Approximate Envy-Freeness in Graphical Cake Cutting

Sheung Man Yuen
National University of Singapore

Warut Suksompong
National University of Singapore
Cake Cutting

- The problem of fairly allocating a divisible resource.

- Typical assumption: cake is represented by an interval $[0, 1]$.
 - Appropriate when the resource is linear.
 - Insufficient when the resource is a network.

- A more general model: Graphical Cake Cutting†

† Dividing a Graphical Cake (Bei and Suksompong, 2021)
Graphical Cake Cutting

- Resource is represented by a connected graph.
- Cake lies on the edges of the graph, can be subdivided.
- Each agent receives a connected piece of the graph.
Fairness Notions

• Common fairness notions are proportionality, maximin share, and envy-freeness.

• Graphical cake cutting:

 o Proportionality (Bei and Suksompong, 2021)

 o Maximin share (Elkind, Segal-Halevi and Suksompong, 2021)

 o Envy-freeness (our work)

 ■ No agent would rather have another agent’s piece of cake.
Envy-Freeness

- An envy-free allocation may not exist.

- We consider approximations of envy-freeness.
 - α-additive-EF
 - agent i does not envy agent j by an amount of more than $0 \leq \alpha \leq 1$.
 - α-EF
 - agent i does not envy agent j by a factor of more than $\alpha \geq 1$.

- Proposition: α-EF implies $(\alpha - 1)/(\alpha + 1)$-additive-EF.
Our Results

<table>
<thead>
<tr>
<th></th>
<th>General graphs</th>
<th>Star graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-identical valuations</td>
<td>1/2-additive-EF</td>
<td>(3 + (\varepsilon))-EF</td>
</tr>
<tr>
<td>Identical valuations</td>
<td>(2 + (\varepsilon))-EF</td>
<td>2-EF</td>
</tr>
</tbody>
</table>

- Our work presents **efficient algorithms** for computing these allocations.
General Graphs, Non-Identical Valuations

- **Theorem**: There exists a 1/2-additive-EF allocation for a general graph.

- **Proof sketch**: Generalize ideas from interval cake cutting.†
 - Find a bundle worth **less than 1/2 to every agent and at least 1/4 to some agent**; allocate to the agent who values it at least 1/4.
 - To find this bundle, use the **DIVIDE algorithm‡** with threshold 1/4.
 - Repeat the procedure with the remaining graph and remaining agents.
 - This gives a 1/2-additive-EF allocation.

<table>
<thead>
<tr>
<th></th>
<th>General graphs</th>
<th>Star graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-identical valuations</td>
<td>1/2-additive-EF</td>
<td>(3 + ε)-EF</td>
</tr>
<tr>
<td>Identical valuations</td>
<td>(2 + ε)-EF</td>
<td>2-EF</td>
</tr>
</tbody>
</table>

† Contiguous Cake Cutting: Hardness Results and Approximation Algorithms (Goldberg, Hollender, and Suksompong, 2020)
‡ Dividing a Graphical Cake (Bei and Suksompong, 2021)
Star Graphs, Non-Identical Valuations

- **Theorem:** There exists a $(3 + \varepsilon)$-EF allocation for a star graph.

- **Proof sketch:** Generalize ideas from interval cake cutting.†

This gives a $(3 + \varepsilon)$-EF allocation.

† Fair and Efficient Cake Division with Connected Pieces (Arunachaleswaran, Barman, Kumar, and Rathi, 2019)

<table>
<thead>
<tr>
<th></th>
<th>General graphs</th>
<th>Star graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-identical valuations</td>
<td>1/2-additive-EF</td>
<td>$(3 + \varepsilon)$-EF</td>
</tr>
<tr>
<td>Identical valuations</td>
<td>$(2 + \varepsilon)$-EF</td>
<td>2-EF</td>
</tr>
</tbody>
</table>
General Graphs, Identical Valuations

- **Theorem:** There exists a \((2 + \varepsilon) \)-EF allocation for a general graph and agents with identical valuations.

- **Proof sketch:** Recall that we used a threshold of 1/4 previously.
 - Use an adaptive threshold of \(\frac{1}{2} \left(\frac{2i}{2n-1} - \sum_{j=1}^{i-1} \mu(A_j) \right) \) for the \(i \)th agent; this gives a 4-EF allocation.
 - Next, generalize ideas from partitioning indivisible edges of a graph.\(^{\dagger} \)
 - Start with a 4-EF allocation and adjust adjacent bundles repeatedly; this gives a \((2 + \varepsilon) \)-EF allocation.

\[^{\dagger} \text{A Tight Bound on the Min-Ratio Edge-Partitioning Problem of a Tree (Chu, Wu, Wang, and Chao, 2010)} \]

<table>
<thead>
<tr>
<th></th>
<th>General graphs</th>
<th>Star graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-identical</td>
<td>1/2-additive-EF</td>
<td>(3 + (\varepsilon))-EF</td>
</tr>
<tr>
<td>valuations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identical</td>
<td>(2 + (\varepsilon))-EF</td>
<td>2-EF</td>
</tr>
<tr>
<td>valuations</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Star Graphs, Identical Valuations

- **Theorem**: There exists a 2-EF allocation for a star graph and agents with identical valuations.

- **Proof sketch**: Use a bag-filling algorithm.

 - This gives a 2-EF allocation.

Table

<table>
<thead>
<tr>
<th></th>
<th>General graphs</th>
<th>Star graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-identical valuations</td>
<td>1/2-additive-EF</td>
<td>(3 + ε)-EF</td>
</tr>
<tr>
<td>Identical valuations</td>
<td>(2 + ε)-EF</td>
<td>2-EF</td>
</tr>
</tbody>
</table>
Conclusion

● Summary

- The bounds for identical valuations are tight due to prior work.
- **Open question:** Is an α-EF allocation guaranteed to exist for general graphs and non-identical valuations, for some constant $\alpha \geq 1$?

● Omitted results

- Settings where agents can receive a small number of connected pieces: use the notion of path similarity number.

<table>
<thead>
<tr>
<th></th>
<th>General graphs</th>
<th>Star graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-identical valuations</td>
<td>1/2-additive-EF</td>
<td>(3 + ε)-EF</td>
</tr>
<tr>
<td>Identical valuations</td>
<td>(2 + ε)-EF</td>
<td>2-EF</td>
</tr>
</tbody>
</table>

Approximate Envy-Freeness in Graphical Cake Cutting | Sheung Man Yuen & Warut Suksompong | IJCAI 2023
Thank you!

Questions?