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Abstract

Recommendation systems can be attacked in various ways,
and the ultimate attack form is reached with a sybil attack,
where the attacker creates a potentially unlimited number
of sybil identities to vote. Defending against sybil attacks is
often quite challenging, and the nature of recommendation
systems makes it even harder.

This paper presents DSybil, a novel defense for diminishing
the influence of sybil identities in recommendation systems.
DSybil provides strong provable guarantees that hold even
under the worst-case attack and are optimal. DSybil can
defend against an unlimited number of sybil identities over
time. DSybil achieves its strong guarantees by i) exploiting
the heavy-tail distribution of the typical voting behavior of
the honest identities, and ii) carefully identifying whether the
system is already getting “enough help” from the (weighted)
voters already taken into account or whether more “help” is
needed. Our evaluation shows that DSybil would continue to
provide high-quality recommendations even when a million-
node botnet uses an optimal strategy to launch a sybil attack.

1. Introduction

Recommendation systems recommend objects to users
based on other users’ reported prior experience with those
objects (i.e., votes). There are numerous real world examples
for recommendation systems, such as Netflix (for movie rat-
ing), Amazon (for book rating), Razor [52] (for collaborative
spam filtering), Digg [23], and Credence [60]1. By casting
misleading votes, malicious users or malicious identities can
potentially mislead a recommendation system. In addition
to casting such votes, an adversary seeking to magnify its
influence can bribe honest users or even compromise honest
users’ computers to obtain bribed identities or stolen identities

1. Digg is a popular web site where users “digg” news stories that
they consider interesting. A news story with many “diggs” may then be
recommended to other users. Similarly, Credence allows p2p file sharing
users to vote whether a downloaded file is corrupted. Such votes can then
guide other users’ downloading.

to cast more votes. The ultimate form is reached with a
sybil attack [26], where the attacker creates a potentially
unlimited number of fake identities (i.e., sybil identities) to
vote. Off-the-shell software such as Tube Automator [58] and
Friend Bomber [31] can readily launch such sybil attacks on
recommendation systems.

In this paper, we will use the term sybil identities to refer to
all malicious/bribed/stolen/sybil identities. Defending against
sybil identities is usually quite challenging, and the nature of
recommendation systems makes it even harder. For example,
it is known [11, 17, 29] that DHTs can be made secure as
long as the fraction of sybil identities is below 1/4. On the
other hand, recommendation systems have significantly lower
“tolerance”: Because on average only a small fraction (e.g.,
1% or 0.1%) of the honest users will vote on an object, even
a relatively small number of sybil identities can out-vote
these honest voters.

Most existing sybil defense mechanisms [12, 16, 21, 56,
62] cannot provide such strong guarantees. For example,
there is evidence [51] that botnet sizes can easily reach
105. Even (optimistically) assuming that the sybil defenses
can enforce one sybil identity per bot, out-voting the sybil
identities created from such a botnet can require a system
with 10 to 100 million (i.e., 105 divided by 1% or 0.1%)
honest users! By leveraging social networks, some recent
sybil defenses [44, 57, 62, 63] can nullify the effect of all bots
outside the system’s social network. But they can still fail
to provide guarantees that match recommendation systems’
low tolerance threshold (see Section 2).

Trust-based approaches and previous efforts. While di-
rectly bounding the fraction of sybil identities is unlikely to
be effective for recommendation systems, it is possible to
reduce the influence of sybil identities gradually over time
based on their historical behavior. For example, a user Alice
may trust another identity Bob less if Bob voted for objects
that Alice found to be bad. If one can sufficiently diminish
the influence of all the sybil identities, then the sybil attack
becomes ineffective, for all practical purposes.

Leveraging trust (built over history) in recommendation
systems is in no way a new idea. Because trust maps nicely



to human intuition and real life experience, there have been
many efforts to leverage trust for defending against malicious
users (and occasionally sybil identities). Although simple at
the intuitive level, rigorously reasoning about the numerous
design alternatives and their end guarantees is always rather
tricky.

Because of such difficulty, most previous efforts (e.g.,
[20, 22, 32, 34, 36, 37, 40, 46, 49, 60]) only explore
heuristics without hard guarantees. The proposed techniques
are evaluated only against synthetic attacks or attacks
observed in measurement traces. It is never clear how robust
these systems are against an intelligent adversary launching
an optimal attack. We argue that such heuristics can only
result in an endless arms race between the attacker and the
system designer. On the other hand, there has also been a
large body [3, 5, 6, 13, 14, 18, 30, 47, 53, 54] of theoretical
work on how to make robust recommendations with provable
guarantees. However, to overcome the difficulty in rigorous
reasoning about design alternatives and end guarantees, all
of them need to make strong restrictive (and sometimes
unrealistic) assumptions. For example, some [5, 53, 54]
assume that in each round all users vote and that they vote
sequentially in some fixed order. In summary, it is still an
open question how to deal with a limited number of malicious
identities, let alone a potentially unlimited number of sybil
identities.

Our goal and approach. This paper aims to answer the
following central question:

Is it possible to sufficiently diminish the influence of (a
potentially unlimited number of) sybil identities based on
historical behavior?
In answering this question, we aim for provable guarantees
that hold even under the worst-case attack. To avoid overly
restrictive assumptions, we leverage the fact that we do not
need to optimize for the worst-case voting behavior of the
honest identities. After all, the honest identities do not aim
to defeat our system. Specifically, we exploit the heavy-
tail distribution of the typical voting behavior of the honest
identities, and show that this single property can enable a
design with strong guarantees.

Our contributions and results. This paper presents DSybil,
a novel defense for diminishing the influence of sybil identi-
ties in recommendation systems. DSybil targets application
scenarios such as Digg and Credence where the objects to
be recommended are either good or bad. DSybil has the
following salient features:

• DSybil can defend against an unlimited number of sybil
identities over time.

• The loss (i.e., number of bad recommendations) is
O(D logM) even under the worst-case attack, where
M is the maximum number of sybil identities voting on
any one object and D is the dimension of the objects
(see definition below).

• We prove that the O(D logM) loss is optimal. We further
show that different from scenarios such as byzantine
consensus and DHTs, for a recommendation system to
tolerate more sybil identities, the lifespan of the honest
users is far more important than their population.

• DSybil provides a growing defense: If the user has used
DSybil for some time when the attack starts, the loss
will be significantly smaller than the loss under the
worst-case attack.

DSybil achieves its strong guarantees partly by optimizing
only for cases where D is small. Roughly speaking, given a
set of objects from which we need to make recommendations,
the dimension D is the minimum number of honest users
that can cover a significant fraction (e.g., 60%) of the good
objects in the set.2 Here a user covers an object if the user
has voted for that object. The value of D is determined by the
voting behavior of the honest users. Our study of large-scale
datasets from real-world recommendation systems shows that
D tends to be rather small in practice, due to the heavy-tail
vote distribution of the (honest) users. We show that as long
as the distribution is heavy-tail, the dimension is likely to
be rather small.

Even with small dimension, how to design a robust
recommendation system is far from obvious. The central
challenge is the tension between i) giving trust to honest
identities for their helpful voting, and ii) avoiding giving
trust to those sybil identities who are behaving like honest
identities (but who could later use the trust to inflict loss).
As one would imagine, any design here will necessarily be
a double-edged sword: Not giving trust to sybil identities
in some cases will unavoidably cause the system not to
give trust to some honest identities in other cases. The crux,
then, is how to strike the optimal balance between the two
factors. In DSybil, we clearly identify whether the user is
already getting “enough help” from those identities that the
user trusts. If yes, DSybil will not grow the trust to anyone
(including honest identities). We are able to show that this
design leads to an optimally small loss.

We have implemented DSybil as a toolkit in Java. Our
experimental results based on a one year crawl of Digg
show that under practical parameters and without taking
the growing defense into account, the fraction of bad
recommendations by DSybil is only around 12% even when
each object has up to 10 billion sybil voters and (on average)
only 1,239 honest voters. Taking the growing defense into
account, the fraction of bad recommendations further drops
to around 6% (or 4%) if the user had been using DSybil for
a day (or month) when the attack starts. Assuming that an
average honest user’s lifespan (of using DSybil) is one year,
and assuming that the adversary starts attacking at a random
point in time, 364/365 ≈ 99.7% (or 11/12 ≈ 91.7%) of the
honest users will have used DSybil for a day (or month)

2. DSybil does not know or try to determine D .



when the attack starts.
With its strong robustness against sybil identities, DSybil

needs to use only some basic mechanism to loosely limit M.
Specifically, whenever the number of votes on any object
exceeds a certain threshold (e.g., 1 billion), DSybil will start
imposing a recurring computational puzzle on each voting
identity. In our example setting with a recurring 1-minute
computational puzzle per week, an adversary would need
a million-node botnet to cast the aforementioned 10 billion
votes on an object.3

2. Related Work

Sybil defenses not leveraging social networks. One way
to defend against sybil attacks in recommendation systems
is to leverage generic sybil defenses that can bound the
number of sybil identities accepted/admitted (which in turn
limits the number of sybil voters). The simplest generic
sybil defense is for a trusted central authority to verify
credentials (e.g., credit card or passport) that are unique
to actual human beings. Unfortunately, this often leads to
privacy concerns and scares away users. SMS verification
also incurs privacy concerns, and does not work well if
the attacker has access to cheap phone accounts. Graphical
puzzles requiring human efforts (such as CAPTCHAs [59])
can be reposted on the adversary’s web site to be solved by
clients seeking access to that web site. Charging a fee for
each identity can undermine the exact reason why online
recommendation systems are popular. Additionally, all the
above approaches require a central server, which may not be
available (e.g., in Credence). Researchers have also proposed
a limited number of decentralized sybil defense mechanisms,
including mechanisms based on IP addresses/prefixes [21],
resource challenges [16, 56], or network coordinates [12].
All these approaches only provide limited protection and are
fundamentally vulnerable to powerful adversaries attacking
from botnets.
Sybil defenses leveraging social networks. To better de-
fend against sybil attacks, recent sybil defenses (such as
SybilGuard [63], SybilLimit [62], Ostra [44], SumUp [57])
leverage the social network among the users. Here an edge
connecting an honest user and a malicious user is called an
attack edge. Because each edge involves human-established
trust, it is difficult for the adversary to introduce an excessive
number of attack edges. Given g attack edges, if the number
of sybil identities behind the attack edges is much larger
than g, it will result in a small quotient cut in the graph
(where the quotient is between g and the number of sybil
identities). This graph property translates to poor expansion
and large mixing time.

3. With a million-node botnet, the adversary may be able to launch serious
DDoS attacks on various components of the system. How to defend [25]
against such DDoS attacks is beyond the scope of this paper.

Leveraging this graph property (i.e., expansion and mixing
time) can be powerful. If one is willing to assume global
knowledge of the continuously-changing social network
(i.e., one node maintains an up-to-date copy of the entire
social network graph), then simply running an approximation
algorithm [42] for minimal quotient cut will bound the
number of sybil identities accepted within O(g logn), where
n is the number of honest identities. Also assuming global
knowledge and further focusing on scenarios where only o(n)
honest identities are seeking to be accepted, SumUp [57] uses
adaptive maximum flow on the social network to bound the
number of sybil identities (voters) accepted within g+o(g).4

SybilLimit [62], in contrast, avoids the need for any global
knowledge by using a decentralized secure random route
technique. It bounds the number of sybil identities accepted
within O(g logn), while provably accepting nearly all honest
nodes.

Unfortunately, a lower bound in [62] implies that any
social-network-based sybil defense (including all of the
systems mentioned above) will be insufficient for recom-
mendation systems, whose tolerance threshold is rather low
(e.g., 1% or 0.1%). Specifically, the lower bound proves that
exploiting the graph property (i.e., expansion and mixing
time) can at the best help us to bound the number of sybil
identities accepted within the order of g, and g can easily
be larger than the number of honest voters. For example,
suppose that each node in the social network has a degree
of 10, and optimistically assume that we accept all honest
voters and only g sybil voters. Then as long as the adversary
can compromise 0.1% (or 0.01%) of the honest identities,
the sybil identities can out-vote those 1% (or 0.1%) honest
voters. A recent study claims that 40% of the PCs in the
U.S. are infected by botnets [1]. While it is quite unlikely
for all of them to belong to the same botnet, it is not hard
to imagine that many botnets can easily exceed the 0.1% or
0.01% threshold, and out-vote the honest voters.

In contrast, DSybil (which targets recommendation systems
only) uses a completely different approach that i) does not
require a social network, ii) is not subject to the lower bound
on social network defenses, and iii) can in fact tolerate a
million-node botnet given just thousands of honest voters.

Sybil attacks in reputation systems. Related to recommen-
dation systems, reputation systems (such as Ebay) are also
vulnerable to sybil attacks. A reputation system computes
the numerical reputation of individual identities, based
on pair-wise feedback among the identities. A number
of mechanisms [19, 28, 35, 55] have been proposed to
prevent sybil identities from artificially boosting the attacker’s
reputation. Compared to DSybil, these efforts do not explore
how to use such reputation to make recommendations (for

4. In addition, as a secondary optimization, SumUp leverages feedback
and trust, but its heuristics are without provable guarantees on end-to-end
loss.



objects) with provable guarantees.

Classic machine learning algorithms and extensions.
From a theoretical perspective, DSybil’s recommendation
algorithm provides strong guarantees for a variant of the
sleeping-experts-based [38] adversarial multiarmed bandit
(MAB) problem [3] in machine learning. In this problem, the
algorithm needs to make a recommendation out of a pool of
objects in each round, based on the votes from the “experts.”
Sleeping-experts means that an expert might not participate
in all rounds, while MAB means that the algorithm obtains
only partial-feedback [18] (i.e., no feedback is provided for
objects not chosen/recommended). These two aspects of the
problem make it particularly challenging.

There are existing results [3] on the MAB problem that
assume all experts participate (vote) in all rounds. This
assumption rarely holds when the experts are real users in a
recommendation system. Researchers [5, 6, 53, 54] have also
applied MAB-related techniques to recommendation systems,
while inheriting the previous assumption (or making even
stronger assumptions). Some efforts [13, 14, 30, 47] have
investigated how to make recommendations based on votes
from sleeping-experts who do not always participate. These
efforts all assume complete feedback where the “goodness”
of all objects (even non-recommended ones) are revealed
after each round. For our applications, doing so would require
the user to test all objects, which defeats the exact purpose
of providing recommendations.

To the best of our knowledge, the only work that discusses
the sleeping-experts-based MAB problem is [38]. The pro-
posed algorithm has exponential complexity and linear loss
(in terms of the number of sybil identities). We are able to
design a linear-complexity logarithmic-loss algorithm for this
problem by exploiting the voting pattern of honest users.

Other theoretical work on recommendation systems.
There have been many other theoretical efforts on recommen-
dation systems [2, 4, 7, 8, 9, 10, 27, 39]. They largely deal
with finding good objects out of a fixed set of objects, while
our model involves multiple rounds where each round has
its own set of objects. The notion of trust (across multiple
rounds) only becomes relevant in our model. Near the end
of [8], Awerbuch et al. discuss an algorithm for multiple
rounds. The loss, however, is linear with the number of sybil
identities.

3. System Model and Attack Model

Target applications/scenarios. Recommendation systems
are a generic concept, and the details of different recom-
mendation systems can be dramatically different. As a result,
solutions suitable for one scenario (e.g., Netflix) may very
well be inappropriate in other contexts (e.g., Digg). DSybil
does not intend to capture all possible recommendation
systems. Rather, we focus on scenarios where i) the objects

to be recommended are either good or bad (but different users
may have different subjective opinions regarding whether an
object is good); ii) the lifespan of the users is not overly
short so that they can build trust; and iii) the users aim to
find some good objects to consume instead of exhaustively
finding all good objects.

In terms of real world applications, DSybil captures the
requirements of p2p file rating systems such as Credence [60]
and news story recommendation systems such as Digg [23].
In both cases, the objects are binary in terms of “goodness.”
A typical user of Credence or Digg may download many
files or read many news stories (e.g., 20 per day). Also, a
user in Credence is usually only interested in downloading
one good (i.e., non-corrupted) version of, for example, a
particular song. The user does not aim to exhaustively find
all good versions. Similarly, a typical Digg user may wish to
read a certain number of interesting news stories on a given
day, without finding out all the interesting stories appearing
in that day. On the other hand, DSybil cannot yet capture
Netflix or Amazon where rather fine-grained (e.g., 5-star
scales) recommendations are expected.

In the remainder of this section, we formally define
DSybil’s system model and attack model.
Objects and rounds. DSybil recommends objects (e.g., news
stories in Digg or files for downloading in Credence) to users,
based on votes (see later) from other users. Depending on
a user’s prior behavior, DSybil may recommend different
objects to different users. From now on, our discussion will
always be with respect to a given DSybil user (called Alice).
We assume that Alice follows the protocol honestly.

With respect to Alice, each object is either good or bad.
In each round, Alice would like to pick one object out
of a specific set (U) of objects to consume (e.g., read the
story or download the file). For example, U may be the
set of all stories submitted over the past day in Digg or
all the different versions of mp3 files with the same song
title in Credence. We assume that the fraction of good
objects in U is at least p that is bounded away from 0.
For example, measurement studies [43] of the file pollution
level in Kazaa show that the fraction of good versions of the
songs studied ranges between 30% to 100%, under attackers
with commercial interests. After each round, Alice provides
feedback to DSybil regarding whether the consumed object
is good. This feedback can be in the form of a vote but does
not have to be. For example, Alice may provide feedback but
choose not to cast a vote that other users will see (e.g., due to
the sensitivity of the object). Sometimes implicit feedback is
possible (e.g., based on how much time Alice spends reading
the news story).

DSybil can be configured to recommend either a single
object or a set of k (e.g., 5 or 10) objects in each round. If
multiple objects are recommended, Alice picks one of them
to consume. As an example, one can view the set as a web
page displaying excerpts of k recommended news stories



in Digg. Also, if Alice wants to consume multiple objects
from a given set U , we can always model that as multiple
rounds with the same U (after removing the objects already
consumed).

We use loss, defined as the total number of bad objects
consumed by Alice, to measure the “goodness” of the
recommendation system. Since DSybil is randomized, we
will only be concerned with the expectation on loss, where
the expectation is taken over the random coin flips in the
algorithm. The loss is also dependent on the attack strategy
of the adversary. When we say loss under the worst-case
attack, we mean the expected loss under the worst-case
attack strategy. We expect that in order to retain users, a
recommendation system needs to achieve a rather small per-
round loss (e.g., 0.1 or 0.05) that can be much smaller than
1− p. To achieve this, DSybil leverages the votes from other
users.

Votes. A vote claims a certain object to be good, and this is
the only kind of vote DSybil uses. In this sense, all votes in
DSybil are “positive votes”. We will later prove that in our
setting “negative votes” can never help to reduce loss, and
thus DSybil does not use them. A user does not have to use
DSybil (or follow DSybil’s recommendations) in order to
vote. For example, a Linux fan may read all Linux-related
news stories on Digg and then vote for the interesting ones.
Similarly, a round as defined earlier is not a voting round.
Namely, the votes on the objects in Alice’s round were cast
(by other DSybil and non-DSybil users) independent of when
Alice starts the round.

Attack model. Because we consider sybil attacks, we will use
the term identities instead of users from now on. An identity
is not necessarily tied to any human being or computer in
the real world. An identity is either honest or sybil. A sybil
identity can be an identity owned by a malicious user, or it
can be a bribed/stolen identity, or it can be a fake identity
obtained through a sybil attack. We assume that DSybil can
associate each vote with the identity casting that vote. For
example, this can be achieved by requiring an identity to
log into his/her account before voting. Alternatively, each
identity may have a locally generated public/private key pair,
and signs each vote using the private key. (The adversary
can freely generate an unlimited number of accounts or key
pairs for the sybil identities.) Each identity may cast at most
one vote on any given object; otherwise, its votes will be
ignored.

A sybil identity is byzantine and may collude with all
other sybil identities. We allow the sybil identities to know
which objects are good/bad and also the votes cast by honest
identities. We do not make assumptions on the total number
of sybil identities over time, which can be infinite. We assume
that the number of sybil identities voting on any given object
is at most M, where M (e.g., 1010) can be orders of magnitude
larger than the number of voting honest identities (e.g., 1000).

N # of guides
N′ # of non-guides
M maximum # of sybil voters on any object
W maximum # of honest voters on any object
p each round has at least p fraction of good objects

D f the f -fractional dimension
f the fraction of good objects covered by critical guides

Table 1. Key notations in this paper. DSybil does not know or
need to know the values of any of these parameters.

A round is called attack-free if there are no sybil identities
voting in that round. DSybil does not know which rounds
(if any) are attack-free.

Honest identities may have different “tastes” and thus may
have different (subjective) opinions on the same object. We
assume that there are N honest identities (called guides) with
the same or similar “taste” as Alice. Specifically, having the
same taste as Alice means that the guide never votes on bad
objects. (On the other hand, the guide may or may not vote on
any given good object.) Having similar taste as Alice means
that the guide seldom votes on bad objects. The existence
of such guides is a necessary assumption for virtually all
recommendation systems—if Alice has such an esoteric taste
that no one else shares her taste, no recommendation system
can help Alice. Let N′ denote the number of honest identities
that are not guides (called non-guides). We will focus on
cases where M > N +N′. Unless otherwise mentioned, we
will pessimistically treat the N′ non-guides as byzantine (and
potentially colluding with sybil identities). DSybil does not
know or try to determine which identities are guides, non-
guides, or sybil. In particular, the extra loss due to a guide
being bribed or compromised is equivalent to M increasing by
1 (unless removing the guide increases the dimension—see
later).

We say that an object is covered by an identity if that
identity votes for that object. Let U denote the set of objects
that has ever appeared in any of Alice’s rounds. Given the
votes on the objects in U , we defined U ’s f -fractional
dimension (denoted as D f ) as the smallest number of guides
that can cover f fraction of the good objects in U . We
will be concerned only with f that is not too small (e.g.,
0.5). We call these D f guides as critical guides.5 We call
those objects that are covered by at least one critical guide as
guided. Other objects (even if they are covered by some other
guide) are called unguided. For any given set of identities,
their voting pattern fully specifies which identities vote for
which objects. By definition, D f is only affected by the
voting pattern of the guides, which are honest. Calculating
D f can be reduced to Set-Covering and is thus NP-hard.
DSybil does not know which objects are guided or which
identities are critical guides. DSybil does not know/calculate
D f either. Table 1 summarizes the key notations in this paper.

5. It is possible to have different sets of D f guides where every set can
cover f fraction of the good objects in U . In such case, we simply pick
an arbitrary set and call (only) those guides in that set as critical guides.



4. Leveraging Trust: The Obvious, the Subtle,
and the Challenge

Even with small D f values, designing a robust recommen-
dation system is far from trivial. This section discusses some
of the issues.

The obvious. The notion of trust appeals naturally to human
intuition. For example, we all know that Alice should trust
Bob more (less) if Alice finds that Bob voted for good (bad)
objects. Also, objects with more votes should probably be
recommended over objects with fewer votes.

The subtle. How to implement this “obvious” notion is in
fact not so obvious, however, as one starts asking quantitative
and more specific questions. First, how should we assign
seed trust (i.e., initial trust) to new identities? Because the
adversary can continuously introduce new identities (by
whitewashing), giving positive seed trust to each new identity
may already allow the adversary to inflict infinite loss over
time. One might introduce some “trial period” so that an
identity is given seed trust only after, for example, voting
for 10 good objects. Unfortunately, knowing this, a sybil
identity could always first vote for 10 good objects and then
immediately cheat. Notice that these first 10 “correct” votes
would not benefit Alice at all, since identities in the trial
period are not used for recommendations.

Second, how exactly should we grow the trust of the
identities? If Bob has cast 4 “correct” votes while Cary has
cast 12, should the trust to Cary be 3 (= 12/4) times or
256 (= 2(12−4)) times the trust to Bob? In particular, should
we (and how can we) avoid growing the trust of identities
casting “correct” but “non-helpful” votes? For example, a
sybil identity may vote for a good object that already has
many votes from other users. Such a “correct” vote is “non-
helpful” because the object will most likely be selected
anyway even without this additional vote. To prevent sybil
identities from gaining trust “for free” by casting such votes,
one may try to determine the “amount of contribution” from
different voters. Doing so, however, can be rather tricky. For
example, some researchers [53, 54] propose taking the voting
order into account. The first voter for the object gains the
most trust, while later ones gain less and less trust. However,
if the adversary knows that a certain object will attract a lot
of votes by the time that Alice selects, the sybil identities
can all rush and cast the first batch of votes on that object.
These votes are still “non-helpful” because the object will
attract enough votes anyway.

Finally, how should we recommend objects based on the
(potentially conflicting) votes from the various identities with
different trust? Should two votes from two identities each with
x trust be considered equivalent to one vote from an identity
with 2x trust? Should we deterministically choose the object
with the most votes, or use randomized recommendation
where the probability is proportional to the number of votes?

Should we take negative votes into account?

The challenge. The above numerous (and subtle) design
alternatives are not simply different “trade-offs”: Because
the end user Alice has only a single objective (minimizing
loss), different designs indeed have different “goodness.”
However, it is simply impossible to exhaustively enumerate
and compare them all. Thus we aim to directly design
a defense with optimal loss. Doing so will answer all
the design questions once and for all. This is also a key
difference between our approach and previous trust-based
recommendation systems [20, 32, 34, 36, 40, 46, 49], where
it is always unclear whether there exist better designs. The
key challenge now, of course, is to design a defense whose
loss is optimal. In the rest of this paper, we will not
extensively explore other design alternatives, though one
should keep in mind that we will prove that no alternatives
are (asymptotically) better.

5. DSybil Recommendation Algorithm

The main component of DSybil’s defense is its optimal
and elegant recommendation algorithm. The algorithm can
be run either by individual users (independent of whether
other users are using DSybil), or by a central server making
recommendations to individual users (where the server will
run different instances for different users). We will later show
that some natural alternatives (or “optimizations”/“tweaks”)
to our algorithm will easily break its optimality. This implies
that achieving the optimality is far from trivial—many of the
design choices in our algorithm are not arbitrary and in fact,
may be necessary for optimality.

We describe the algorithm below in a progressive fashion.
Section 5.1 first discusses an algorithm that assumes i) the
total number of sybil identities is M; ii) the values of M,
N′, and D f are known; iii) DSybil recommends, and Alice
consumes, only one object from each round; and iv) Alice
has the same taste as the critical guides. Next, Section 5.2
improves the algorithm so that it can tolerate an unlimited
number of sybil identities, as long as the number of sybil
voters on any given object is bounded within M. Furthermore,
the improved algorithm no longer needs to know M, N′, or
D f . Finally, Section 5.3 shows that the remaining assumptions
can be naturally relaxed as well. For simplicity, our proofs
will assume that if the f -fractional dimension of U is D f ,
then in every round, f fraction of the good objects are guided
(i.e., covered by at least one of the D f critical guides). It is
not difficult to extend our results to weaker but less concise
conditions.

5.1. At Most M Sybil Identities Total

Algorithm description. Our recommendation algorithm
(Figure 2) maintains a real-valued trust, initialized to some



round 1 round 2 round 3 round 4 round 5

 

G(0.2) H(0.2) G(0)

H(0.2)

G(0)

H(0.2)

H(1) G(0) H(0) 

E(0.2)

F(0.2)

E(0.2) F(0.2) F(0.2) E(1) F(1) E(1) 

Figure 1. An example execution of the algorithm in Figure 2 with S = 0.2, c = 1, α = 5, and β = 0. The top two objects in
each round are good, and the bottom two are bad. There are 2 honest identities E and F , and 2 sybil identities G and H. The
figure annotates which identities vote for which objects, and the trust of those identities. Shaded objects are overwhelming.
Objects pointed to by arrows are recommended objects, consumed by Alice. A random object is recommended in rounds 1–3.
An arbitrary overwhelming object is recommended in rounds 4 and 5.

Make recommendation:
determine which objects are overwhelming;
return an arbitrary overwhelming object if there is one;
otherwise return a uniformly random non-overwhelming obj;

After Alice’s feedback on the recommended object O:
if O is good and if O is non-overwhelming

multiply the trust of all voters for O by α;
if O is bad

multiply the trust of all voters for O by β ;

Figure 2. Recommendation algorithm executed in each round.
Each identity starts with S trust. The parameters satisfy 0 <
S < c, α > 1, and 0 ≤ β < 1. See Corollary 2 for possible
values.

seed value S > 0, for each identity. The algorithm is with
respect to Alice—different Alices will run different instances
of the algorithm and thus have different trust for the same
identity. An object is overwhelming if the total trust of the
identities voting for the object is at least some constant c,
where c > S. If a round has overwhelming objects (called an
overwhelming round), the algorithm simply recommends an
arbitrary overwhelming object; otherwise it recommends a
uniformly random non-overwhelming object. Here “arbitrary”
means that the overwhelming object can be chosen in some
arbitrary way (even adversarially).6 Notice that our (optimal)
algorithm does not further distinguish different overwhelming
objects or different non-overwhelming objects.

Alice then consumes the object and provides feedback. If
the object is good and if the object is non-overwhelming,
the algorithm multiplies the trust of all identities voting
for that object by some constant α > 1. If the object is
bad, the algorithm multiplies the trust by some constant β

where 0 ≤ β < 1. A nonzero β serves to allow guides with
similar but non-identical taste as Alice (Section 5.3). Table 2
summarizes DSybil’s parameters.
Algorithm intuition. Figure 1 illustrates an example execu-

6. This leads to an interesting effect—in overwhelming rounds, one can
lay another (arbitrary) recommendation algorithm on top of our algorithm,
and yet the combined algorithm is guaranteed to remain optimal.

c the threshold for an object to be overwhelming
α the multiplicative factor when increasing trust
β the multiplicative factor when decreasing trust
S seed trust of each identity

(only used in the simplified algorithm in Figure 2)
SΣ total seed trust, if any, given out in each round

(only used in the full algorithm in Figure 3)

Table 2. The (only) parameters in DSybil’s algorithm.

tion of the algorithm. Initially when all the identities have
small trust, the algorithm recommends random objects in each
round. Because trusts grow exponentially whenever Alice
consumes a good non-overwhelming object, overwhelming
rounds will quickly arise. Overwhelming objects can always
be consumed “safely”—even if the object turns out to be bad,
the algorithm will benefit because it confiscates a substantial
amount of trust from the sybil identities. Overwhelming
rounds may still be followed by non-overwhelming rounds,
when for example, some identities with large trust that were
actively voting are no longer voting. Regardless of the mixture
of non-overwhelming and overwhelming rounds, conditioned
upon the dimension of the objects being small, we will be
able to later prove that the number of non-overwhelming
rounds is small.

Our algorithm does not increase the trust of any identity
when a good overwhelming object is consumed. Intuitively in
such cases, Alice is already getting “enough help” from the
voters and thus does not need to increase any one’s trust. This
addresses a key issue raised in the previous section: Namely,
under such design, sybil identities casting “correct” but “non-
helpful” votes will never be rewarded with additional trust.
On the other hand, such design is unavoidably a double-edged
sword, and can prevent us from increasing the trust to guides.
In particular, it makes the “choking attack” possible, where
the sybil identities can “choke” honest identities so that the
honest identities can never gain trust. One key challenge
addressed by the algorithm is how to strike the optimal
balance among these factors.
Guarantees against the worst-case attack. To facilitate
our formal arguments, we define λ to be the number
of guided good non-overwhelming objects consumed by
Alice. We use Gn and Go to denote the number of good



non-overwhelming objects and good overwhelming objects
consumed by Alice, respectively. We similarly define Bn and
Bo for bad non-overwhelming objects and bad overwhelming
objects, respectively. We will show that λ is properly
bounded, which in turn bounds Gn, Bn, Bo, and eventually
Alice’s loss (i.e., Bn +Bo).

Consider a guided good non-overwhelming object con-
sumed by Alice. After the object is consumed, our algorithm
will increase the trust of at least one critical guide. Further-
more, no identity can ever have a trust value larger than α ·c.
Otherwise the identity would have a trust value of at least c
before the last trust increase, which is impossible. Because
every identity starts with a trust of S, we can multiply the
trust of a critical guide by α for at most dlogα(αc/S)e times
before the trust reaches α ·c. Thus, Alice can consume at most
D f dlogα(αc/S)e guided good non-overwhelming objects and
λ ≤D f dlogα(αc/S)e. This means that with small D f , λ will
be small as well.

Whenever Alice consumes a guided good non-
overwhelming object, the object is a uniformly random
object from all the (non-overwhelming) objects in that
non-overwhelming round. Since the fraction of guided
good objects in a round is at least p · f , we can view λ

as the number of successes when repeating an experiment
of at least p f success probability for Bn + Gn times.
According to the mean of the geometric distribution, we
have E[Bn + Gn] ≤ 1

p f λ . By a similar argument, we also
have E[Gn] = 1

f λ .
Finally, we want to reason about Bo. Sybil identities can

only increase their trust by voting for good non-overwhelming
objects. Each such object enables the adversary to gain less
than cα − c additional trust. On the other hand, whenever
Alice consumes a bad overwhelming object, the trust of the
voters for that object will be multiplied by β . Thus, the
algorithm confiscates at least c− cβ trust from the sybil
identities (which includes the non-guides). Because the total
confiscated trust will never be larger than the trust that the
sybil identities can possibly gain, we have c · (1−β ) ·Bo ≤
c · (α −1) ·Gn +(M +N′) ·S. Alice’s loss (i.e., Bn +Bo) can
then be shown to be properly bounded:
Theorem 1: Let L be the loss of the algorithm in Figure 2,
against an adversary attacking with M sybil identities total.
Then regardless of the adversary’s strategy:{

λ ≤D f dlogα(α · c
S )e

E[L]≤ λ ·
(

α−1
f (1−β ) + 1−p

p f

)
+ M+N′

1−β
· S

c
(1)

Proof sketch: Our earlier discussion already shows that
λ ≤ D f dlogα(αc/S)e. Additionally, we have L = Bn + Bo
and :

E[Gn] = 1
f λ

E[Bn +Gn]≤ 1
p f λ

(1−β ) · c ·Bo ≤ (α −1) · c ·Gn +(M +N′) ·S

After Alice’s feedback on the recommended object O:
if O is good and if O is non-overwhelming

for each of the x voters for O with zero trust (if any),
set their trust to SΣ/x;

for each voter for O, multiply its trust by α;
if O is bad

multiply the trust of all voters for O by β ;

Figure 3. Recommendation algorithm executed in each round.
Each identity starts with 0 trust. The parameters satisfy SΣ >
0, α > 1, and 0 ≤ β < 1. See Corollary 4 for possible values.

Solving the above equations yields the desired results. 2

The above theorem guarantees Alice’s expected loss, where
the expectation is taken over the random coin flips in the
algorithm. It is also possible to prove a high probability
guarantee on the loss, via standard Chernoff bounds [45] on
Gn and (Bn +Gn). We omit the details for space limitations.

We will take β = 0.5 to accommodate guides with non-
exact taste as Alice (Section 5.3). It is possible to find the
optimal values for α , S, c. For simplicity, however, we use
α = 2 and S/c = D f /(2M + 2N′), which is sufficient to
achieve the best result asymptotically. Notice that here we
need to know N′, M, and D f in order to properly set S/c.
Corollary 2: Setting α = 2, β = 0.5, and S/c = D f /(2M +
2N′), we have

E[L] ≤ D f +D f
1+ p

p f

⌈
log2

(
4(M +N′)

D f

)⌉
(2)

For p and f constants bounded away from 0, this becomes
O

(
D f log(M/D f )

)
asymptotically.

5.2. At Most M Sybil Voters on Each Object

Algorithm description. Figure 3 presents the improved
algorithm that can tolerate an unlimited number of sybil
identities, as long as the number of sybil identities voting
for any given object is at most M. The part for making
recommendations is the same as in Figure 2 and thus is not
shown. Different from earlier, here each identity starts with
0 trust. If Alice consumes a good non-overwhelming object,
then if there are x voters with 0 trust voting for that object,7

each such voter will be given a seed trust of SΣ/x. Here SΣ

is some positive constant. Notice that our optimal algorithm
does not use any “trial period” for new identities.
Algorithm intuition. Having identities start with 0 trust
is critical for dealing with an unlimited number of sybil
identities (over time), because otherwise even the seed
trust assigned to sybil identities will grow unbounded. The
intuition for giving out seed trust only when Alice consumes
a good non-overwhelming object is similar as before. Namely,

7. When β = 0, a voter with 0 trust may either be an uninitialized voter,
or can be a voter that voted on a bad object. We do not need to distinguish
the two cases.



if the object is overwhelming, then Alice is already getting
“enough help.” Same as before, such design is unavoidably a
double-edged sword, and can prevent guides from obtaining
seed trust.

We will still be able to show that the number of good
non-overwhelming objects consumed (i.e., Gn) is limited.
Thus, the total seed trust given out to sybil identities will
also be limited. Instead of giving each identity the same seed
trust, the algorithm simply enforces a limit SΣ on the total
seed trust given out each time. How exactly to distribute SΣ

to the various voters for the object can be rather flexible. All
we need to ensure is that each critical guide receives some
seed trust that is not too small (without knowing who they
are). Our algorithm in Figure 3 distributes SΣ evenly to all
voters with 0 trust, which ensures that the seed trust of a
critical guide is at least SΣ/(W + M). Here W ≤ N + N′ is
the maximum number of honest users voting on any object.
Notice that by doing so, the algorithm no longer needs to
know the values of N, N′, M, or D f .

Guarantees against the worst-case attack. The guarantees
of the algorithm in Figure 3 can be proved using similar
arguments as before (a high probability result can also be
obtained):
Theorem 3: Let L be the loss of the algorithm in Figure 3,
against an adversary attacking with at most M sybil identities
voting for any given object. Then regardless of the adversary’s
strategy:{

λ ≤D f dlogα(α · c · (W +M)/SΣ)e
E[L]≤ λ · 1

p f ·
(

p · SΣ/c+α−1
1−β

+1− p
) (3)

Proof sketch: By similar arguments as in Theorem 1, we
have: 

λ ≤D f dlogα(α · c · (W +M)/SΣ)e
E[Gn] = 1

f λ

E[Bn +Gn]≤ 1
p f λ

(1−β ) · c ·Bo ≤ (SΣ +(α −1) · c) ·Gn

Solving the above equations yields the desired results. 2

It is possible to find the optimal values for α and SΣ/c,
but that will make them dependent on p and M (which are
unknown). Thus, we simply use α = 2 and SΣ/c = 0.5. These
values are sufficient to give us the best result asymptotically.
Corollary 4: Setting α = 2, β = 0.5, and SΣ/c = 0.5, we
have

E[L] ≤ (1+2p)/(p f ) ·λ0, (4)
where λ0 = D f · dlog2(4(W +M))e (5)

Because W ≤ N +N′ ≤ M, for p and f constants bounded
away from 0, E[L] becomes O

(
D f logM

)
asymptotically.

A growing defense. A salient property of DSybil is that
its defense against attacks grows over time. Namely, if
there are some initial attack-free rounds, then Alice’s total

loss (including the loss in the attack-free rounds) can be
significantly smaller than the loss from Corollary 4.8 For
example, in later experiments under M = 1010, Alice’s per-
round loss drops from 12% to 4% if Alice has been using
DSybil for a month before the adversary starts attacking.

This growing defense comes from the following three
factors. First, to inflict a maximum loss, the adversary needs
to ensure that each critical guide receives no more than
SΣ/(W +M) seed trust. In an attack-free round, the number
of voters for any given object is likely to be significantly
smaller than W + M. Thus, in those rounds the seed trust
given to a critical guide can be much larger than SΣ/(W +M).
Such effect can be significant because the identities are
likely to be assigned seed trust during the earlier rounds
(instead of later rounds). Second, to inflict a maximum
loss, the sybil identities need to vote for every good non-
overwhelming object consumed (without causing the objects
to become overwhelming), so that they can gain trust and
later maximize Bo. If Alice has already consumed some good
non-overwhelming objects before the attack starts, the sybil
identities lose some “opportunities” to gain trust.

Finally, the maximum loss in Corollary 4 is reached
only when for every guided good non-overwhelming object
consumed, there is only one critical guide voting for that
object. As one would imagine, in practice, there can easily
be multiple critical guides voting. Whenever this happens
in an attack-free round, the trust of multiple critical guides
will increase, and λ will be smaller. After the attack starts,
the adversary will be able to use a choking attack to always
prevent this from happening. Namely, whenever multiple
critical guides vote for a good non-overwhelming object,
the sybil identities can all vote for that object and make it
overwhelming. This “chokes” the critical guides so that they
will not have the opportunity to simultaneously gain trust.

One can easily modify Corollary 4 to calculate a bound
on the loss when the attack does not start from the very first
round. Specifically, let si be the trust of the ith critical guide
when the attack starts (for 1 ≤ i ≤ D f ). To bound the loss
incurred after the attack starts, we simply replace Equation 5
with:

λ0 =
D f

∑
i=1

⌈
log2

(
2

max(si/c,1/(2W +2M))

)⌉
(6)

Adding such loss to the loss incurred during the attack-free
rounds will then give us the total loss.

5.3. Further Extensions

Consuming multiple objects in a round. Our discussion
so far assumes that DSybil recommends one object in each
round and Alice consumes the recommended object. In some
cases, Alice may want to consume more than one object.
For example, Alice may want to read 20 new stories among

8. Recall that DSybil does not know which rounds are attack-free.



the set U of news stories in the past day. As mentioned in
Section 3, we can readily model this as 20 rounds. Let the set
of the objects in these 20 rounds be U1 through U20. Then
we can set U1 = U , U2 = U \ {O} where O is the object
already consumed in round 1, and so on.

The only complication here is that if O is a guided good
object, then the fraction of good objects and guided good
objects in U2 may now be below p and p f , respectively. To be
precise, let v be the number of objects Alice consumes from
the original set U and imagine that we model the process
as v rounds where Alice consumes one object per round.
Let p′ and f ′ be the lower bound on the fraction of good
objects and guided good objects in any of these v rounds.
Let u = |U |. A straight-forward calculation then shows:

p′ =
u · p− v

u− v
and f ′ =

u · p · f − v
u · p− v

(7)

Applying Corollary 4 then immediately shows
E[L] ≤ (1+2p′)/(p′ f ′) ·λ0 (8)

Notice that these results assume that u · p · f > v, which
explains why f cannot be overly small.

Recommending multiple objects in a round. Our
algorithm can also be easily extended to recommend k
(k > 1) objects in each round, among which Alice can select
one to consume (as mentioned in Section 3). Alice may
have different ways to pick the object out of the k objects
recommended. We assume that her choice is at least as good
as picking a uniformly random object out of the k objects.
This is rather reasonable since otherwise Alice should just
toss a coin each time. Thus it suffices to consider the worst
case where Alice just picks a uniformly random object to
consume.

To recommend k objects in a round with at least k
overwhelming objects, we can simply recommend an arbitrary
k overwhelming objects. If a round has no overwhelming
objects, we will recommend k uniformly random (non-
overwhelming) objects. The boundary condition where a
round has k′ (1 ≤ k′ < k) overwhelming objects is slightly
tricky. The simplest method is to recommend only the
k′ overwhelming objects. Doing so will preserve all the
guarantees from Section 5.1 and 5.2 without any change. The
drawback is, of course, that the algorithm may occasionally
recommend k′ < k objects in a round.

It is possible to remove this minor limitation (if necessary),
by recommending all k′ overwhelming objects together with
k− k′ uniformly random non-overwhelming objects. Doing
so, however, will break the proofs in Section 5.1 and 5.2
for the following reason. Each round has at least a p · f
fraction of guided good objects. Our earlier proofs leverage
the fact that if the round has no overwhelming objects, then
a uniformly random non-overwhelming object is a guided
good non-overwhelming object with probability of at least
p f . Now because the round has k′ overwhelming objects
(which can very well be guided good objects), the fraction

of guided good objects among the non-overwhelming objects
can be smaller than p f . However, we expect such effect to
be negligible because |U | is usually much larger (e.g., on
the order of tens or hundreds in Digg) than k and k′ (e.g.,
5).
Disagreements between Alice and the critical guides.
DSybil targets contexts where users can be classified into
types and each type has the same or similar “taste.” Our
analysis so far has been assuming that Alice has the same
taste as the critical guides (i.e., the critical guides never vote
on bad objects). (Whether Alice has the same or similar taste
as the other guides is irrelevant.) Next, we show that a small
number of votes from the critical guides on bad objects will
not increase the loss of our algorithm excessively, as long
as β is not too close to 0.

Imagine that a critical guide votes on a bad object O and
Alice consumes O. This will increase Alice’s loss in two
ways: i) if not for the vote from the critical guide, Alice
might not consume this bad object, and ii) the trust of the
critical guide will be decreased (i.e., multiplied by β ). The
extra loss from the first part is at most 1. For the second
part, with α = 2 and β = 0.5, DSybil only needs to multiply
the trust of the critical guide by α one additional time in
order to compensate. Thus, the effect is simply to increase
λ0 by 1. In turn, this translates to an extra loss of O(1) (by
Corollary 4).

6. A Deeper Look

DSybil’s algorithm is optimal. We will prove that DSybil’s
elegant recommendation algorithm is (asymptotically) opti-
mal, by proving a lower bound on loss. To make our lower
bound as strong as possible, we will allow “negative votes”
that were not included in our system model. We allow sybil
identities to cast negative votes in arbitrary ways. For guides,
we optimistically assume that if a guide ever appears (casts
positive votes) in a round, it will cast negative votes on all
the bad objects in that round. Obviously, this maximizes
the information regarding which objects are bad and makes
our lower bound stronger. Our lower bound construction
depends on the value of p. Although our algorithm focuses
on constant p within (0,1), to be as complete as possible, we
will also consider p → 0 and p → 1 when proving the lower
bound. Doing so will help to reveal that the 1/p factor in
DSybil’s loss is somewhat fundamental. For the lower bound,
we continue to assume that if the f -fractional dimension is
D f , then in every round, f fraction of the good objects need
to be guided. Notice that this strengthens the lower bound,
because it imposes additional restrictions on our construction.
The following theorem presents the lower bound (see the
appendix for proof).
Theorem 5: For any given p (in the following 3 cases),
nonnegative integer M, positive integer D , and any recom-
mendation algorithm, we can always construct a sequence



of rounds, objects, and votes where i) the fraction of good
objects in each round is at least p, ii) there are at most M
sybil identities voting for each object, iii) for all f ∈ (0,1]
the f -fractional dimension, D f , of the objects is D , and iv)
the algorithm will incur at least

• 1
2 ·D f · blog2 Mc expected loss if p = 0.5.

• 1
4 ·D f ·

⌊
1
p

⌋
·
⌊

log2 M
log2(1/p)

⌋
expected loss if 0 < p < 0.5.

• 1
2 ·D f ·

⌊
log2 M

log2(3/(1−p))

⌋
expected loss if 0.5 < p < 1.

For constant p, this becomes Ω(D f logM).
This lower bound (asymptotically) matches DSybil’s guar-
antee in Corollary 4. In addition, it is worth noting that for
0 < p < 0.5, the 1/p term is present in the lower bound
as well (except for an extra logarithmic term log2(1/p) in
the denominator, which however is dominated by 1/p). This
means that the 1/p term in DSybil’s loss (Corollary 4) cannot
be avoided, unless we make additional assumptions in the
model.

For the scenario where the total number of sybil identities
is M (as in Section 5.1 and Corollary 2), using a rather
similar proof as for Theorem 5, we can prove that the lower
bound there is the same as in Theorem 5 except that the
term “log2 M” should be replaced by “log2(M/D f )”. Again,
this asymptotic lower bound Ω(D f log(M/D f )) matches the
guarantee from Corollary 2.

DSybil’s algorithm may be necessary for optimality. We
next show that some natural alternatives (or “optimiza-
tions”/“tweaks”) to our algorithm will easily break its
optimality. This means that many of the design choices
in DSybil may actually be necessary for optimality. Some
of the following alternative designs (or similar designs)
have been used in previous recommendation algorithms
(which are not necessarily designed to defend against sybil
attacks) [20, 32, 40, 46, 49, 60].

• If DSybil increased the trust additively instead of
multiplicatively, then one can easily show that DSybil’s
loss would be linear with respect to M instead of
logarithmic.

• In a non-overwhelming round, currently DSybil simply
returns a uniformly random object (i.e., it does not
distinguish different objects with different votes). If,
instead, the algorithm returned the object whose voters
have the largest combined trust, then the loss would
be linear with respect to M under the following attack.
Consider a sequence of rounds where each round has
exactly one good object and one bad object. Initially,
all the M sybil identities vote on the good object, until
Alice consumes the first good object. Each sybil identity
now has a positive trust value that is no smaller than
the trust of any honest identity. In addition, no identity
has trust value larger than αSΣ/M. For each of the

next M/(W + 1) rounds, the adversary uses (W + 1)
sybil identities to vote on the bad object. As long as
(αSΣ/M) · (W +1) < 1 (which easily holds), no objects
will be overwhelming. Since the good object has at most
W voters while the bad object has (W +1) voters (each
with either the same or larger trust), the algorithm will
recommend bad objects in all these M/(W +1) = Ω(M)
rounds (for constant W ).

• Consider a modified version of our algorithm where in
each round, the algorithm recommends each object O
with certain probability. The probability is proportional
to the total trust of the voters on O. Consider the same
attack as above except that after Alice consumes the first
good object, for each of the next

√
M/W rounds, the

adversary uses
√

MW sybil identities to vote on the bad
object. This means that the probability mass on the bad
object will be at least

√
M/W times the probability mass

on the good object. Based on the mean of geometric
distributions, one can easily show that the expected
number of bad objects consumed (before consuming
any further good objects) will be Ω(

√
M/W ) = Ω(

√
M)

(for constant W ).
• Currently DSybil only increases the trust of the voters

on non-overwhelming good objects. Imagine that we
instead simply increase the trust of the voters on any
good objects. Consider an adversary that initially has
all M sybil identities vote on all the good objects. After
Θ(log(M · c/SΣ)) rounds, all of the sybil identities will
have a trust of c. Then, each of them can cause 1 loss
(i.e., making some bad object overwhelming), resulting
in a total loss of Ω(M). Even if we further optimize
and pick the overwhelming object whose voters have
the largest combined trust, the loss will still reach
Ω(M/W ) = Ω(M) (for constant W ).

Lifespan and population. Like other systems, a recommen-
dation system’s robustness against malicious behavior comes
from the help provided by the honest identities (or votes from
the guides in our case). The number of malicious identities
that other systems (e.g., majority voting, byzantine consensus,
and DHTs) can tolerate is usually directly proportional to the
number of honest identities (i.e., their population). In contrast,
the following will use our lower bound results to show that
to tolerate more sybil identities in a recommendation system,
the lifespan (or more precisely the number of votes cast
throughout the identity’s lifetime) of the honest identities is
far more important than the population.

Our upper bound and lower bound both have a D f
multiplicative term. Given a set U of objects, D f tends to
be inversely proportional to the lifespan but is independent
of the population of the honest identities. For example, if we
assume that each guide votes on y random objects in U , then
D f will be Θ(|U |/y) for any constant f < 1. Increasing the
lifespan y by x times will thus reduce loss by a multiplicative



factor of x.
To see how population may affect the loss, imagine for now

that we fix the voting pattern and the lifespan of all honest
identities. As an example, let us replicate each honest identity
into x distinct new identities where each new identity casts
the same votes as the original identity. Doing so obviously
increases the population by x times. Using similar arguments
as in Theorems 3 and 5 and assuming x < M, one can show
that both the upper bound and the lower bound now become
Θ(D f log(M/x)) = Θ(D f (logM− logx)). In other words, the
loss is reduced only by some additive logarithmic term of x.

7. Loosely Bounding M

The only remaining missing piece of the DSybil defense is
to design a means to loosely bound M, the number of sybil
identities voting on any given object. DSybil uses simple
computational puzzles to bound M; the recommendation
algorithm’s strong guarantees mask the key drawbacks of
computation puzzles, as discussed in this section. Alter-
natively, one could apply sophisticated approaches such
SybilLimit [62] and SumUp [57] (that require a social
network) to better bound M. However, DSybil’s logarithmic
loss implies that the extra benefit gained will likely be limited
in DSybil’s context.

Why computational puzzles suffice. The first problem with
computational puzzles is that the adversary can be much more
resourceful than a typical user. DSybil’s logarithmic loss
helps to mitigate this problem. Second, even with recurring
computational puzzles, the adversary can still abandon old
identities, reclaim resources, and create new identities. This
will result in an unlimited number of sybil identities over
time (though they are not simultaneously active). Fortunately,
our algorithm only requires the number of sybil voters on any
given object to be bounded. Notice that an object is likely
to have some limited lifetime. For example, most objects
in p2p file sharing systems (e.g., Credence) are only active
for a few weeks, and a news story on Digg gets most of its
votes within the first few days. We can thus naturally impose
a limited-duration (e.g., a few weeks) voting window for
each object during which votes are permitted on the object.
Given a voting window, computational puzzles can be used
to bound M, as shown next.

Computational puzzles in DSybil. With its logarithmic loss,
DSybil can afford to start actively bounding M only when
the maximum number of votes on individual objects exceeds
some large threshold (e.g., 1 billion). As a comparison point,
the total number of PCs in the world was only around 1
billion in 2007 [50]. Thus, only during rather serious attacks
will such a threshold be exceeded.

After the threshold is exceeded, DSybil periodically (e.g.,
at the beginning of every calendar week) releases a fresh
puzzle seed. For centralized application scenarios such as

Digg, the server can readily release a fresh seed weekly. For
decentralized cases, DSybil simply uses the concatenation
of the weekly closing prices of some common stocks as the
seed [41], which are readily available on the Internet to all
users. The seed, together with an identity’s unique name,
will instantiate a computational puzzle (e.g., of 1 minute)
for the identity. Solving the puzzle will allow the identity
to vote in the next calendar week (on an arbitrary number
of objects), except that solving the very first week’s puzzle
enables voting in the first two weeks. The puzzle does not
need to be solved online and the solution can be submitted
anytime during the week.

To understand the guarantees, consider an object with
a one-week voting window, which can span at most two
calendar weeks. To cast 10 billion votes for the object, the
adversary needs to solve 5 billion 1-minute puzzles at least
in one of the two weeks. Assuming that an average bot is up
50% of the time, doing so would roughly require a million-
node botnet (i.e., (5×109)/(0.5×7×24×60)≈ 106).

In the above design, we chose not to use a one-time
computational puzzle for each identity (e.g., at registration
time), because the adversary could then hoard identities and
M could be unbounded. We did not use a recurring puzzle for
each vote to avoid delays when voting. For similar reasons,
in DSybil solving the puzzle gives voting privileges for the
next week instead of the current week.

DDoS attacks. An adversary controlling a million-node
botnet may be able to launch severe DDoS attacks on
various components of the system. Even simply casting
10 billion votes may already overload the system. Dealing
with such attacks is still an active research area [25] and is
beyond the scope of this paper. DSybil is quite simple at the
implementation level, and it is unlikely to be the bottleneck
component. As future work, we intend to incorporate DSybil
into real-world recommendation systems (e.g., Digg) and
study the system’s robustness against DDoS.

8. Evaluation

We have implemented DSybil as a toolkit in Java. In
this section, we first validate DSybil’s key assumption
on small D f , based on a number of real-world datasets
(Sections 8.1 and 8.2). Then, we demonstrate DSybil’s end-
to-end guarantees and its growing defense (Section 8.3).

8.1. Starting Point: Small Dimensions in Digg

DSybil targets applications, such as Digg, where objects
are either good or bad. Thus, our study starts with a crawled
dataset (called digg) of the news stories (together with user
votes) from Aug 2007 to July 2008 on digg.com. This large-
scale dataset has a total of 496,622 users, 36,103 objects, and
44,741,196 votes. All the votes are positive votes, because
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Figure 4. Dimension in digg.

Digg does not show the negative votes (i.e., the “buries”). In
any case, DSybil does not use negative votes. Although Digg
is not free of attacks [24], there is evidence that the scale
of the attack is limited (at least before 2009). For example,
researchers [57] found that the fraction of “suspicious objects”
on Digg is only around 0.25%. Thus we expect the dataset
to be “clean enough” for our experiments.

The setting. Consider an imaginary Digg user Alice. Recall
that D f is the smallest number of guides that can cover f
fraction of the good objects in U . For this experiment, we
construct U to contain all the objects in digg. Because the
dataset only contains positive votes, it does not tell us which
objects Alice will consider as bad. We will pessimistically
require the D f guides to cover f fraction of all the objects
in U . Because a guide does not vote on bad objects, doing
so would ensure that the D f guides cover at least f fraction
of the good objects.

To determine D f , we further need to know which users are
guides (i.e., with the same “taste” as Alice). Such information
is not available from digg. To overcome this, let Alice’s
popularity be the fraction of honest users who are guides.
We vary Alice’s popularity and for each popularity value
x, we pick a random x fraction of the users in the dataset
as guides. For example, with a 0.02 popularity, there will
be one user with the same taste as Alice in every 50 users.
In order to be able to benefit from other users’ votes, we
expect Alice to have some minimal level of popularity. In
other words, if Alice has a rather esoteric taste, the help she
can obtain from other users will be minimal. For example in
digg, each object on average has 1239 votes. With lower
than 0.01 popularity, on average fewer than 12 votes out
of these 1239 votes are from users with the same taste as
Alice. Thus, we consider popularities of at least 0.01. Finally,
because determining D f is NP-hard, we will use a greedy
heuristic and all our results are thus pessimistic upper bounds
on D f .

Dimension in digg. Figure 4 plots how D f changes with f ,
under different popularity values. Even for a small popularity
of 0.01, the dimension is quite small (below 5) for any
f ≤ 0.6. Section 8.3 later will show that under M = 1010,
such dimension translates to 4%–12% per-round loss in
some specific scenarios. These small dimension values are

not obvious: If all users in digg were to have cast an
equal number of votes, D0.6 would have been at least

0.6×36,103
44,741,196/496,622 ≈ 240 instead of below 5. Thus, the small
dimension is due to some users casting significantly more
votes than others. Our experiments further show (not included
in Figure 4) that these results are robust: The dimension
remains small (around 5) even after removing the 100 heaviest
voters from the dataset.9 This is easy to understand in
hindsight—with 0.01 popularity, only 1 user out of every
100 users is a guide after all.

The dimension increases quickly as f approaches 1.0, even
under 0.1 popularity. This is due to the “coupon collection”
effect. Namely, as f → 1.0, it becomes harder and harder to
cover additional objects because many of the objects covered
are redundant. This also shows why it is critical for DSybil
not to rely on D1.0 being small.

Finally, our digg dataset is one-year long, and one may
wonder how D f will potentially grow for an Alice using Digg
for more than a year. D f can increase due to the “churn” of
the guides, where existing guides leave the system and new
guides are needed to cover objects in later rounds. However,
there are strong reasons to believe that D f will likely increase
at most linearly with Alice’s lifespan. For example, if Alice’s
lifespan reaches two years, the worst case would be for all the
existing guides to leave the system after one year. Assuming
the new guides in the second year have a similar heavy-tail
voting pattern as the old guides, this can at most double
the dimension. On the other hand, as long as the dimension
increases at most linearly, Alice’s per-round loss will never
increase. Thus, our later per-round loss results are likely to
be upper bounds for any Alice with a lifespan of at least a
year.

8.2. Generalization: Small D f is Fundamental

Supplementary datasets. We are interested in generalizing
our earlier findings from digg. There are a number of
other Digg-like websites (such as youtube.com, reddit.com,
mixx.com, motorpulse.com, tribalwar.com, dotnetkicks.com)
that involve user voting and recommendation of new stories
or video clips. The websites youtube.com, reddit.com, and
mixx.com only provide the total number of votes on each
object and do not show who the voters are. Thus, we
are unable to use them. The remaining three websites
(motorpulse.com, tribalwar.com, and dotnetkicks.com) have
a rather small numbers of users and objects. Among these
three, we crawled only the largest one, dotnetkicks.com
(a news site for .NET-related techniques), and use it as a
supplementary dataset (Table 3). This dataset is about 2
orders of magnitude smaller than digg. We also use three

9. Our notion of “heaviest voters” is different from the notion of “top
Digg users” from http://socialblade.com/digg/topusers.html. “Heaviest voters”
is purely based on vote count, while “top Digg Users” are those who have
submitted many stories that are later promoted by Digg.
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Figure 5. Pareto fittings. In all figures, x-axis is the # of votes cast, and y-axis is the fraction of users casting x votes.

dataset # users # objects # votes
dotnetkicks 2,339 2,252 45,236
netflix 480,189 17,770 100,480,507
movielens 6,040 3,952 1,000,209

bookcrossing 105,283 341,133 1,149,780

Table 3. Additional supplementary datasets.

publicly available movie/book rating datasets, netflix [48],
movielens [33], and bookcrossing [15] (Table 3).
Finally, while Credence [60] is one of our target applications,
we were not able to obtain Credence’s dataset.
Our thesis. Ideally, one would directly study the dimen-
sions in the supplementary datasets. Unfortunately, as men-
tioned above, dotnetkicks has an overly small number
of users/objects. The other datasets contain fine-grained
scalar/numerical ratings, so their dimension is not even well-
defined. Instead, we use these datasets in the following way.

We will focus on the fundamental cause of small dimen-
sions in digg. Figure 5(a) plots the distribution of the
number of votes cast by individual users in digg. The
figure shows a rather straight line on log-log scale, indicating
that the distribution is heavy-tail (or more precisely Pareto).
Let T be the number of good objects in U . With a Pareto
vote distribution, an honest user will cast exactly i votes (on
i random objects out of the T objects) with probability a · i−b.
Here a is a normalization factor and is a function of b and
T .

Our thesis is that such heavy-tail distribution is what
fundamentally causes the small dimensions in digg. The
intuition is that a small number of users near the “heavy tail”
can often cover a substantial fraction of all the objects (as
long as these users’ voting patterns, as in those in digg, do
not have excessive correlation among themselves). Based on
this thesis, instead of directly validating small dimensions,
we will validate the following sufficient (but not necessary)
conditions for small dimensions:

1) The vote distribution is Pareto, and
2) A Pareto vote distribution usually implies small dimen-

sion.
We will use the four datasets in Table 3 to validate the
first statement, and use simulation/analysis to validate the
second one. Notice that such a decomposition can be
powerful—even if one rather pessimistically dismisses the
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Figure 6. Dimension resulting from Pareto.

representativeness of all our datasets, as long as the heavy-tail
distribution (which is rather universal/fundamental) applies,
the dimension will likely to be small. Additionally, because
we are concerned only with the “heavy-tailness” of the vote
distribution from the honest identities, we do not expect
the (byzantine) votes from the sybil identities to affect such
“heavy-tailness”.

Is vote distribution Pareto? Figures 5(b) through 5(e) fit
the four datasets to Pareto, with b values ranging from 1.08
to 1.73. The flat components at the tails are due to the finite
number of users in the datasets. We ignore the flat parts
when fitting to Pareto. This makes the tails “lighter” (i.e., b
larger) and makes our later results pessimistic. The figure
shows that all datasets except netflix have quite good
fit. Pareto does not fit netflix well at the beginning. But
since dimension is mainly determined by the “tail” portion,
we do not expect the beginning portion to be critical.

Does Pareto imply small dimension? We construct syn-
thetic datasets with synthetic voting patterns for the guides
based on given Pareto distributions, and then determine the
dimension of the datasets. In our construction, each guide
votes for a random i objects, with i drawn from the given
Pareto distribution. To allow a direct comparison with digg,
we set T = 36,103 and the total number of honest users to
be 492,622. We again consider different popularity values
for Alice. For space limitations, we only present the results
under f = 0.6 (Figure 6). Obviously, the dimension only
becomes smaller for f < 0.6. We consider b∈ [1.0,1.8] since
the b values in our fittings fall within such a range. If b is
excessively large, Pareto’s tail is simply not “heavy” any
more for practical purposes. The figure shows that in all cases,



the dimension remains small. This confirms that a Pareto
vote distribution implies small dimension (with reasonable b
ranges). Independent of these experimental results, we have
also obtained similar results directly via analytical methods.
We omit the details of the analysis due to space limitations.

8.3. Loss under the Worst-case Attack

Even though we have implemented DSybil, we explicitly
choose not to focus on studying DSybil’s loss against
individual attack strategies experimentally (though we
provide some simple examples in the next section). As
emphasized in Section 1, a (human) attacker will always try
to find and use the single most effective strategy, which
is dependent on the algorithm being attacked. It is not
meaningful to discuss “typical” attack strategies. On the
other hand, we do not know either how to construct the
worst-case attack against DSybil (otherwise we could inject
such attack experimentally). Thus, we directly use Equation 8
to (pessimistically) upper bound Alice’s loss during the worst-
case attack, based on the dimension values in the datasets.
Using this upper bound can only make our results worse
(since the upper bound may not be tight).
The setting. We consider the following scenario for a
imaginary Digg user Alice. We pessimistically use 0.01 as
Alice’s popularity. There are 36,103 news stories in digg,
and we partition them into 361 sets with 100 objects per
set. Each set thus roughly corresponds to a day in this
one-year dataset. Since digg does not have negative votes,
for simplicity, we assume all of the objects to be good.
(Additionally, most of them are voted for by at least one
guide already.) We construct one round corresponding to
each set. Each round contains all the 100 good objects in the
set, and additionally another 100 bad objects. We assume
that Alice wants to consume 20 objects in each round (i.e.,
read 20 news stories every day). We model this as 20 rounds
where Alice consumes one object per round (as described in
Section 5.3).

We use the voting pattern of the guides in digg to
determine D f . Other information in the dataset, such as
the voting patterns of the non-guides, is irrelevant. Similarly,
we do not need to specify the voting patterns of the sybil
identities or the votes on the bad objects, since Equation 8
holds under all possibilities. We plug D f into Equation 8
with u = 200, p = 0.5, v = 20, and W = 30,720 (observed
from the dataset). Since Equation 8 holds for ∀ f > v

u·p = 0.2,
we compute the bound on E[L] using the f value (> 0.2)
that minimizes the bound. Notice that DSybil’s expected loss
(E[L]) under the worst-case attack is already fixed given the
digg dataset. But precisely determining E[L] is challenging.
By varying the f value in Equation 8, we are simply finding
the best upper bound for E[L] (i.e., the upper bound that is
the tightest). DSybil itself does not need to search for such
f because f is not a parameter in DSybil.
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Figure 7. Alice’s per-round loss when the attack starts after
Alice has used DSybil for a given number of days (assuming
the worst-case attack).

DSybil’s loss under the worst-case attack. The “attack after
day 0” curve in Figure 7 illustrates how Alice’s per-round
loss changes with M. For this scenario, per-round loss is the
fraction of bad new stories recommended to (and read by)
Alice. The figure shows that the per-round loss is below 6%
under M = 1000, and is only around 12% even if M reaches
10 billion. Putting it another way, even if individual objects
have up to 1010 votes from the sybil identities, only roughly
2.4 objects are bad out of the 20 objects recommended by
DSybil every day. In comparison, an average good object
only has 12 votes from the guides and 1,239 votes from
the guides and non-guides combined. Section 7 showed that
a million-node botnet will likely be needed to cause M to
reach 1010. Higher popularity values for Alice will result in
smaller loss. For example, for 0.1 popularity and M = 1010,
the per-round loss is 3.8% (not shown in the figure).

Growing defense. Next, we illustrate the growing defense
of DSybil, when the adversary starts attacking after Alice has
used DSybil for some time. (We still consider the worst-case
attack, and here the worst-case attack means the attack that
incurs the largest loss among all attacks that start after some
initial attack-free rounds.) For this experiment, our DSybil
toolkit first processes the dataset for some number of attack-
free rounds, and then outputs the total loss so far, together
with the trust values of all identities. These values, together
with the dimension of the remaining rounds, enables us to
use Equations 6 and 8 to bound the loss under the worst-case
attack.

To show the robustness of the results against different
voting patterns of the non-guides, we perturb their votes in
digg in various ways. We have experimented with various
ways to do such perturbation (e.g., changing a non-guide’s
vote on a good object to a vote on some random bad object
with certain probability). We observe that the impact of all
the perturbations we tried are always negligible. We find that
the fundamental reason is that to have a non-trivial impact,
the voting pattern of the non-guides needs to be carefully
constructed to mislead DSybil. Different from the votes from
the sybil identities, the “noise” from the non-guides can



0.00

0.05

0.10

0.15

0.20

0.25

10
4

10
6

10
8

10
10

p
e
r-

ro
u
n
d
 l
o
s
s

max # of sybil voters on any object

strategy #2; attack after day 0
strategy #2; attack after day 1
strategy #3; attack after day 0
strategy #3; attack after day 1

Figure 8. Alice’s per-round loss under example attack
strategies.

rarely be “strategically misleading”. Because of this, this
section (and the next section as well) presents our results
based only on the following specific perturbation: For each
vote from a non-guide, we change it to a vote for a random
bad object with probability of 0.5 (other probabilities yield
even lower loss).
Figure 7 illustrates Alice’s per-round loss when the attack
starts after Alice has used DSybil for a given number of days
(each day corresponds to 20 rounds). The results show that
DSybil’s growing defense is rather prominent. Even if Alice
has used DSybil for only one day before the attack starts, her
per-round loss dramatically drops from around 12% to 6%
(under M = 1010). If Alice has used DSybil for a month, her
per-round loss further drops to around 4%. Assuming that an
average honest user’s lifespan (of using DSybil) is one year,
and assuming that the attack starts at a random point of time,
364/365 ≈ 99.7% of the users will have used DSybil for a
day when the attack starts. We have also experimented with
higher popularity values. For example, for 0.1 popularity
and M = 1010, the per-round loss will be 0.70% if the attack
starts after day 1.

Figure 7 further shows that with some initial attack-free
rounds, Alice’s loss becomes less sensitive to M. This is
within expectation. Namely, larger M will result in smaller
seed trust for the critical guides. But the initial attack-free
rounds are likely to have already assigned seed trust (whose
value is independent of M) to most of the critical guides.

8.4. Loss under Example Attack Strategies

To illustrate DSybil’s behavior under attack, we present
DSybil’s loss under some example attack strategies, as
observed experimentally on our DSybil implementation. We
do not intend to be extensive or exhaustive here, since the
previous section already studied DSybil’s loss under the
worst-case attack. We continue with the exact same setting
from the previous section (with a pessimistic popularity of
0.01). As the baseline, our experiments show that when there
is no attack, Alice’s per-round loss is 1.3%. This non-zero
loss is essentially caused by those non-guides who have
different taste from Alice’s. In the next, we consider three

example strategies.
Strategy #1 is a naive one: For every bad object in each

round, the adversary simply uses M identities to vote on
it. The identities used on different objects (and in different
rounds) can either be the same or different. Our experiments
show that such attack has no effect on loss. This is easy to
understand—these sybil identities will never get any seed
trust in DSybil.

For Strategy # 2, on the first day of attack, the adversary
creates M sybil identities and split them into two equal sets
X1 and Y1. Each identity in X1 votes for all good objects in
that day, and each identity in Y1 votes for all bad objects. In
the second day, X1 is split into two equal-sized sets X2 and
Y2. Additionally, identities in Y1 are replaced with M/2 fresh
sybil identities. Half of fresh sybil identities are added to
X2 and the remaining half are added to Y2. Same as before,
identities in X2 vote for all good objects, while identities in
Y2 vote for bad objects. Such process is repeated for all the
remaining days.

For Strategy #3, initially, the adversary creates 100 sets
(since there are 100 good objects and 100 bad objects in
each day) of sybil identities where each set has M identities.
The execution (361 days) is broken into multiple segments,
where each segment consists of x + y days. For the first x
days of each segment, each of the 100 sets of M identities
votes for a distinct good object in each day. In the next y
days of each segment, each set votes for a distinct bad object
in each day. Our experiments show that using x = 5 and
y = 1 incurs the largest loss, and thus we use such setting.
We have also performed some simplified analysis (details
omitted), which indeed predicts that such setting will incur
the largest loss.

Figure 8 plots DSybil’s per-round loss under Strategy #2
and #3, when the attack starts after day 0 or 1. It is clear
that the loss is below the loss under the worst-case attack in
Figure 7.

9. Conclusion

This paper presented DSybil, a novel defense for dimin-
ishing the influence of sybil identities in recommendation
systems. DSybil has provable guarantees that are optimal.
Our evaluation showed that DSybil’s loss would remain small
even under a potential sybil attack launched from a million-
node botnet.
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Appendix

We prove Theorem 6 below first, and later use it to prove
Theorem 5.



Theorem 6: For any p (in the following 3 cases), M, and
any recommendation algorithm, we can always construct a
sequence of rounds, objects, and votes with the following
properties: The fraction of good objects in each round is at
least p, there are at most M sybil identities total, D f = 1 for
all 0 < f ≤ 1, and the algorithm will incur at least

• 1
2blog2 Mc expected loss if p = 0.5.

• 1
4 ·

⌊
1
p

⌋
·
⌊

log2 M
log2(1/p)

⌋
expected loss if 0 < p < 0.5.

• 1
2 ·

⌊
log2 M

log2(3/(1−p))

⌋
expected loss if 0.5 < p < 1.

Proof sketch: In all constructions below, there are M sybil
identities and exactly one honest identity (which is a guide).
When we say “remove an identity”, we mean that identity
will never vote again in future rounds.

Construction for p = 0.5. We construct a sequence of rounds
where each round has exactly one good object and one
bad object. In the first round, half of the M + 1 identities
(including the guide) vote for the good object and against
the bad object. The other half vote for the bad object and
against the good. Since the two objects and the votes on
them are completely symmetric, no algorithm can achieve
an expected loss of below 0.5 in this round. We then remove
those (M +1)/2 sybil identities voting for the bad object. In
the second round, the remaining identities again split into
two equal-sizes subsets, and repeat the previous procedure.
We can construct blog2(M + 1)c ≥ blog2 Mc such rounds
before running out of sybil identities. This then incurs at
least 1

2blog2 Mc expected loss for any algorithm.

Construction for 0 < p < 0.5. Let u = b1/pc. The first
round contains one good object and u−1 bad objects. We
partition all M +1 identities into u equal-sized sets. The set
of identities containing the guide will all vote for the good
object and against all other objects. Each of the other sets
will vote for one (distinct) bad object and against all other
objects. We replicate such construction u times to obtain a
total of u rounds (i.e., the objects in different rounds are the
same). We call these u rounds as the first phase.

In the first round, because all objects are symmetric, the
best thing that any algorithm can do is to pick a random
object. (This argument can also be made rigorous by a trivial
invocation of Yao’s Theorem [61].) If a bad object happens
to be selected, then the algorithm can “blacklist” that object
(potentially together with the set of identities voting for it).
Without loss of generality, we assume the algorithm will
never select that bad object in future rounds, since otherwise
the expected loss can only be larger. In the second round,
the remaining u− 1 objects are all still symmetric, which
implies that the best thing that any algorithm can do is to
pick a random object out of those u−1 objects. On the other
hand, if a good object happens to be selected in the first
round, the algorithm will never need to incur any loss in the

remaining rounds in the first phase.
To formalize, let random variable X denote the total loss

during the first phase. The event X = i (for 1 ≤ i ≤ u− 1)
happens when the algorithm picks bad objects in the first i
rounds, and then picks the good object in the (i+1)th round.
Thus we have Pr[X = i] = u−1

u · u−2
u−1 · . . . ·

u−i
u−i+1 ·

1
u−i = 1/u,

and also:

E[X ] =
u−1

∑
j=0

j ·Pr[X = j] =
u−1

2
=

1
2

⌊
1
p

⌋
− 1

2
≥ 1

4

⌊
1
p

⌋
After the first phase, we remove all identities except the

set containing the guide. We again split the remaining b(M +
1)/uc identities into u subsets, and then construct the second
phase in the same way. One can easily show that we can
construct blogu(M +1)c ≥

⌊
log2 M

log2(1/p)

⌋
phases before running

out of sybil identities. This then yields a lower bound of
1
4 · b

1
pc ·

⌊
log2 M

log2(1/p)

⌋
on expected loss.

Construction for 0.5 < p < 1. Here we will need to construct
the next round adaptively based on the algorithm’s choices in
the previous rounds. Let u = d 2

1−pe. The first round contains
exactly one bad object and u−1 good objects. We partition
all identities into u equal-sized sets. The set of identities
containing the honest identity will all vote against the single
bad object and vote for the u−1 good objects. Each of the
other u−1 sets will vote against one (distinct) good object
and vote for all other objects.

Because all objects are symmetric in the first round, the
best thing that any algorithm can do is to pick a random
object. Let the object picked be O. If O is bad, then we
construct a trivial round and replicate it u/2−1 times as the
next u/2−1 rounds. The trivial round will contain only one
good object and all identities vote for it. If O is good, then
we remove the set of (sybil) identities voting against O. The
second round will contain exactly one bad object and u−2
good objects. Similar as the first round, the set of identities
containing the honest identity will vote against the single
bad object and vote for the u−2 good objects. Each of the
other u−2 sets will vote against one (distinct) good object
and vote for all other objects. All objects are thus again
symmetric in the second round. We continue such process
for u/2 rounds. One can easily confirm that the fraction of
good objects in all the rounds is at least p.

We call the above u/2 rounds as the first phase. The
probability that the algorithm never picks the bad object
during the first phase is u−1

u · u−2
u−1 · ... ·

u−(u/2)
u−(u/2)+1 = 1

2 . Thus
with probability 1

2 , the algorithm will pick the bad object
and incur 1 loss. The expected loss thus is 1

2 .
Finally, after the first phase, we remove all identities except

the subset containing the honest identity. We again split the
remaining identities into u subsets and repeat the process.
One can easily show that we can construct blogu(M +1)c ≥⌊

log2 M
log2(3/(1−p))

⌋
phases before running out of sybil identities.



This then yields an expected loss of at least 1
2 ·

⌊
log2 M

log2(3/(1−p))

⌋
.

2

Proof for Theorem 5: We simply use Theorem 6 to
construct D independent executions and then concatenate
them together. Because there is at least one good object per
round and one honest identity per execution (different in
each execution), we have that D f , the smallest number of
guides that can cover an f > 0 fraction of the good objects
in every round, is D . 2


