applications [3], [4], [5].
However, the method’s training phase greatly limits its
scalability on large-scale systems. For instance, the most
popular kernel SVM training algorithm, Sequential Minimal
Optimization (SMO), has very little locality and low arith-
metic intensity; we have observed that it might spend as
much as 70% of its execution time on network communica-
tion on modern HPC systems [6].

Intuitively, there are two reasons for SMO’s poor scaling
behavior [7]. The first reason is that the innermost loop
is like a large sparse-matrix-sparse-vector multiply, whose
parallel isoefficiency function scales like W = Ω(P 2). The
second reason is that SMO is an iterative algorithm, where
the number of iterations scales with the problem size. When
combined, these two reasons result in an isoefficiency of
W = Ω(P 3), meaning the method can only effectively use
3
√
W processors (refer to Section 5.4.2 of [8] for W and P ).

In this paper, we first evaluate distributed memory
implementations of three state-of-the-art SVM training al-
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gorithms: SMO [9], Cascade SVM [10], and Divide-and-
Conquer SVM (DC-SVM) [11]. Our implementations of the
latter two are the first-of-their-kind for distributed memory
systems, as far as we know. We then optimize these methods
through a series of techniques including: (1) developing a
Divide-and-Conquer Filter (DC-Filter) method, which com-
bines Cascade SVM with DC-SVM to balance accuracy and
performance; (2) designing a Clustering-Partition SVM (CP-
SVM) to improve the parallelism, reduce the communica-
tion, and improve accuracy relative to DC-Filter; and (3)
designing 3 versions of a Communication-Efficient SVM or
CE-SVM (BKM-SVM, FCFS-SVM, CA-SVM) that achieves
load-balance and significantly reduces the amount of inter-
node communication. Our contributions are:

(1) We convert a communication-intensive algorithm to
an embarrassingly-parallel algorithm by significantly reduc-
ing the amount of inter-node communication.

(2) CE-SVM achieves significant speedups over the orig-
inal algorithm with only small losses in accuracy on our test
sets. In this way, we manage to balance the speedup and
accuracy.

(3) We optimize the state-of-the-art training algorithms
step-by-step, which both points out the problems of the
existing approaches and suggests possible solutions.

For example, FCFS-SVM achieves 2-13× (6× on average)
speedups over distributed SMO algorithm with comparable
accuracies. The accuracy losses range from none to 1.1%
(0.47% on average). According to previous work by others,
such accuracy losses may be regarded as small and are
likely to be tolerable in practical applications. FCFS-SVM
improves the weak scaling efficiency from 7.9% to 39.4%
when we increase the number of processors from 96 to 1536
on NERSC’s Edison system [6].
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2 BACKGROUND AND RELATED WORK

SVMs have two major phases: training and prediction. The
training phase builds the model from a labeled input data
set, which the prediction phase uses to classify new data.
The training phase is the main limiter to scaling, both with
respect to increasing the training set size and increasing the
number of processors. By contrast, prediction is embarrass-
ingly parallel and fairly “cheap” per data point. Therefore,
this paper focuses on training, just like prior papers on
SVM-acceleration [9], [10], [12].

In terms of potential training algorithms, there are many
options. In this paper, we focus on a class of algorithms
we will call partitioned SMO algorithms. These algorithms
work essentially by partitioning the data set, building kernel
SVM models for each partition using SMO as a building
block, and then combining the models to derive a single
final model. In addition, they estimate model parameters
using iterative methods. We focus on two exemplars of
this class, Cascade SVM (§ 2.3) and Divide-and-Conquer SVM
(§ 2.4). We briefly survey alternative methods in § 2.5. Our
primary reason for excluding them in this study is that
they use very different approaches that are both complex
to reproduce and that do not permit the same kind of head-
to-head comparisons as we wish to consider here.

2.1 SVM Training and Prediction
We focus on two-class (binary-class) kernel SVMs, where
each data point has a binary label that we wish to predict.
Multi-class (3 or more classes) SVMs may be implemented
as several independent binary-class SVMs; a multi-class
SVM can be easily processed in parallel once its constituent
binary-class SVMs are available. The training data in an
SVM consists of m samples, where each sample is a pair
(Xi, yi) and i ∈ {1, 2, ...,m}. Each Xi is the i-th training
sample, represented as a vector of features. Each yi is the
i-th sample’s label; in the binary case, each yi has one of
two possible values, {−1, 1}. Mathematically, the kernel
SVM training is typically carried out in its dual formulation
where a set of coefficients αi (called Lagrange multipliers),
with each αi associated with a sample (Xi, yi), are found by
solving the following linearly-constrained convex Quadratic
Programming (QP) problem, eqns. (1–2):

Maximize: F (α) =

m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyjKi,j (1)

Subject to:
m∑
i=1

αiyi = 0 and 0 ≤ αi ≤ C,∀i ∈ {1, 2, ...,m}

(2)
Here, C is a regularization constant that attempts to balance
generality and accuracy; and Ki,j denotes the value of a
kernel function evaluated at a pair of samples, Xi and Xj .
(Typical kernels appear in Table 1.) The value C is chosen
by the user.

The training produces the vector of Lagrange multipli-
ers, [α1, α2, ..., αm]. The predicted label for a new sample,
X̂ , is computed by evaluating eqn. (3),

ŷ =

m∑
i=1

αiyiK(X̂,Xi) (3)

TABLE 1
Standard Kernel Functions

Linear K(Xi, Xj) = Xi
>Xj

Polynomial K(Xi, Xj) = (aXi
>Xj + r)d

Gaussian K(Xi, Xj) = exp(−γ||Xi −Xj ||2)

Sigmoid K(Xi, Xj) = tanh(aXi
>Xj + r)

In effect, eqn. (3) is the model learned during training. One
goal of SVM training is to produce a compact model, that is,
one whose α coefficients are sparse or mostly zero. The set
of samples with non-zero αi are called the support vectors.
Observe that only the samples with non-zero Lagrange
multipliers (αi 6= 0) can have an effect on the prediction
result.

It is worth noting that K(Xi, Xj) is (re)computed on
demand by all algorithms that use it, as opposed to comput-
ing all values once and storing them. The reason is that the
kernel matrix needsO(m2) memory, which is prohibitive for
real-world applications because m is usually much larger
than the sample dimension. For example, a 357 MB dataset
(520,000 × 90 matrix) [13] would generate a 2000 GB kernel
matrix. To clarify the notation, K(Xi, Xj) means the kernel
function that computes the kernel value of Xi and Xj . Ki,j

means the value at i-th row and j-column of kernel matrix
K , so we have Ki,j = K(Xi, Xj).

2.2 Sequential Minimal Optimization (SMO)
The most widely used kernel SVM training algorithm is
Platt’s Sequential Minimal Optimization (SMO) algorithm [9].
It is the basis for popular SVM libraries and tools, including
LIBSVM [14] and GPUSVM [15]. The overall structure of the
SMO algorithm appears in Alg. 1. In essence, it iteratively
evaluates the following formulae:

fi =

m∑
j=1

αjyjK(Xi, Xj)− yi (4)

f̂i = fi + ∆αhighyhighKhigh,i + ∆αlowylowKlow,i (5)

∆αlow =
ylow(bhigh − blow)

Khigh,high +Klow,low − 2Khigh,low
(6)

∆αhigh = −ylowyhigh∆αlow (7)

For a detailed performance bottleneck analysis of SMO, see
You et al. [16]. The most salient observations we can make
are that (a) the dominant update rule is eqn. (4), which is a
matrix-vector multiply (with kernel); and (b) the number of
iterations necessary for convergence will tend to scale with
the number of samples, m.

All of the algorithmic improvements in this paper start
essentially from SMO. In particular, we adopt the approach
of Cao et al. [12], who designed a parallel SMO implemen-
tation for distributed memory systems. As far as we know,
it is the best distributed SMO implementation so far. The
basic idea is to partition the data among nodes and launch
a big distributed SVM across those nodes. This means
all the nodes share one model during the training phase.
Their implementation fits within a map-reduce framework.
The two-level (“local” and “global”) map-reduce strategy
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of Catanzaro et al. can significantly reduce the amount
of communication [15]. However, Catanzaro et al target
single-node (single-GPU) systems, whereas we focus on
distributed memory scaling.

Algorithm 1: Sequential Minimal Optimization (SMO)
1 Input the samples Xi and labels yi, ∀i ∈ {1, 2, ...,m}.
2 αi = 0, fi = −yi, ∀i ∈ {1, 2, ...,m}.
3 bhigh = −1, high = min{i : yi = 1}
4 blow = 1, low = min{i : yi = −1}.
5 Update αhigh and αlow according to Equations (6) and (7).
6 Update fi according to Equation (5), ∀i ∈ {1, 2, ...,m}
7 Ihigh = {i : 0 < αi < C ∨ yi > 0, αi = 0 ∨ yi < 0, αi = C}
8 Ilow = {i : 0 < αi < C ∨ yi > 0, αi = C ∨ yi < 0, αi = 0}
9 high = arg min{fi : i ∈ Ihigh}

10 low = arg max{fi : i ∈ Ilow}
11 bhigh = min{fi : i ∈ Ihigh}, blow = max{fi : i ∈ Ilow}
12 Update αhigh and αlow according to Equations (6) and (7).
13 If blow > bhigh, then go to Step 6.

2.3 Cascade SVM

Cascade SVM is a multi-layer approach designed with dis-
tributed systems in mind [10]. As Fig. 1 illustrates, its basic
idea is to divide the SVM problem into P smaller SVM
sub-problems, and then use a kind of “reduction tree” to
re-combine these smaller SVM models into a single result.
The subproblems and combining steps could in principle
use any SVM training method, though in this paper we
consider those that use SMO. A Cascade SVM system with
P computing nodes has log(P ) + 1 layers. In the same way,
the whole training dataset (TD) is divided into P smaller
parts (TD1, TD2, ..., TDP ), each of which is processed by
one sub-SVM. The training process selects certain samples
(with non-zero Lagrange multiplier, i.e. αi) out of all the
samples. The set of support vectors, SV , is a subset of the
training dataset (SVi ⊆ TDi, i ∈ {1, 2, ..., P}). Each sub-
SVM can generate its own SV . For Cascade, only the SV
will be passed from the current layer to next layer. The αi
of each support vector will also be passed to the next layer
to provide a good initialization for the next layer, which can
significantly reduce the iterations for convergence. On the
next layer, any two consecutive SV sets (SVi and SVi+1)
will be combined into a new sub-training dataset. In this
way, there is only one sub-SVM on the (log(P ) + 1)-st layer.

2.4 Divide-and-Conquer SVM (DC-SVM)

DC-SVM is similar to Cascade SVM [11]. However, it differs
in two ways: (1) Cascade SVM partitions the training dataset
evenly on the first layer, while DC-SVM uses K-means
clustering to partition the dataset; and (2) Cascade SVM
only passes the set of support vectors from one layer to
the next, whereas DC-SVM passes all of the training dataset
from layer to layer. At the last layer of DC-SVM, a single
SVM operates on the whole training dataset.

K-means clustering: since K-means clustering is a criti-
cal sub-step for DC-SVM, we review it here. The objective
of K-means clustering is to partition a dataset TD into
k ∈ Z+ sub-datasets (TD1, TD2, ..., TDk), using a notion
of proximity based on Euclidean distance [17]. The value

Fig. 1. This figure is an illustration of Cascade SVM [10]. Different layers
have to be processed sequentially, i.e. layer i+1 can be processed after
layer i has been finished. The tasks in the same level can be processed
concurrently. If the result at the bottom layer is not good enough, the
user can distribute all the support vectors (SV15 in the figure) to all the
nodes and re-do the whole pass from the top layer and to the bottom
layer. However, for most applications, the result will not become better
after another Cascade pass. One pass is enough in most cases.

of k is chosen by the user. Each sub-dataset has a center
(CT1, CT2, ..., CTk). The center has the same structure as a
sample (i.e. n-dimensional vector). Sample X will belong to
TDi if CTi is the closest data center to X . In this work, k
is set to be the number of processors. A naive version of
K-means clustering appears in Alg. 2.

Algorithm 2: Naive K-means Clustering
1 Input the training samples Xi, i ∈ {1, 2, ...,m}.
2 Initialize data center CT1, CT2, ..., CTk randomly.
3 set δ = 0
4 For every i, set ci = argminj ||Xi − CTj ||.
5 If ci has been changed, δ = δ + 1

6 For every j, set CTj =
∑m

i=1 1{ci=j}Xi∑m
i=1 1{ci=j} , j ∈ {1, 2, ..., k}.

7 If δ/m > threshold, then go to Step 3.

2.5 Other methods
There are other potential algorithms for SVMs. One method
uses matrix factorization of the kernel matrix K [18]. An-
other class of methods relies on solving the QP problem
using an iteration structure that considers more than two
points at a time [19], [20]. Additionally, there are other
optimizations for serial approach [9], [21], [22] or parallel
approach on shared memory systems [15], [23]. All of these
approaches are hard to compare “head-to-head” against the
partitioned SMO schemes this paper considers, so we leave
such comparisons for future work.

3 RE-DESIGN DIVIDE-AND-CONQUER METHOD

3.1 Performance Modeling for Existing Methods
In this section, we will do performance modeling for the
three related methods mentioned in Section 2. The related
terms are in Table 2 and the proofs can be found in [7].
To evaluate the scalability, we refer to Iso-efficiency func-
tion (Section 5.4.2 of [8]), shown in Equation (8) where E
(E = T1/(pTp)) is the desired scaling efficiency (Specifically,
T1 = tcW where tc is the time per flop. In this paper, to
make it simple, we normalize so that tc = 1. In the same
way, ts and tw in Table 2 actually are ratios of communica-
tion time to flop time). To is the overall overhead, T commo is
the communication overhead, and T compo is the computation
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TABLE 2
Terms for Performance Modelling

m; n; P # samples; # features per sample; # nodes or processes
T1; Tp serial run time; parallel run time
ts; tw latency time for communication; per-word transfer time
Vk # SVs in kth Cascade layer, V1 = m

Lk maximal # iters of all nodes in kth Cascade layer
Pk # processes in kth Cascade layer
W ; To problem size in flops; parallel overhead (To = PTp −W )
s; I ; k # SVs; # SVM iters; # K-means iters

overhead. The minimum problem size W can usually be
obtained as a function of P by algebraic manipulations.
This function dictates the growth rate of W required to
keep the efficiency fixed as P increases. For example, the
Iso-efficiency function of 1D Mat-Vec-Mul is W = Ω(P 2),
and it is W = Ω(P ) for 2D Mat-Vec-Mul (Section 8.1 of [8],
W = n2 where n is the matrix dimension for Mat-Vec-Mul).
Mat-Vec-Mul is more scalable with 2-D partitioning because
it can deliver the same efficiency on more processors with
2-D partitioning (P = O(W )) than with 1-D partitioning
(P = O(

√
W )).

W =
E

1− E
To =

E

1− E
(T commo + T compo ) (8)

3.1.1 Distributed SMO (Dis-SMO)

Our Dis-SMO implementation is based on the idea of Cao’s
paper, we also include Catanzaro’s improvements in the
code. The serial runtime (T1) of a SMO iteration is 2mn
and its parallel runtime (Tp) per iteration is in Equation (9).
Based on the terms in Table 2, the parallel overhead (To) can
be obtained in Equation (10). The scaling model is in Table
4. This model is based on single-iteration SMO. However,
the model of the completely converged SMO algorithm
will be worse (i.e. the lower bound will be larger) because
the number of iterations is proportional to the number
of samples (Table 3). This will furthermore jeopardize the
scalability for large-scale computation.

TABLE 3
The number of iterations with different number of samples, epsilon and

forest are the test datasets

Samples 10k 20k 40k 80k 160k 320k
Iters (epsilon) 4682 8488 15065 26598 49048 90320
Iters (forest) 3057 6172 11495 22001 47892 103404

Tp = 14logP ts + [2nlogP + 4P 2]tw +
2mn+ 4m

P
+ 2P + n

(9)

To = 14PlogP ts+[2nP logP+4P 3]tw+4m+2P 2+nP (10)

TABLE 4
Scaling Comparison for Iso-efficiency Function

Method Communication Computation
1D Mat-Vec-Mul W = Ω(P 2) W = Θ(P 2)

2D Mat-Vec-Mul W = Ω(P ) W = Θ(P )

Distributed-SMO W = Ω(P 3) W = Ω(P 2)

Cascade W = Ω(P 3) W = O(
∑logP

k=1 nLkVk−12k)

DC-SVM W = Ω(P 3) W = O(
∑logP

k=1 nLkm2k)

3.1.2 Cascade and DC-SVM
The communication and computation Iso-efficiency func-
tions of Cascade are in Equation (11) and Equation (12)
respectively. Since V1+logP is the number of support vectors
of the whole system, we can get that V1+logP = Θ(m). On
the other hand, the number of training samples can not be
less than the number of nodes (i.e. m = Ω(P )), because we
can not keep all P nodes busy. That is V1+logP = Ω(P ).
Therefore, after substituting V1+logP by Ω(P ) in Equation
(11), we obtain that the lower bound of communication Iso-
efficiency function W = Ω(P 3). Because we can not predict
the number of support vectors and the number of iterations
on each level (i.e. Vk−1 and Lk in Equation (12)) beforehand,
we can only get the upper bound for the computation Iso-
efficiency function (Table 4). For DC-SVM, since the K-
means time is significantly less than the SVM time (Tables 9
to 14), we ignore the effect of K-means on the whole system
performance. Therefore, we get the Iso-efficiency function of
DC-SVM by replacing Vk of Cascade with m (Table 4).

W cascade,comm = Θ((

logP∑
k=2

n2kVk) + P 2V1+logP ) (11)

W cascade,comp = Θ(n(

1+logP∑
k=2

LkVk−12k − 2Im)) (12)

We compare with Mat-Vec-Mul, which is a typical
communication-intensive kernel. Actually, the scalability of
these three methods are even worse than 1D Mat-Vec-Mul,
which means we need to design a new algorithm to scale
up SVM on future exascale computing systems. Our scaling
results in Section 5 are in line with our analysis.

3.2 DC-Filter: Combination of Cascade and DC-SVM
From our experimental results, we observe that Cascade is
faster than Dis-SMO. However, the classification accuracy of
Cascade is worse. DC-SVM can obtain a higher classification
accuracy. Nevertheless, the algorithm becomes extremely
slow (Tables 9 to 14). The reason is that DC-SVM has to
pass all the samples layer-by-layer, and this significantly
increases the communication overhead. In addition, more
data on each node means the processors have to do more on-
chip communication and computation. Therefore, our first
design is to combine Cascade with DC-SVM. We refer to
this approach as Divide-and-Conquer Filter (DC-Filter).

Like DC-SVM, we apply K-means in DC-Filter to get a
better data partition, which can help to get a good clas-
sification accuracy [11]. It is worth noting that K-means
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itself does not significantly increase the computation and
communication overhead (Tables 9 to 14). For example, K-
means converges in 7 loops and only costs less than 0.1% of
the total runtime for processing the ijcnn dataset. However,
we need to redistribute the data after K-means, which may
increase the communication overhead. On the other hand,
we apply the filter function of Cascade in the combined
approach. On each layer, only the support vectors rather
than all the training samples will be sent to next layer, which
is like a filter since SV is a subset of the original training
dataset. The Lagrange multiplier of each support vector will
be sent with it to give a good initialization for next layer,
which can reduce the number of iterations for convergence
[10]. In our experiments, the speed and accuracy of DC-
Filter fall in between Cascade and DC-SVM, or perform
better than both of them. DC-Filter is a compromise between
these two existing approaches, which is our first attempt to
balance the accuracy and the speedup.

4 COMMUNICATION-EFFICIENT DESIGN

4.1 CP-SVM: Clustering-Partition SVM

The node management for Cascade, DC-SVM, and DC-
Filter are actually similar to each other (i.e. Fig. 1). Table
5 provides the detailed profiling result of a toy Cascade
example to show how they work. We can observe that only
27% (5.49/20.1) of the total time is spent on the top layer,
which makes full use of all the nodes. In fact, almost half
(9.69/20.1) of the total time is spent on the bottom layer,
which only uses one node. In this situation, the Cascade-
like approach does not perform well because the parallelism
in most of the algorithm is extremely low. The weighted
average number of nodes used is only 3.3 (obtained by
Equation (13)) for the example in Table 5. However, the
system actually occupies 8 nodes for the whole runtime.
Specifically, the parallelism is decreasing by a factor of 2
layer-by-layer. For some datasets (e.g. Table 10), the lower
level can be fast and converge within Θ(1) iterations. For
other datasets (e.g. Table 5), the lower level is extremely
slow and becomes the bottleneck of the runtime perfor-
mance. Therefore, we need to redesign the algorithm again
to make it highly parallel and make full use of all the
computing nodes.

∑1+logP
l=1 ((time of layer l)× (#nodes of layer l))∑1+logP

l=1 (time of layer l)
(13)

The analysis in this section is based on the Gaussian
kernel with γ > 0 because it is the most widely used case
[15]. Other cases can work in the same way with different
implementations. For any two training samples, their kernel
function value is close to zero (exp{−γ||Xi − Xj ||2} → 0)
when they are far away from each other in Euclidean
distance (||Xi −Xj ||2 → ∞). Therefore, for a given sample
X̂ , only the support vectors close to X̂ can have an effect
on the prediction result (Equation (3)) in the classification
process. Based on this idea, we can divide the training
dataset into P parts (TD1, TD2, ..., TDP ). We use K-means
to divide the initial dataset since K-means clustering is
based on Euclidean distance. After K-means clustering, each

TABLE 5
Profile of 8-node & 4-layer Cascade for a subset of ijcnn dataset

level 1st

node rank 1 2 3 4 5 6 7 8
samples 6000 6000 6000 6000 6000 6000 6000 6000
time: 5.49s 4.87 4.92 4.90 4.68 5.12 5.10 5.49 4.71
iter: 6168 5648 5712 5666 5415 5936 5904 6168 5453
SVs: 5532 746 715 717 718 686 707 721 699

level 2nd

node rank 1 3 5 7
samples 1461 1435 1393 1420
time: 1.58s 1.58 1.50 1.35 1.45
iter: 7485 7485 7211 6713 7035
SVs: 5050 1292 1263 1256 1239

level 3rd

node rank 1 5
samples 2555 2495
time: 3.34s 3.34 3.30
iter: 9081 8975 9081
SVs: 4699 2388 2311

level 4th

node rank 1
samples 4699
time: 9.69s 9.69
iter: 14052 14052
SVs: 4475 4475

sub-dataset will get its data center (CT1, CT2, ..., CTP ).
Then we launch P independent support vector machines
(SVM1, SV M2, ..., SVMP ) to process these P sub-datasets,
which is like the top layer of the DC-Filter algorithm.

After the training process, each sub-SVM will generate
its own model file (MF1,MF2, ...,MFP ). We can use these
model files independently for classification. For a given
sample X̂ , if its closest data center (in Euclidean distance)
is CTi, we will only use MFi to make a prediction for
X̂ because the support vectors in other model files have
little impact on the classification result. Fig. 2 is the general
flow of CP-SVM. CP-SVM is highly parallel because all the
sub-problems are independent of each other. The commu-
nication overhead of CP-SVM is from K-means clustering
and data distribution. CP-SVM generally is faster than the
previous algorithms and its accuracy is closer to the SMO
algorithm (Tables 9 to 14). However, in terms of scalability
and speed, it is still not good enough. It is worth noting
that K-means itself does not significantly increase the com-
putation and communication overhead. However, we need
to redistribute the data after K-means, which may increase
the communication overhead.

4.2 Communication-Efficient SVM
Based on the profiling result in Fig. 6, we can observe that
CP-SVM is not well load-balanced. The reason is that the
partitioning by K-means is irregular and imbalanced. For
example, processor 2 in Fig. 6 has to handle 35,137 samples
while processor 7 only needs to process 9,685 samples.
Therefore, we need to replace K-means with a better par-
titioning algorithm that balance the load while maintaining
accuracy. We design three versions of balanced partition-
ing algorithms and use them to build the communication-
efficient algorithms.
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Fig. 2. General Flow for CP-SVM. In the training part, different SVMs
process its own dataset independently. In the classification part, different
models can make the prediction independently.

4.2.1 First Come First Served (FCFS) SVM

The goal of FCFS is to assign an equal number of samples
m/P to each processor, where each sample is assigned to the
processor with the closest center that has not already been
assigned m/P samples. Centers are the locations of the first
particles randomly chosen and assigned to each processor.
(Other choices of centers are imaginable, such as doing K-
means; this is the BKM algorithm below.) The detailed FCFS
partitioning method is in Algorithm 3. Lines 1-4 of Algo-
rithm 3 is the initiation phase: we randomly pick P samples
from the dataset as the initial data centers. Lines 5-15 find
the center for each sample. Lines 7-13 find the best under-
loaded center for the i-th sample. Lines 16-22 recompute the
data center by averaging all the samples assigned to each
center. Recomputing the centers by averaging is optional
because it will not necessarily make the results better. Fig. 3
is an example of Algorithm 3. From Fig. 4 we can observe
that FCFS can partition the dataset in a balanced way. After
FCFS partitioning, all the nodes have the same number of
samples. Then the algorithm framework is the same as CP-
SVM.

4.2.2 Balanced K-means (BKM) SVM

As mentioned above, the objective of BKM partitioning
algorithm is to make the number of samples on each node
close to m/P (a machine node corresponds to a data cen-
ter) based on Euclidean distance. The basic idea of this
algorithm is to slightly rearrange the results of the original
K-means algorithm. We will keep moving samples from
the over-loaded centers to under-loaded centers till they
are balanced. The balanced K-means partitioning method is
detailed in Algorithm 4. Lines 1-4 of Algorithm 4 compute
the K-means clustering of all the inputs. In lines 6-8, we
calculate the Euclidean distance distance between every
sample and every center: dist[i][j] is the Euclidean distance
between i-th sample and j-th center. The variable balanced
is the number of samples every center should have in the
load-balanced situation. After the K-means clustering, some
centers will have more than balanced samples. In lines 9-
26, the algorithm will move some samples from the over-

Algorithm 3: First Come First Served Partitioning
Input:

SA[i] is the i-th sample
m is the number of samples
P is the number of clusters (processes)

Output:
MB[i] is the closest center to i-th sample
CT [i] is the center of i-th cluster
CS[i] is the size of i-th cluster

1 Randomly pick P samples from m samples (RS[1:P])
2 for i ∈ 1 : P do
3 CT [i] = RS[i]
4 CS[i] = 0

5 balanced = m/P
6 for i ∈ 1 : m do
7 mindis = inf
8 minind = 0
9 for j ∈ 1 : P do

10 dist = EuclideanDistance(SA[i], CT [j])
11 if dist < mindis and CS[j] < balanced then
12 mindis = dist
13 minind = j

14 CS[minind]++
15 MB[i] = minind

16 for i ∈ 1 : P do
17 CT [i] = 0

18 for i ∈ 1 : m do
19 j = MB[i]
20 CT [j] += SA[i]

21 for i ∈ 1 : P do
22 CT [i] = CT [i] / CS[i]

loaded centers to the under-loaded centers. For a given over-
loaded center, we will find the farthest sample (lines 13-16).
The id of the farthest sample is maxind. In lines 17-23, we
find the closest under-loaded center to sample maxind. In
lines 24-26, we move sample maxind from its over-loaded
center to the best under-loaded center. In lines 27-33, we
recompute the data center by averaging the all the samples
in a certain center. Recomputing the centers by averaging is
optional. Fig. 5 is an example of Algorithm 4. After the BKM
algorithm is finished and the load-balance is achieved, the
algorithm framework is the same as CP-SVM.

4.2.3 Communication-Avoiding SVM (CA-SVM)
For CA-SVM, the basic idea is to randomly divide the
original training dataset into P parts (TD1, TD2, ..., TDP )
evenly. After partitioning, each sub-dataset will generate
its own data center (CT1, CT2, ..., CTP ). For TDi (i ∈
{1, 2, ..., P}), its data center (i.e. CTi) is the average of
all the samples on node i. Then we launch P indepen-
dent support vector machines (SVM1, SV M2, ..., SVMP )
to process these P sub-datasets in parallel. After the train-
ing process, each sub-SVM will generate its own model
file (MF1,MF2, ...,MFP ). Like CP-SVM, we can use these
model files independently for classification. For any un-
known sample (X̂), if its closest data center is CTi, we will
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3.1 We have 8 samples (S0-S7) and want to
distribute them to 4 centers (C0-C3). In the
load balanced situation, each center has 2
samples.

3.2 The closest center to S0 is C2 (1<3<4<5).
Since C2 is under-loaded, we move S0 to C2.
After this, C2 is still under-loaded.

3.3 The closest center to S1 is C3 (0<1<2<7).
Since C3 is under-loaded, we move S1 to C3.
After this, C3 is still under-loaded.

3.4 The closest center to S2 is C0 (3<4<6<8).
Since C0 is under-loaded, we move S2 to C0.
After this, C0 is still under-loaded.

3.5 The closest center to S3 is C3 (1<3<4<8).
Since C3 is under-loaded, we move S3 to C3.
After this, C3 is balanced.

3.6 The closest center to S4 is C0 (2<4<6<7).
Since C0 is under-loaded, we move S4 to C0.
After this, C0 is balanced.

3.7 The closest center to S5 is C0 (0<1<3<7).
Since C0 and C3 are balanced, we move S5 to
C1. After this, C3 is balanced.

3.8 The closest center to S6 is C3 (4<6<8<9).
Since C3 is balanced, we move S6 to C2. After
this, C2 is balanced.

3.9 Since only C1 is under-loaded, we move
S7 to C1, which is the third choice. After this,
all the centers are balanced.

Fig. 3. This is an example of First Come First Served (FCFS) partitioning algorithm. Each figure is a distance matrix, which is referred as dist. For
example, dist[i][j] is the distance between i-th center and j-th sample. The color of the matrix in the first figure is the original color. If dist[i][j] has a
different color than the original one, then it means that j-th sample belongs to i-th center.

Fig. 4. The figure shows that the partitioning by K-means is imbalanced
while the partitioning by FCFS is balanced. Specifically, each node has
exactly 20,000 samples after FCFS partitioning. The test dataset is face
with 160,000 samples (361 features per sample). 8 nodes are used in
this test.

only useMFi to make prediction for X̂ . The communication
overheads of CP-SVM and BKM-SVM are from the data
transfer and distribution in K-means like partitioning algo-
rithm. The communication overhead of FCFS-SVM is from

the FCFS clustering method. In this new method, we replace
the K-means variants or FCFS with a no-communication
partition. Thus, we can also directly refer it as CA-SVM
(Communication-Avoiding SVM). However, this assumes
that originally the dataset is distributed to all the nodes.
To give a fair comparison, we implement two versions of
CA-SVM. casvm1 means that we put the initial dataset on
just one node, which needs communication to distribute
the dataset to different nodes. casvm2 means that we put
the initial dataset on different nodes, which needs no com-
munication (Fig. 8). All the results of CA-SVM in Section 5
are based on casvm2. CA-SVM may lose accuracy because
evenly-randomly dividing does not get the best partitioning
in terms of Euclidean distance. However, the results in
Tables 9 to 14 show that it achieves significant speedup with
comparable results.

The framework of CA-SVM is shown in Algorithm 5.
The prediction process may need a little communication.
However, both the data centers and test samples are pretty
small compared with the training samples. Also, the over-
head of single variable reduce operation is very low. This
communication will not bring about significant overhead.
On the other hand, the majority of SVM time is spent on the
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5.1 We have 8 samples (S0-S7) and want to
distribute them to 4 centers (C0-C3). In the
load balanced situation, each center has 2
samples.

5.2 After regular K-means, C0 has 4 samples
and C3 has 3 samples. We need to move
some samples from them to the under-loaded
centers.

5.3 We move S2 from C0 since it is the worst
sample of C0. The first choice is C3, but C3 is
overloaded. So we move S2 to C1

5.4 We move S4 from C0 since C0 is still over-
loaded. The first choice is C2. C2 is under-
loaded, so we move S4 to C2.

5.5 We move S6 from C3 since it is the worst
sample of C3. Both C0 and C2 are already
balanced. So we move S6 to C1.

5.6 Finally, each centers has exactly 2 sam-
ples. Now the system is load balanced.

Fig. 5. This is an example of Balanced K-means partitioning algorithm. Each figure is a distance matrix, which is referred as dist. For example,
dist[i][j] is the distance between i-th center and j-th sample. The color in the first figure is the original color. If dist[i][j] has a different color than the
original one, then it means that j-th sample belongs to i-th center.

training process. Like previous work (e.g. SMO, Cascade,
DC-SVM), the focus of this paper is on optimizing the
training process.

4.3 Initial Data Distribution

The major communication overhead of CP-SVM or BKM-
SVM are from three parts: (1) The distributed K-means-like
clustering algorithm. (2) Before K-means, if we do not use
parallel IO, we read the data from root node, then distribute
the data to all the nodes; if we use the parallel IO, each
node reads m/p samples. Then the algorithm does a gather
operation to make the root node have all the data. (3) After
the clustering part, the root node gets the redistribution
information and distributes the data to all the nodes.

For the parallel IO version of part (2), the reason why
we have to gather all the data to the root node is that we
use the CSR (Compressed Row Storage) format to store the
data to reduce the redundant memory requirement. If we
do not use the CSR data format, we can not process high-
dimensional data sets like webspam [24] in Table 8. Because
of the CSR format implementation, we must get the global
row index and data index on a single node.

For CA-SVM (casvm2 implementation) we use both par-
allel IO and CSR input format by assuming the sparse input
matrix has been prepartitioned into P disjoint row blocks,
each in CSR format. The sub-problems of CA-SVM are inde-
pendent of each other. Each sub-problem generates its data
center (CT1, CT2, CT3, ..., CTp) and its own model (model1,
model2, model3, ..., modelp). For an unknown test sample x̂,
each node will get a copy of x̂. Each node computes the
distance between x̂ and its data center. Let us use dist1,
dist2, dist3, ..., distp to represent the distances. If disti is the
smallest one, then we will usemodeli to make prediction for

Fig. 6. The figure shows that CP-SVM is load imbalanced while CA-
SVM is load-balanced. The test dataset is epsilon with 128,000 samples
(2,000 nnz per sample). 8 nodes are used in this test.

x̂. It is only necessary to do a reduction operation. In a large
datacenter, we expect the user’s data to be distributed across
different nodes. Considering the load balance issue, we also
assume the data should be distributed in a nearly balanced
way. Note that even if it is not balanced, CA-SVM can still
work (in a slightly inefficient way). On the other hand, from
Fig. 8, we can observe that the performance of casvm1 (serial
IO) is close to the performance of casvm2 (parallel IO).

4.4 Communication Pattern

4.4.1 Communication Modeling
We only give the results because the space is limited, the
detailed proofs are in [7]. The formulas for communication
volume are in Table 6. The experimental results in the table
are based on the dense ijcnn dataset on 8 Hopper nodes [6].
The terms used in the formulas are in Table 2. We can use the
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7.1 Dis-SMO: 34MB 7.2 Cascade: 8MB 7.3 DC-SVM: 29MB

7.4 DC-Filter: 18MB 7.5 CP-SVM: 17MB 7.6 CA-SVM: 0MB

Fig. 7. Communication Patterns of different approaches. The data is from running the 6 approaches on 8 nodes with the same 5MB real-world
dataset (subset of ijcnn dataset). x-axis is the rank of sending processors, y-axis is the rank of receiving processors, and z-axis is the volume of
communication in bytes. The vertical ranges (z-axis) of these 6 sub-figures are the same. The communication pattern of BKM-SVM is similar to that
of CP-SVM. The communication pattern of FCFS-SVM is similar to that of cascade without point-to-point communication.

formulas to predict the communication volume for a given
method. For example, for ijcnn dataset, m is 48,000, n is 13,
and s is 4474. We can predict the communication volume of
Cascade is about 3×(48000×13+48000+4474×13)×4B =
8.4MB. Our experimental result is 8.41MB, which means the
prediction for Cascade is very close to the actual volume.

4.4.2 Point-to-Point profiling

Fig. 7 shows the communication patterns of these six ap-
proaches for a subset of ijcnn. To improve the efficiency of
communication, we use as many collective communications
as possible because a single collective operation is more
efficient than multiple send/receive operations. Due to the
communications of K-means, DC-Filter and CP-SVM have
to transfer more data than Cascade. However, from Table 7
we can observe that CP-SVM is more efficient than Cascade
since the volume of communication per operation is higher.

4.4.3 Ratio of Communication to Computation

Fig. 8 shows the communication and computation time for
different methods applied to a subset of ijcnn. From Fig. 8
we can observe that our algorithms significantly reduce the
volume of communication and the ratio of communication
to computation. This is important since the existing super-
computers [26] are generally more suitable for computation-
intensive than communication-intensive applications. Be-
sides, less communication can greatly reduce the power
consumption [27]. Table 6 shows that the communication

Fig. 8. The ratio of computation to communication. The experiment is
based on a subset of ijcnn dataset. To give a fair comparison, we imple-
mented two versions of CA-SVM. casvm1 means that we put the initial
dataset on the same node, which needs communication to distribute the
dataset to different nodes. casvm2 means that we put the initial dataset
on different nodes, which needs no communication.

volumes of DC-Filter and CP-SVM are similar. However,
Fig. 8 shows that there is a big difference between DC-Filter
communication time and CP-SVM time. The reason is that
the communication of CP-SVM can be done by collective
operations (e.g. Scatter) but DC-Filter has some point-to-
point communications (e.g. Send/Recv) on the lower levels
(Fig. 1).

5 EXPERIMENTAL RESULTS AND ANALYSIS

The test datasets in our experiments are shown in Table
8, and they are from real-world applications. Some of the
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Algorithm 4: Balanced K-means Partitioning
Input:

SA[i] is the i-th sample
m is the number of samples
P is the number of clusters (processes)

Output:
MB[i] is the closest center to i-th sample
CT [i] is the center of i-th cluster
CS[i] is the size of i-th cluster

1 Randomly pick P samples from m samples (RS[1:P])
2 for i ∈ 1 : P do
3 CT [i] = RS[i]

4 do kmeans clustering on all input data
5 balanced = m/P
6 for i ∈ 1 : m do
7 for j ∈ 1 : P do
8 dist[i][j] = EuclideanDistance(SA[i], CT [j])

9 for j ∈ 1 : P do
10 while CS[j] > balanced do
11 maxdist = 0
12 maxind = 0
13 for i ∈ 1 : m do
14 if dist[i][j]>maxdist and MB[i]==j then
15 maxdist = dist[i][j]
16 maxind = i

17 mindist = inf
18 minind = j
19 for k ∈ 1 : P do
20 if dist[maxind][k]<mindist then
21 if CS[k]<balanced then
22 mindist = dist[maxind][k]
23 minind = k

24 MB[maxind] = minind
25 CS[j]=CS[j]-1
26 CS[minind]=CS[minind]+1

27 for i ∈ 1 : P do
28 CT [i] = 0

29 for i ∈ 1 : m do
30 j = MB[i]
31 CT [j] += SA[i]

32 for i ∈ 1 : P do
33 CT [i] = CT [i] / CS[i]

Algorithm 5: CA-SVM (casvm2 in Fig. 8)
1 Training Process (no communication):
2 0: i ∈ {1, 2, ...,m/P}, j ∈ {1, 2, ..., P}
3 1: For node Nj , input the samples Xi and labels yi.
4 2: For node Nj , get its data center CTj .
5 3: For node Nj , launch a SVM training process SVMj .
6 4: For node Nj , save the model file of converged SVMj

as MFj .
7 Prediction Process (little communication):
8 1: On j-th node, dj = dist(X̂ , CTj)
9 2: Global reduce: id = argminj(dj)

10 3 If rank == id, then use MFj to make prediction for X̂

datasets are sparse, we use CSR format in our implementa-
tion for all the datasets. We use MPI for distributed process-
ing, OpenMP for multi-threading, and Intel Intrinsics for
SIMD parallelism. To give a fair comparison, all the meth-
ods in this paper are based on the same shared-memory
SMO implementation [16]. The K-means partitioning in
DC-SVM, DC-Filter, CP-SVM, and BKM are distributed
versions, which achieved the same partitioning result and
comparable performance with Liao’s implementation [28].
Our experiments are conducted on NERSC Hopper and
Edison systems [6].

TABLE 6
Modeling of Communication Volume based on a subset of ijcnn [25]

Method Formula Prediction Test
Dis-SMO Θ(26IP + 2Pm+ 4mn) 36MB 34MB
Cascade O(3mn+ 3m+ 3sn) 8.4MB 8.4MB
DC-SVM Θ(9mn+ 12m+ 2kPn) 24MB 29MB
DC-Filter O(6mn+ 7m+ 3sn+ 2kPn) 16.2MB 18MB
CP-SVM Θ(6mn+ 7m+ 2kPn) 15.6MB 17MB
CA-SVM 0 0MB 0MB

TABLE 7
Efficiency of Communication based on a subset of IJCNN [25]

Method Volume Comm Operations Volume/Operation
Dis-SMO 34MB 335,186 101B
Cascade 8MB 56 150,200B
DC-SVM 29MB 80 360,734B
DC-Filter 18MB 80 220,449B
CP-SVM 17MB 24 709,644B
CA-SVM 0MB 0 N/A

TABLE 8
The Test Datasets

Dataset Application Field #samples #features
adult [9] Economy 32,561 123
epsilon [29] Character Recognition 400,000 2,000
face [30] Face Detection 489,410 361
gisette [31] Computer Vision 6,000 5,000
ijcnn [25] Text Decoding 49,990 22
usps [32] Transportation 266,079 675
webspam [24] Management 350,000 16,609,143

5.1 Speedup and Accuracy

From Tables 9 to 14, we observe that CA-SVM can achieve
3× - 16× (7× on average) speedups over distributed SMO
algorithm with comparable accuracies. The Init time in-
cludes the partition time like K-means, and the Training
time includes the redistribution and the SVM training pro-
cesses. For Cascade, DC-SVM, and DC-Filter, the training
process includes the level-by-level (point-to-point) commu-
nications. The accuracy loss ranges from none to 3.6% (1.3%
on average). According to previous work [18], the accuracy
loss in this paper is small and tolerable for practical applica-
tions. Additionally, we can observe that CA-SVM reduces
the number of iterations, which means it is intrinsically
more efficient than other algorithms. For DC-SVM, DC-
Filter, CP-SVM, and BKM the majority of the Init time
is spent on K-means clustering. K-means itself does not
significantly increase the computation or communication
cost. However, we need to redistribute the data after K-
means, which increases the communication cost.

5.2 Strong Scaling and Weak Scaling

Tables 15 and 16 show the results of strong scaling time and
efficiency. We observe that the strong scaling efficiency of
CA-SVM is increasing with the number of processors. The
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TABLE 9
adult dataset on Hopper (K-means converged in 8 loops)

Method Accuracy Iterations Time (Init, Training)
Dis-SMO 84.3% 8,054 5.64s (0.006, 5.64)
Cascade 83.6% 1,323 1.05s (0.007, 1.04)
DC-SVM 83.7% 8,699 17.1s (0.042, 17.1)
DC-Filter 84.4% 3,317 2.23s (0.042, 2.18)
CP-SVM 83.0% 2,497 1.66s (0.041, 1.59)
BKM-SVM 83.3% 1,482 1.61s (0.057, 1.54)
FCFS-SVM 83.6% 1,621 1.21s (0.005, 1.19)
CA-SVM 83.1% 1,160 0.96s (4e-4, 0.95)

TABLE 10
face dataset on Hopper (K-means converged in 29 loops)

Method Accuracy Iterations Time (Init, Training)
Dis-SMO 98.0% 17,501 358s (2e-4, 358)
Cascade 98.0% 2,274 67.0s (0.10, 66.9)
DC-SVM 98.0% 20,331 445s (13.6, 431)
DC-Filter 98.0% 13,999 314s (13.6, 297)
CP-SVM 98.0% 13,993 311s (13.6, 295)
BKM-SVM 98.0% 2,209 88.9s (17.8, 71.0)
FCFS-SVM 98.0% 2,194 65.3s (0.43, 64.9)
CA-SVM 98.0% 2,268 66.4s (0.08, 66.4)

reason is that the number of iterations is decreasing since
the number of samples (m/P ) on each node is decreasing.
The single iteration time is also reduced with fewer samples
on each node. For the weak scaling results in Tables 17
and 18, we observe that all the efficiencies of these six
algorithms are decreasing with the increasing number of
processors. In theory, the work load of CA-SVM on each
node is constant with the increasing number processors.
However, in practice, the system overhead is higher with
more processors. The weak scaling efficiency of CA-SVM
only decreases 4.7% with a 16× increase in the number of
processors.

5.3 Efficiency of CA-SVM

Here, we use m for simplicity to refer to the problem size
and P to refer to the number of nodes. To be more precise,
let t(m,P ) be the per-iteration time, which is a function of
m and P ; and let i(m,P ) be the number of iterations, a
function of m and P . For Dis-SMO, we observe i(m,P ) =
Θ(m), that is, there is no actual dependence on P. Then, the
total time should really be

T (m,P ) = i(m,P )× t(m,P )

Thus, the efficiency becomes

E(m,P ) =
i(m, 1)× t(m, 1)

P × i(m,P )× t(m,P )

For Dis-SMO, i(m, 1) = i(m,P ), which means

E(m,P ) =
t(m, 1)

P × t(m,P )

TABLE 11
gisette dataset on Hopper (K-means converged in 31 loops)

Method Accuracy Iterations Time (Init, Training)
Dis-SMO 97.6% 1,959 8.1s (0.26, 7.86)
Cascade 88.3% 1,520 15.9s (0.20, 15.7)
DC-SVM 90.9% 4,689 130.7s (2.35, 127.9)
DC-Filter 85.7% 1,814 20.1s (2.39, 17.2)
CP-SVM 95.8% 521 8.30s (2.30, 5.4)
BKM-SVM 95.8% 452 4.75s (2.29, 2.46)
FCFS-SVM 96.5% 441 2.48s (0.07, 2.41)
CA-SVM 94.0% 487 2.9s (0.014, 2.87)

TABLE 12
ijcnn dataset on Hopper (K-means converged in 7 loops)

Method Accuracy Iterations Time (Init, Training)
Dis-SMO 98.7% 30,297 23.8s (0.008, 23.8)
Cascade 95.5% 37,789 13.5s (0.007, 13.5)
DC-SVM 98.3% 31,238 59.8s (0.04, 59.7)
DC-Filter 95.8% 17,339 8.4s (0.04, 8.3)
CP-SVM 98.7% 7,915 6.5s (0.04, 6.4)
BKM-SVM 98.3% 5,004 3.0s (0.08, 2.87)
FCFS-SVM 98.5% 7,450 3.6s (0.005, 3.55)
CA-SVM 98.0% 6,110 3.4s (3e-4, 3.4)

If the per-iteration time scales perfectly — meaning
t(m,P ) = t(m, 1)/P — the efficiency of SMO should be
E(m,P ) = 1 in theory. For CA-SVM, each node is actu-
ally an independent SVM. Thus we expect that i(m,P ) =
Θ(m/P ) because each node only trains m/P samples. In
other words, each node is a SMO problem with m/P
samples. Therefore, i(m, 1) is close to P × i(m,P ), which
means

E(m,P ) =
t(m, 1)

t(m,P )

On the other hand t(m, 1) is close to P×t(m,P ) because
each node only has m/P samples. In this way, we get

E(m,P ) =
P × t(m,P )

t(m,P )
= P

This means the efficiency of CA-SVM is close to P in
theory. Usually, we expect efficiency to lie between 0 and
1. The way we set this up is perhaps not quite right – the
sequential baseline should be the best sequential baseline,
not the naive (plain SMO) one. If we execute CA-SVM
sequentially by simulating P nodes with only 1 node, then
the sequential time would be

P × (i(m, 1)/P × t(m, 1)/P ) = i(m, 1)× t(m, 1)/P

So then E(m,P ) would approach 1 rather than P . Put
another way, CA-SVM is better than SMO, even in the
sequential case. That is, we can beat SMO by running CA-
SVM to simulate P nodes using only 1 node.
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TABLE 13
usps dataset on Edison (K-means converged in 28 loops)

Method Accuracy Iterations Time (Init, Training)
Dis-SMO 99.2% 47,214 65.9s (2e-4, 65.9)
Cascade 98.7% 132,503 969s (0.008, 969)
DC-SVM 98.7% 83,023 1889s (1.5, 1887)
DC-Filter 99.6% 67,880 242s (1.5, 240)
CP-SVM 98.9% 7,247 35.7s (1.5, 33.9)
BKM-SVM 98.9% 6,122 30.4s (2.02, 28.4)
FCFS-SVM 99.0% 6,513 30.1s (0.04, 29.7)
CA-SVM 98.9% 6,435 24.5s (0.0018, 24.5)

TABLE 14
webspam dataset on Hopper (K-means converged in 38 loops)

Method Accuracy Iterations Time (Init, Training)
Dis-SMO 98.9% 164,465 269.1s (0.05, 269.0)
Cascade 96.3% 655,808 2944s (0.003, 2944)
DC-SVM 97.6% 229,905 3093s (0.95, 3092)
DC-Filter 97.2% 108,980 345s (1.0, 345)
CP-SVM 98.7% 14,744 41.8s (1.0, 40.7)
BKM-SVM 98.5% 14,208 24.3s (1.12, 23.0)
FCFS-SVM 98.3% 12,369 21.2s (0.03, 21.0)
CA-SVM 96.9% 10,430 17.3s (0.003, 17.3)

5.4 The Approximation Accuracy

5.4.1 The Mathematical Derivation

The intuition behind the divide-and-conquer heuristic is
this: Suppose we can partition (say by K-means) the m
training samples into p disjoint clusters D1 ∪D2 ∪ · · · ∪Dp,
where the samples in each Di are close together, and far
from other Dj . Then classifying a new sample X̂ may be
done by (1) finding the cluster Di to which X̂ is closest, and
(2) using the samples insideDi to classify X̂ (say by an SVM
using only Di as training data). Since we use nearby data to
classify X̂ , we expect this to work well in many situations.

In this section we quantify this observation as follows:
LetK be them-by-m kernel matrix, withKi,j = K(Xi, Xj),
permuted so that the first |D1| indices are in D1, the next
|D2| indices are in D2, etc. Let K1 be the leading |D1|-by-
|D1| diagonal submatrix of K , K2 the next |D2|-by-|D2|
diagonal submatrix, etc. Let K̃ = diag(K1,K2, ...,Kp) be
the submatrix of K consisting just of these diagonal blocks.
Then we may ask how well K̃ “approximates” K . In the
extreme case, when K̃ = K and all samples in each cluster
have the same classification, it is natural to assign X̂ the
same classification as its closest cluster. As we will see,
depending both on the kernel function K() and our metric
for how we measure how well K̃ approximates K , our
algorithm for finding clusters Di will naturally improve the
approximation. One can also view choosing Di as a graph
partitioning problem, where Ki,j is the weight of edge (i, j)
[33] [34] [35].

In the simple case of a linear kernel K(Xi, Xj) = XT
i ·

TABLE 15
Strong Scaling Time for epsilon dataset on Hopper: 128k samples, 2k

nnz per sample

Processors 96 192 384 768 1536
Dis-SMO 2067s 1135s 777s 326s 183s
Cascade 1207s 376s 154s 76.1s 165s
DC-SVM 11841s 8515s 4461s 3909s 3547s
DC-Filter 2473s 1517s 1100s 1519s 1879s
CP-SVM 2248s 1332s 877s 546s 202s
BKM-SVM 1031s 355s 137s 88.6s 48.4s
FCFS-SVM 1064s 303s 85.8s 25.4s 15.6s
CA-SVM 1095s 313s 86s 23s 6s

TABLE 16
Strong Scaling Efficiency for epsilon dataset on Hopper: 128k samples,

2k nnz per sample

Processors 96 192 384 768 1536
Dis-SMO 100% 91.1% 66.5% 79.2% 70.4%

Cascade 100% 160.5% 195.4% 198.4% 45.7%

DC-SVM 100% 69.5% 66.4% 37.9% 20.9%

DC-Filter 100% 81.5% 56.2% 20.3% 8.2%

CP-SVM 100% 84.4% 64.1% 51.4% 69.7%

BKM-SVM 100% 145.2% 188.1% 145.5% 133.1%

FCFS-SVM 100% 175.6% 310.0% 523.6% 426.3%

CA-SVM 100% 175.0% 319.5% 603.0% 1068.7%

Xj , a natural metric to try to maximize (inspired by [33]) is

J1 =

p∑
k=1

|Dk|−1
∑

i,j∈Dk

Ki,j

Letting X = [X1, ..., Xm], it is straightforward to show that

‖X‖2F − J1 =

p∑
k=1

∑
i∈Dk

‖Xi − µk‖22 ≡ Jkmeans

where µk = |Dk|−1
∑
i∈Dk

Xi is the mean of cluster Dk.
It is also known that the goal of K-means is to choose
clusters to minimize the objective function Jkmeans, i.e. to
maximize J1. Since the polynomial and sigmoid kernels are
also increasing functions ofXT

i ·Xj , we also expect K-means
to choose a good block diagonal approximation for them.

Now we consider the Gaussian kernel, or more generally
kernels for which K(Xi, Xj) = f(‖Xi − Xj‖2) for some
function f(). (The argument below may also be generalized
to shift-invariant kernels K(Xi, Xj) = f(Xi − Xj).) Now
we use the metric

J2 =

p∑
k=1

|Dk|−1
∑

i,j∈Dk

K2
i,j

to measure how well K̃ approximates K , and again relate
minimizing Jkmeans to maximizing J2.

The mean value theorem tells us that K(Xi, Xj) =
f(‖Xi − Xj‖2) = f(0) + f ′(s)‖Xi − Xj‖2 for some s ∈
[0, ‖Xi − Xj‖2]. For the Gaussian Kernel f(s) = e−γs

2

so
f ′(s) = −2γse−γs

2

, which lies in the range 0 > f ′(s) ≥
−
√

2γe−1/2 ≡ R. Thus 1 ≥ K(Xi, Xj) ≥ 1 +R‖Xi−Xj‖2,
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TABLE 17
Weak Scaling Time for epsilon dataset on Hopper: 2k samples per

node, 2k nnz per sample

Processors 96 192 384 768 1536
Dis-SMO 14.4s 27.9s 51.3s 94.8s 183s
Cascade 7.9s 8.5s 11.9s 52.9s 165s
DC-SVM 17.8s 67.9s 247s 1002s 3547s
DC-Filter 16.8s 51.2s 181s 593s 1879s
CP-SVM 13.8s 36.1s 86.8s 165s 202s
BKM-SVM 6.72s 9.14s 16.6s 31.2s 48.4s
FCFS-SVM 6.14s 6.71s 6.88s 10.2s 15.6s
CA-SVM 6.1s 6.2s 6.2s 6.4s 6.4s

TABLE 18
Weak Scaling Efficiency for epsilon dataset on Hopper: 2k samples per

node, 2k nnz per sample

Processors 96 192 384 768 1536
Dis-SMO 100% 51.7% 28.2% 15.2% 7.9%

Cascade 100% 93.2% 66.2% 14.9% 4.8%

DC-SVM 100% 26.3% 7.2% 1.8% 0.5%

DC-Filter 100% 32.8% 9.3% 2.8% 0.9%

CP-SVM 100% 38.2% 15.9% 8.3% 6.8%

BKM-SVM 100% 73.5% 40.5% 21.5% 13.9%

FCFS-SVM 100% 91.5% 89.2% 60.2% 39.4%

CA-SVM 100% 98.9% 97.8% 96.0% 95.3%

which in turn implies 1 ≤ (K(Xi, Xj)− R‖Xi −Xj‖2)2 ≤
2K2(Xi, Xj) + 2R2‖Xi − Xj‖22 or K2(Xi, Xj) ≥ 1

2 −
R2‖Xi − Xj‖22. Substituting this into the above expression
for J2 and simplifying we get

J2 ≥ m

2
−R2

p∑
k=1

|Dk|−1
∑

i,j∈Dk

‖Xi −Xj‖22

=
m

2
− 2R2Jkmeans

So again minimizing Jkmeans means maximizing (a lower
bound for) J2.

5.4.2 The Block Diagonal Matrix

For the experiment, we use 5,000 samples from the UCI
covtype dataset [36]. The kernel matrix is 5,000-by-5,000
with 458,222 nonzeroes. In Fig. 9, the first part is the original
kernel matrix, the second part is the kernel matrix after
clustering. From these figures we can observe that the kernel
matrix is block-diagonal after clustering. Let us use Fn to
represent the Frobenius norm (F-norm) and F̂ n means the
F-norm of the original kernel matrix. The definition of Error
(kernel approximation error) is given by

Error =
|F̂ n− Fn|

F̂ n
(14)

The γ in Table 19 is defined in the Gaussian kernel of Table
1. From Table 19 we can observe that when γ is small, the
approximation error of Random method is much larger than
the approximation error of Clustering method. Based on F-
norm, the approximation matrix by clustering method is

TABLE 19
The error of different kernel approximations. The definition of Error is in

Equation (14).

γ Original Random Clustering
F-norm / Error F-norm / Error F-norm / Error

20 154.239899 / 0.0% 98.661888 / 36.0% 154.279709 / 0.0%
30 117.745422 / 0.0% 85.005592 / 27.8% 117.765900 / 0.0%
40 100.739906 / 0.0% 79.307716 / 21.3% 100.755119 / 0.0%
50 91.576241 / 0.0% 76.469208 / 16.5% 91.585464 / 0.0%
60 86.123299 / 0.0% 74.869514 / 13.1% 86.129494/ 0.0%
70 82.630066 / 0.0% 73.882416 / 10.6% 82.635559/ 0.0%

almost the same with the original matrix. The approxima-
tion error of Random partition is decreasing when the γ
is increasing. There, if we can use large γ parameter in the
real-world applications, the approximation error of Random
partition (i.e. CA-SVM) can be very low.

9.1 Original Kernel Matrix 9.2 Kernel Matrix After Cluster-
ing

Fig. 9. We use the 5,000 samples from the UCI covtype dataset [36]
for this experiment. The kernel matrix is 5,000-by-5,000 with 458,222
nonzeroes. The first figure is the original kernel matrix, the second figure
is the kernel matrix after clustering. From these figures we can observe
that the kernel matrix is block-diagonal after the clustering algorithm.

5.5 Tradeoffs
CA-SVM is the only algorithm presented that can achieve
nearly zero communication. Thus, CA-SVM should be the
fastest one in general. However, CA-SVM also suffers the
most loss in accuracy, if surprisingly little. Basically, our
methods are for applications that most need to be acceler-
ated or scaled up, and do not require the highest accuracy.
For applications that require both accuracy and speed, using
FCFS or BKM is a better choice. So there is a trade-off
between time (communication) and accuracy.

5.6 Accuracy of CA-SVM
We conduct the following two experiments: (1) Random-
Assign: assign the test sample not to the processor with
the closest data center, but to a random processor. (2) Sub-
Sampling: pick random subset of 1/p-th of all the data,
and just use it to build an SVM for all the test samples.
Let use the ijcnn dataset (Table 8) as an example. We
use 8 nodes and divide the dataset into 8 parts for CA-
SVM. After the experiment, the accuracy of Random-Assign
is 85% (77987/91701), the accuracy of Sub-Sampling is
68% (62340/91701), and the accuracy of CA-SVM is 98%
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(89852/91701). Sub-Sampling has the lowest accuracy be-
cause it uses a much smaller dataset (6k training samples)
and thus can only build an inferior model. The difference be-
tween Random-Assign and CA-SVM is that each model of
Random-Assign roughly receives the same number of test
samples because it used the random assignment method.
However, a test sample of CA-SVM will be sent to its closest
cluster rather than a random cluster. This makes different
nodes of CA-SVM have different numbers of test samples.
For example, the 0-th node of Random-Assign receives
11,518 test samples while the 0-th node of CA-SVM only
receives 5,037 test samples.

6 CONCLUSION

Existing distributed SVM approaches like Dis-SMO, Cas-
cade, and DC-SVM suffer from intensive communication,
computation inefficiency and bad scaling. In this paper, we
design and implement five efficient approaches (i.e. DC-
Filter, CP-SVM, BKM, FCFS, and CA-SVM) through step-
by-step optimizations. BKM, FCFS, and CA-SVM all reduce
communication significantly compared to previous meth-
ods, with CA-SVM avoiding all communication. We manage
to obtain a perfect load-balancing, and achieve 7× average
speedup with only 1.3% average loss in accuracy for six real-
world application datasets. Because of faster iteration and
reduced number of iterations, CA-SVM can achieve 1068.7%
strong scaling when we increase the number of processors
from 96 to 1536. Thanks to the removal of communication
overhead, CA-SVM attains a 95.3% weak scaling from 96 to
1536 processors. The results justify that the approaches pro-
posed in this paper can be used in large-scale applications.
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