
Efficient Error Estimating Coding:
Feasibility and Applications

∗

Binbin Chen Ziling Zhou Yuda Zhao Haifeng Yu
National University of Singapore

Republic of Singapore

{chenbinb, zhouzl, zhaoyuda, haifeng}@comp.nus.edu.sg

ABSTRACT

Motivated by recent emerging systems that can leverage partially

correct packets in wireless networks, this paper investigates the

novel concept of error estimating codes (EEC). Without correcting

the errors in the packet, EEC enables the receiver of the packet to

estimate the packet’s bit error rate, which is perhaps the most im-

portant meta-information of a partially correct packet. Our EEC

algorithm provides provable estimation quality, with rather low re-

dundancy and computational overhead. To demonstrate the utility

of EEC, we exploit and implement EEC in two wireless network

applications, Wi-Fi rate adaptation and real-time video streaming.

Our real-world experiments show that these applications can sig-

nificantly benefit from EEC.

Categories and Subject Descriptors

E.4 [Coding and Information Theory]: Error control codes; C.2.1
[Computer-Communication Networks]: Network Architecture
and Design – Wireless communication

General Terms

Algorithms, Design, Experimentation, Performance

Keywords

Error Estimating Coding, Bit Error Rate, Partially Correct Packet,
Partial Packet, Error Correcting Coding

1. INTRODUCTION
Error correcting codes [22] have long been playing a key role in

serving the performance and reliability needs in wireless networks.
Over the years, researchers have proposed numerous interesting er-
ror correcting codes. The traditional philosophy behind error cor-
rection is that the application/ network can or should only use/relay
completely correct packets.

Recent advances in wireless networking, however, have invali-
dated this assumption. In particular, many designs [9, 10, 12, 18,

∗The first two authors of this paper are alphabetically ordered.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’10, August 30–September 3, 2010, New Delhi, India.
Copyright 2010 ACM 978-1-4503-0201-2/10/08 ...$10.00.

19, 21, 34, 37] now leverage information in a packet that is partially
correct (i.e., some bits are correct but others are corrupted). Such a
partial packet can be useful when:

• The destination may be able to obtain incremental redun-
dancy from the source to recover the partial packet (i.e., in-
cremental redundancy ARQ) [21].

• The destination may collect and combine multiple partial
packets to obtain a correct copy [9, 12, 18].

• The packet has forward error correction (i.e., pre-encoded
with error correcting codes), and thus can potentially fully
recover the errors. For example, forward error correction is
often used in real-time video streaming to tolerate errors in
wireless networks [10, 37].

• The application may be able to directly use partial packets
to some extent. For example, for image or video packets,
a partially correct packet can still carry useful information
(where the information amount depends on the number of
errors in the packet) [19, 34].

Given these designs, a natural question is whether there is a benefit
looking beyond error correcting codes.

This paper takes the first step in answering this question, by
investigating the novel concept of error estimating codes (EEC).
Without actually correcting the errors in the packet, EEC enables
the receiver to estimate the fraction of corrupted bits in the packet,
which is perhaps the most important meta-information of a par-
tial packet. We call such fraction as the the packet’s bit error rate

or BER. Here the receiver of the packet may or may not be the
packet’s final destination. In particular, it can be a wireless router
that is oblivious to how the application will eventually use/recover
the partial packet.

The utility of EEC depends on two key questions:

Feasibility Is it possible to construct highly efficient EEC? In par-
ticular, EEC’s redundancy and computational overhead must
be substantially smaller than error correcting codes, since
otherwise one should just directly use error correcting codes
to correct the errors.

Applications Does the BER meta-information provided by EEC
significantly benefit upper-layer applications?

Affirmative answers to these two questions would imply that EEC
indeed achieves a new and interesting tradeoff point, on the spec-
trum between overhead and functionality. Such tradeoff point was
not previously available with error correcting codes.

Efficient EEC: Feasibility. This paper provides affirmative an-
swers to both questions above, thus confirming the utility of the



novel concept of EEC. First for feasibility, we propose a novel EEC
algorithm that only needs to add O(log n) extra bits to the packet (n
being the number of data bits) to estimate BER. As concrete numer-
ical examples in the two EEC applications that we implement (de-
scribed later), the relative redundancy added to each packet is only
about 2%. In fact in cases where we only need to estimate whether
the BER exceeds a certain threshold, the redundancy added by EEC
is only 4 bytes (as in one of our two applications). Such a small re-
dundancy makes it possible to even view EEC as generalized CRC.
Namely, CRC tells us whether the BER exceeds 0, while EEC can
tell whether the BER exceeds any given threshold. We also triv-
ially show that error correcting codes, in order to correct the errors,
would require much higher redundancy.

In addition to low redundancy, our EEC algorithm also incurs
rather small O(n) computational overhead. Experiments show that
on a typical hardware platform (Soekris net5501-701) for wireless
mesh networks, our software-implemented EEC algorithm can pro-
cess packets at maximum 802.11a/g data rate. Again, we trivially
show that software-implemented error correcting codes (such as
Reed-Solomon codes [22]) would be much slower (10 to 100 times
slower), which prevents today’s commercial 802.11 devices from
using these codes in software at Wi-Fi data rate.

In terms of estimation quality, our EEC algorithm provides for-
mal and provable guarantee on the BER estimation accuracy. The
algorithm does not make any assumption on the positions of the
corrupted bits in a packet, and in particular, does not assume inde-
pendent errors. The corrupted bits may be correlated in an arbitrary
and unknown way (e.g., fully clustered or widely spread).

Achieving these salient properties in our EEC algorithm is non-
trivial. At a high level, the algorithm defines logarithmic number
of randomized groups of data bits (in the packet), with geomet-
rically distributed group sizes. It then infers the total number of
errors in the packet based on the parity of the number of the errors
(i.e., whether the number is odd or even) in each group. It may
appear that parity provides rather limited information – it cannot
even distinguish 3 errors from 1 error. Interestingly and as the key
technical step in the design, we show that under certain conditions
that our design meets, even rather limited (i.e., logarithmic) amount
of parity information can almost tell us the exact number of errors
(instead of just the parity) in a group.

Efficient EEC: Applications. To see whether EEC helps upper-
layer applications, we first sketch out how the BER information
provided by EEC can naturally be beneficial in a number of sce-
narios [2, 7, 14, 16, 18, 20, 21, 23, 25, 38, 32]. Specifically, EEC
can enable new techniques such as BER-aware packet retransmis-
sion/scheduling/forwarding, BER-aware routing, and wireless car-
rier selection based on per-packet BER.

Out of these, we implement two representative applications (Wi-
Fi rate adaptation and real-time video streaming) and incorporate
our EEC implementation into these two applications. In Wi-Fi rate
adaptation, EEC enables the system to adapt rate based on the fine-
grained and direct per-packet BER information provided by EEC.
This helps to achieve much better rate adaptation than previous
schemes [2, 11, 38] that rely on course-grained packet loss statis-
tics or indirect measures such as Signal-to-Noise Ratio. In multi-
hop real-time video streaming with forward error correction [10,
37], EEC enables the intermediate forwarding wireless routers to
determine whether the packet’s BER exceeds the error correction
threshold. A retransmission is requested if and only if the BER
exceeds the threshold. Such BER-aware retransmission has clear
advantage over schemes that simply forward all partial packets (in

1http://www.soekris.com/net5501.htm

the hope that the destination can recover the packets with forward
error correction) [32] or simply require retransmission to correct all
partial packets.

Our real-world evaluation of these two applications clearly demon-
strates EEC’s utility: When compared to state-of-the-art approaches,
our BER-guided Wi-Fi rate adaptation scheme achieves up to 50%
higher goodput in walking scenarios and up to 130% higher good-
put in outdoor challenging environments. For real-time video stream-
ing, BER-aware retransmission achieves up to 5dB gains on the
PSNR [26] of the streamed video. PSNR difference that is above
0.5dB is considered visually noticeable [31].

In the next, Section 2 explains how EEC can benefit various ap-
plications. Our EEC design, implementation, and evaluation are
presented in Section 3 and 4. Section 5 and Section 6 detail the
implementation and evaluation of the two applications. Finally,
Section 7 discusses related work, and Section 8 draws the conclu-
sions. Our EEC implementation source code is publicly available
at http://www.comp.nus.edu.sg/~yuhf/eec_impl.html.

2. EEC APPLICATIONS
Given that many designs [9, 10, 12, 18, 19, 21, 34, 37] in wireless

networks can now use partial packets, this section examines how

the BER meta-information of partial packets can benefit the appli-

cation. The simplest usage example is perhaps to use the BER to
predict the amount of incremental redundancy needed, in various
incremental redundancy ARQ schemes [21]. However as shown
next, BER information can benefit the applications in much more
interesting ways.

In the next we will explain how the sender and the receiver of a
partial packet can leverage the packet’s BER information, respec-
tively. The receiver can obtain the BER information from EEC,
while the sender can obtain the information via receiver feedback.
The sender/receiver does not need to be the source/destination of
the message, and can be a forwarding router in a multi-hop wireless
network. While the source and destination are able to use/recover
partial packets, we allow the sender/receiver to be oblivious to how
the partial packets will be used/recovered (e.g., oblivious to the spe-
cific forward error correction scheme used). Allowing the routers
to be oblivious is critical to supporting various applications with
their different ways of using partial packets.

2.1 Using BER Information on Sender
The BER of the packets contains valuable information about the

current wireless carrier, where the carrier can include factors such
as the modulation and coding scheme, frequency band, transmis-
sion power setting, and routing path. For systems that can use
partial packets, this fine-grained and direct BER information en-
ables the sender to better (and adaptively) select a carrier with the
best goodput. Here goodput is defined as the number of useful
(application-level) bits per second that the system can transmit. The
following presents some concrete examples.

Wi-Fi rate adaptation. In Wi-Fi networks, a sender has the choice
over different data rates. Higher rate means larger number of bits
transmitted per second, but also with higher probability of error.
Rate adaptation thus aims to select the best data rate, dynamically
based on the time-varying wireless channel condition. Previous
rate adaptation schemes are often based on coarse-grain informa-
tion (such as packet delivery ratio [2, 38]), or indirect information
(such as SNR [13, 4]) that needs in-situ training. In comparison, the
fine-grained and direct BER information provided by EEC enables
the sender to better find a rate with the best goodput. Section 5 will
present our implementation and evaluation of this application.



The above discussion can also be generalized to using per-packet
BER information for better selection of wireless channel [25], trans-
mission power [16], or directional antenna orientation [23].

BER-aware routing. In a multi-hop wireless network, a source can
often choose among different routes to send packets to the destina-
tion, which can be viewed as one kind of carrier selection. Existing
route selection schemes [7] usually consider correct (full) packet
delivery only, and thus optimize for minimizing the expected num-
ber of transmissions (including retransmission of partial packets)
needed to deliver the packet. For systems that can use partial pack-
ets, one would imagine that the route selection process should in-
stead optimize for maximizing the goodput of the end-to-end route.
Obviously, EEC can readily provide the BER information for each
wireless link to enable such route selection.

2.2 Using BER Information on Receiver
Instead of feeding back the BER information to the sender, the

receiver of a partial packet can also directly utilize such informa-
tion. We focus on scenarios where the receiver itself is an interme-
diate router in a multi-hop wireless network. Following are some
concrete examples showing how the receiver can use the BER in-
formation to make informed decisions when processing a partial
packet.

BER-aware packet retransmission. Today wireless mesh net-
works have been widely deployed as a cost-effective way to pro-
vide Internet access for both urban [1] and rural areas [5]. To en-
able services such as remote learning and remote health-care, there
are strong demands to support real-time multimedia applications
(e.g., video chatting, video conferencing, and VoIP) in these net-
works [29]. Let us take real-time video streaming as an example.
To deal with errors in wireless communication, the source often
adds forward error correction on the packets, to avoid the extra de-
lay involved in packet retransmission [10, 37]. With forward error
correction, the receiver (router) will now simply forward all pack-
ets (correct or partial) to the next hop [32], with the hope that the
final destination can recover the partial packets via error correction.
But with the time-varying quality of the wireless links, it is imprac-
tical to add sufficient error correction redundancy to ensure that all

partial packets can be recovered.
The BER information provided by EEC conveniently enables the

receiver (router) to avoid this problem. Namely, the source (know-
ing the details of the forward error correction applied to the packet)
can easily include a threshold in the packet header, indicating the
maximum BER that the forward error correction can tolerate. The
router can now request retransmission of those packets whose BER
exceeds such threshold (which will likely be a small fraction), in-
stead of naively relaying the packets to the next hop. Section 6 will
present our implementation and evaluation of this application.

Of course, an alternative approach would be for the receiver to
decode the error correcting code on the partial packet, and request
retransmission if decoding fails. But this will require the router to
be non-oblivious and to know the exact error correcting mechanism
employed by the application. Furthermore, as we will show later,
the computational overhead of error correcting codes may prevent
the router from decoding (in software) at Wi-Fi data rate.

BER-aware packet scheduling. Consider a wireless image sensor
network for emergency response (e.g. forest fire, flood, or earth-
quake). In such scenarios, the system needs to send back as much
information as possible and as fast as possible [14]. For image
data, a partially correct packet often still carries useful information,
where the information can be a function of the packet’s BER. As
the data funneling to the base station, the BER information on the
packets enables the sensors to prioritize the forwarding of packets

with lower BER. Doing so will maximize the amount of informa-
tion collected by the base station at any given time point.

BER-aware packet forwarding. In a typical setting of coopera-

tive relay [18], a dedicated relay node may help one node A to bet-
ter transmit packets to another node B (within A’s radio range). The
relay node, within the radio range of both A and B, simply relays
the packets that it overhears from A to B. B will eventually combine
these (potentially partial) packets. When relaying, the relay node
can choose between amplify-and-forward (AAF) and decode-and-

forward (DAF). DAF can remove noise before forwarding, but suf-
fers from error propagation if the decoded packet contains many er-
rors. AAF has the exactly opposite property. Researchers thus sug-
gest [20] that ideally the relay should adaptively choose between
the two depending on the error level of the packet. The quantitative
BER information provided by EEC naturally fits such needs.

3. EEC DESIGN
This section describes our EEC algorithm and its formal guar-

antees. While the algorithm is elegant at the implementation level,
the algorithmic ideas can be more complex. We will thus focus on
the intuition, and leave the rigorous arguments to the proofs in [6].

3.1 Error Estimation Formal Framework
Let n denote the total number of data bits in a packet (see Ta-

ble 1 for a summary of notations in this section). From the n data
bits, the EEC encoding process will generate k EEC bits for error
estimation later. The sender will send these n + k bits in a packet

to the receiver. Here the notion of a packet is logical: It can be
an 802.11 packet, or a segment in an 802.11 packet, or multiple
802.11 packets (in which case EEC will estimate the average BER
over these multiple 802.11 packets).

We model a packet as n + k slots, where each slot holds exactly
one bit. A slot may be erroneous and cause the bit in that slot to
be flipped during transmission, and that flipped bit is called an er-

ror2. A slot that is not erroneous is called correct. Let p denote the
fraction of erroneous slots, or equivalently, the BER of the packet3.
Notice that p is a fraction instead of a probability. The (n+k)p er-
rors may be in arbitrary positions in the packet. In particular, the er-
rors may be correlated in an arbitrary and unknown way (e.g., fully
clustered or widely spread). The randomization used in the EEC
algorithm exactly serves to deal with such (arbitrary) correlation,
and our algorithm does not assume that the errors are independent.

The goal of EEC is to use the EEC bits to output an estimation
(p̂) for p, with certain estimation quality. We use the standard (ǫ, δ)
guarantee as the metric for quality. The estimation p̂ is said to be
an (ǫ, δ)-approximation of p if Pr[(1 − ǫ)p ≤ p̂ ≤ (1 + ǫ)p] ≥
1 − δ. Here the probability is taken over the random coin flips
in the randomized algorithm. To help understanding in the next,
Section 3.2 through 3.5 assume p ≤ 1/4. Section 3.6 removes this
assumption, without compromising any of the guarantees achieved.

2Theoretically speaking, whether a bit in a slot is flipped not only
depends on the slot (i.e., transmission time), but also may depend
on whether the bit is 0 or 1. However, given the scrambling (ran-
domization) and modulation steps [30] in wireless communication
systems today, this will not happen on today’s wireless hardware.
3Here p does not necessarily equal the BER of the data bits in the
packet, since the packet contains both data bits and EEC bits. How-
ever, since usually the EEC bits comprise a rather small fraction of
the packet (i.e., < 5%) and because the EEC bits are inserted into
uniformly random slots, the BER of the data bits and the BER of
the whole packet make no real difference in practice.



n # of data bits in a packet
k # of EEC bits in a packet (i.e., s × l)
s # of EEC bits in one level
l # of EEC levels
g # of data bits in one group
p fraction of erroneous slots in a packet

p0 fraction of erroneous data bits in a packet
c1, c2 algorithm constants (c1 = 0.25, c2 = 0.4)

φ(x, y) the sum of all the odd terms in a binomial
distribution B(x, y)

Table 1: Key notations in EEC algorithm.

3.2 EEC Algorithm Overview
Our EEC algorithm has three procedures, for encoding at the

sender, decoding at the receiver, and estimating BER at the re-
ceiver, respectively. These procedures are all randomized. The
sender and the receiver should use the same random seed to initial-
ize their pseudo-random number generators, so that they generate
the same random sequence.

Algorithm 1 EEC Encoding Procedure.

1: for i = 1 to ⌊log2 n⌋ do

2: for j = 1 to j = s do

3: Select 2i − 1 data bits where each bit is chosen indepen-
dently and uniformly randomly (with replacement) out of
the n data bits;

4: Compute a parity bit (as an EEC bit) for them;
5: end for

6: end for /* Total k = s · ⌊log2 n⌋ = s · l EEC bits. */
7: Place the EEC bits (in arbitrary order) into k uniformly random

positions in the packet;
8: Place the data bits (in arbitrary order) into the remaining n po-

sitions in the packet;

The encoding procedure (Algorithm 1) adds l = ⌊log2 n⌋ levels

of EEC bits to the original data, with s EEC bits per level. Thus
the total redundancy introduced is k = l × s bits. The value of s
determines the estimation quality (i.e., ǫ and δ). An EEC bit at level
i (1 ≤ i ≤ l) is simply the parity bit for 2i−1 randomly chosen data
bits (Figure 1). Each of these 2i − 1 data bits is chosen uniformly
randomly and independently (with replacement) from the original
n data bits. We repeat such process (independently) to obtain s
EEC bits for each level. Since the encoding procedure does not
modify the original data bits, decoding is trivial and thus we do not
include the pseudo-code here.

Algorithm 2 EEC Estimating Procedure.

1: for i = 1 to i = ⌊log2 n⌋ do

2: Compute the fraction (qi) of parity bits at level i that fail
parity check;

3: if q1 ≥ c2 then

4: Output p̂ = 1/4 and exit;
5: end if

6: if c1 < qi < c2 then

7: Output p̂ = qi/2
i and exit;

8: end if

9: end for

10: Output p̂ = 0 and exit;

The estimating procedure (Algorithm 2) estimates the BER of
the packet. For each level i (1 ≤ i ≤ l) of the EEC bits, the

level 3
parity bits

level 1
parity bits

level 2
parity bits

data bits data bits data bits

Figure 1: The first three levels of EEC bits (s = 2).

procedure computes the fraction (denoted as qi) of the s parity bits
that fail the parity check. (Usually these qi’s will be monotonically
increasing.) Then if the algorithm finds a qi that falls within a range
(c1, c2) where c1 and c2 are algorithm constants, it will estimate p
to be qi/2

i and then exits. The algorithm also needs to handle two
corner cases. First, at the very first level, if the algorithm finds that
q1 ≥ c2, it directly outputs 1/4 as the estimation (i.e., the largest
p possible since we assume p ≤ 1/4 in the section). Second, if
q1 < c2 and the algorithm fails to find a qi ∈ (c1, c2), the algorithm
simply outputs 0.

3.3 Using One Bit to Sample a Group of Bits
To better explain the intuition, this section first assumes that all

the k EEC bits are in correct slots (i.e., they will not be flipped).
We will aim to estimate the fraction p0 of errors among the data
bits (instead of the fraction p of errors among all bits). We will
remove the assumption and explain how to estimate p toward the
end of this section.

Naive sampling and the challenge. The first natural idea for esti-
mating p0 is to sample some small number of data bits, uniformly
randomly out of the n data bits. If x fraction of the sampled bits are
flipped, we simply output x as an estimation for p0. To determine
whether a sampled data bit is flipped during transmission, we can
simply use an EEC bit (which is assumed to be in a correct slot)
to replicate that data bit. We can tell whether the data bit has been
flipped by comparing the EEC bit with the data bit. Equivalently,
one can also insert known bits (typically called pilot bits) into the
packet as samples.

The challenge in this naive sampling approach arises however,
when p0 is small. This is particularly relevant in error estimation
context, since packet BER tends to be a small value in most cases.
For example when p0 = 0.02, on expectation we only see 1 error
out of every 50 data bits sampled. Before seeing enough errors, the
estimation quality on p0 will be poor. To make it more concrete, in
the two EEC applications that we implement, the EEC redundancy
added is 36 bytes and 24 bytes per 1500-byte packet respectively.
The ratio of EEC bits to data bits will only need to be about 2%.
We have also performed simple experiments showing that if one
were to use naive sampling to achieve similar estimation quality,
the redundancy needed will be roughly 600 bytes and 450 bytes
per 1500-byte packet, respectively. This translates to a ratio (of
EEC bits to data bits) of above 40%.

Such drawback of naive sampling is fundamental. A well known
lower bound [8] shows that to obtain an (ǫ, δ) estimation quality,
the number of samples taken needs to reach Ω( 1

p0

1

ǫ2
log 1

δ
). The

1

p0

term exactly shows that naive sampling will incur prohibitive
overhead when BER is small.

Sample groups of data bits. The above discussion already hints
that it might help if we can sample multiple data bits together. For
example, imagine that we define groups of bits where each group
has 50 data bits. Suppose that the redundancy needed to sample a
group is constant and is independent of group size. Then even with



 0

 0.2

 0.4

 0.6

0 2 4 6 8

(a) p =1/(2g)
0 2 4 6 8

(b) p =1/g

g=15 even
odd

0 2 4 6 8

(c) p =2/g
0 0 0

Figure 2: Probability of having x (0 ≤ x ≤ 15) number of

errors in a group with 15 data bits.

low levels of redundancy, we will encounter sufficient number of
errors even for p0 = 0.02.

We now need to clarify exactly what information we want to
obtain when sampling a group. For example, we can require that
sampling a group should tell us the number of errors in a group.
While such information is quite useful, it is rather hard to provide
with low redundancy. Another example is that sampling a group
will tell us whether the group contains any error. This information
is less useful, but is also easier to provide (e.g., by adding a CRC
to each group).

In our algorithm instead, we only use a single parity bit for each
group. Obviously a single parity bit provides only rather limited
information – it only tells us whether the number of errors in the
group is odd or even. In fact, it cannot even distinguish 3 errors
from 1 error. Quite interestingly, as the key step in our EEC design,
we are able to show that logarithmic number of parity bits is already
sufficient for error estimation.

Key step 1: Parity information is sufficient when p0 is small

enough. Consider a group with g data bits. Regardless of the po-
sitions of the erroneous slots, if we choose each of the g bits inde-
pendently and uniformly randomly (with replacement) out of the n
data bits, then each of them is flipped with probability p0 indepen-
dently. The number of errors in the group thus follows a binomial
distribution. This is important since it means that we do not need
to consider adversarial distributions.

Our first intuition is that when p0 is small enough, then the prob-
ability mass will mostly concentrate on having 0 or 1 error, since
the chance of having more than 1 error in the group is much smaller.
For example for p0 ≤ 1

2g
and g = 15 (see Figure 2 (a)), the proba-

bility of having more than 1 error is always below 0.09. This in turn
means that if the parity check succeeds (i.e., the number of errors
is even), then it is very likely that the number of errors is actually
0 (instead of 2, 4, or other even numbers). Similarly, if the parity
check fails, it is very likely that the number of errors is exactly 1.
In other words, here the parity bit almost tells us the exact number
of errors in a group.

Key step 2: Parity information can be used to test whether p0

is small enough. The above idea may appear circular since our
goal is exactly to estimate p0 and thus we do not know whether
p0 is small enough beforehand. For convenience, we define the
probability of having odd number of errors in a group with g data
bits as φ(g, p0). In other words, φ(g, p0) is the sum of all the odd
terms in a binomial distribution B(g, p0).

Our second intuition is that when p0 is not small enough, then
φ(g, p0) will exceed a certain threshold. Continuing with our nu-
merical example, if p0 > 1

2g
and g = 15 (see Figure 2 (b) and

(c)), then φ(g, p0) will exceed 0.32. Fundamentally, this is be-
cause when p0 > 1

2g
, the mean of the binomial distribution is away

from 0. This makes the sum of the odd terms and the sum of the
even terms in the binomial distribution comparable. In fact, when
the mean is above 1, the sum of the odd terms and the sum of the
even terms should both be roughly 0.5.

Now remember that parity check on a group fails exactly when
the number of errors is odd. Thus if we use multiple (independent)
groups (each with a parity bit) of the same size, we will be able to
estimate whether φ(g, p0) is too large. This in turn, tells us whether
p0 is small enough.

Removing the two assumptions. So far our discussion has been
assuming that the EEC bits are always in correct slots and we only
estimate p0. To remove these restrictions, our encoding algorithm
(Step 7 and 8 in Algorithm 1) inserts the k EEC bits into k uni-
formly random positions within the packet. The n data bits will go
into the remaining n positions in the packet. Each EEC and data
bit now has the same probability (p) of being in an erroneous slot,
though all these probabilities are correlated. Now the probability
of parity failure on a group with g data bits is roughly φ(g + 1, p).
It is only “roughly” because of correlation. Our formal analysis in
Theorem 1 will take into account such correlation.

3.4 Geometrically Distributed Group Sizes

Single-level EEC. Putting the above ideas together gives us what
we call single-level EEC. Here we use s independent groups, where
each group consists of g data bits and 1 EEC bit. The parameter g
determines the range of p that we can estimate. The receiver uses
the information in the s EEC bits twice in the following way.

At the first step, we check the parity bits to determine the fraction
q of parity failures. This fraction q can be viewed as a random
variable, whose expectation is roughly φ(g + 1, p). If q > c2

where c2 being an algorithm constant, we know that p is probably
too large and the parity bits do not carry much information about p.
Thus the algorithm simply stops without outputting anything.

We move on to the second step when q ≤ c2, which implies a
small p. A small p in turn implies that the parity bits almost tell
us the exact number of errors in a group. Now we simply treat the
total number of parity failures s · q as the total number of errors
among all the s · (g + 1) bits, and output p̂ = q/(g + 1).

Finally, for exactly the same reason as in naive sampling, the
above estimation for p only succeeds when we see enough number
of errors (i.e., when s · q is large enough). Thus the algorithm only
outputs an estimation if q ≥ c1 for some algorithm constant c1

where c1 < c2. If the condition is not met, then the algorithm
again stops without outputting anything.

Roughly speaking, the single-level EEC algorithm will success-
fully estimate p when q ∈ (c1, c2). E[q] is roughly φ(g + 1, p),
and φ(g + 1, p) can be shown to be monotonically increasing with
p. Thus if we define p1 and p2 such that φ(g + 1, p1) = c1 and
φ(g+1, p2) = c2, then the single-level EEC algorithm will be able
to produce an estimation for p when p ∈ (p1, p2).

Multi-level EEC. One can easily extend the single-level EEC al-
gorithm to multi-level, so that we can properly estimate all p ∈
[1/n, 1/4]. All we need is to use l = ⌊log2 n⌋ levels of groups,
where a group at the ith level has g = 2i − 1 data bits and 1 par-
ity bit. Our goal is to ensure ∀p ∈ [1/n, 1/4], there always exists
some level i such that φ(2i, p) falls within (c1, c2). Figure 3 pro-
vides some numerical examples for φ(2i, p) at different level i, and
highlights which φ(2i, p) falls within (c1, c2).

The fundamental reason why our goal can be achieved is that
φ(2i, p) monotonically increases with i, and the increase rate is
well bounded. Specifically, to achieve our goal, we first set c2 such
that φ(2, p) < c2 for all p ≤ 1/4. This guarantees that regardless
of how large p is, φ(2i, p) < c2 at least at the first level. Second,

we set c1 such that φ(2⌊log2 n⌋, p) > c1 for all p ≥ 1/n. This
guarantees that regardless of how small p is, φ(2i, p) > c1 at least
at the last level.



φ(2i, p) i = 1 2 3 4 5 6

p = 0.25 0.38 0.47 0.50 0.50 0.50 0.50

p = 0.05 0.095 0.17 0.28 0.40 0.48 0.50

p = 0.01 0.020 0.039 0.075 0.14 0.24 0.36

Figure 3: φ(2i, p) (which is also roughly the expectation on qi)

at level i (1 ≤ i ≤ ⌊log2 n⌋), for n = 100 and under different

p values. We also highlight the φ(2i, p) that falls within (c1 =
0.25, c2 = 0.4).

Finally, we ensure sufficient gap between c1 and c2, so that some
φ(2i, p) will fall between c1 and c2. Let j be the largest i (1 ≤ i ≤
⌊log2 n⌋ − 1) such that φ(2i, p) ≤ c1. If such j does not exist, it
already means that φ(2, p) ∈ (c1, c2). If such j exists, we require
c2 to be such that φ(2j+1, p) < c2, which means level j + 1 will
be the level where φ(2j+1, p) ∈ (c1, c2). The constraints so far on
c1 and c2 are summarized below:

φ(2⌊log2 n⌋, p) > c1

φ(2, p) < c2

φ(2j+1, p) < c2, where j is the largest i

such that φ(2i, p) ≤ c1

One can show that the above constraints can be satisfied by all
c1 and c2 where c1 < 0.3, c2 > 0.375, and c2 > 2c1(1 − c1).
For better estimation quality, c1 should be as large as possible (so
that the number of errors we see when estimating p is large), while
c2 should be as small as possible (so that the parity information
can better predict the exact number of errors). Thus in our EEC
algorithm, we simply pick c1 = 0.25 and c2 = 0.4.

Flexible number of levels. Many applications (including the two
applications that we implement) needs BER estimation only when
p is within some range [a, b]. For example, in our Wi-Fi rate adap-
tation application, the application only needs to estimate p when
p ∈ [1/1000, 0.15]. For p > 0.15 (or p < 1/1000), all the appli-
cation needs to know is that p is close to or above 0.15 (or close
to or below 1/1000). Our second real-time video streaming appli-
cation does not even need to estimate p — all it needs to know is
that whether p exceeds 0.01. One can consider that this application
only needs BER estimation when p ∈ [(1−ǫ) ·0.01, (1+ǫ) ·0.01].

For these applications, it is possible to avoid using all ⌊log2 n⌋
levels, and to further reduce the redundancy of EEC. In some cases
(e.g., in real-time video streaming), the reduction enables us to use
only one EEC level with 32 bits. Such low redundancy is even
comparable to CRC overhead.

To see which levels we should keep, we only need to check
which levels will be used at Step 7 of Algorithm 2 for p ∈ [a, b].
Let l1 be the level used when p = b, which means that roughly
φ(2l1 , b) ∈ (c1, c2). Solving the equation will give us l1. Simi-
larly, we find l2 such that φ(2l2 , a) ∈ (c1, c2). The algorithm only
needs to keep all levels from level l1 to level l2 (both inclusive).

An optimization — Adjustment at Step 7. We explained ear-
lier that when qi falls within the proper region, if the parity check
fails, the number of errors in the corresponding group is most likely
to be 1. However, the probability of having other odd number of
errors is not 0. Thus to be more accurate, instead of simply estimat-
ing p as qi/2

i, Step 7 now directly solves the p from the equation
φ(2i, p) = qi as the final estimation. The solution [6] for this equa-

tion is p = (1 − (1 − 2qi)
2−i

)/2.

3.5 Formal Guarantees
We will prove that in order to produce an (ǫ, δ) approximation

for p with constant ǫ and δ, EEC only need to add O(log n) EEC
bits (or more specifically, O(log n) levels with O(1) bits per level)
to the original n data bits.

THEOREM 1. Consider any given positive constants ǫ and δ.

For sufficiently large n, there exists constant s = O(1) such that

using s in our EEC algorithm (together with input a and b where

1/n ≤ a < b ≤ 1/4) will provide the following guarantee: With

probability at least 1 − δ,

• If p ∈ [a, b], output p̂ where p̂ ∈ [(1 − ǫ)p, (1 + ǫ)p].

• If p < a, output p̂ where p̂ ≤ (1 + ǫ)a.

• If p > b, output p̂ where p̂ ≥ (1 − ǫ)b.

The theorem’s proof is available in [6]. The conditions of n be-
ing sufficiently large, 1/n ≤ a, and b ≤ 1/4 are not actually
necessary for the theorem to hold, if we apply virtual padding (de-
scribed in the next section) to the packet before it is encoded. Our
next theorem is about EEC’s computational overhead, whose proof
is trivial:

THEOREM 2. The EEC encoding, decoding, and estimating time

complexity are all O(n).

3.6 Further Discussion
Virtual padding is mainly for theoretical interests and serves to

remove the artificial conditions in Theorem 1. Conceptually, virtual
padding pads additional dummy bits to the data bits for encoding
and for estimating BER. The sender does not send these dummy
bits to the receiver, thus the padding does not increase the redun-
dancy added. See [6] for details on virtual padding.

Second, when estimating p, currently our algorithm only uses
the information (i.e., qi) from one particular level i. One would
imagine that while the information from other levels is not of as
high quality, it can still be useful. Our technical report [6] explains
how to combine information from more than one level for better
estimation, together with formal proofs.

Finally, when implementing EEC, we apply standard optimiza-
tions (such as pre-computation and lookup tables) that are com-
monly used for implementing other codes (e.g., Reed-Solomon
codes [22]). We leave the details to [6].

4. EEC’S REDUNDANCY AND

COMPUTATIONAL OVERHEAD
This section quantifies the redundancy and computational over-

head of EEC in practical scenarios, and further compares against er-
ror correcting codes. Since error correcting codes provide stronger
functionality than EEC, any comparison here will be an apple to
orange comparison. Rather, our comparison intends to show that
EEC provides a new interesting point on the tradeoff spectrum be-
tween overhead and functionality.

Obviously, the overhead of the codes depends on the relevant pa-
rameters (e.g., EEC overhead will be close to zero when s = 1). To
be meaningful, we quantify EEC’s redundancy and computational
overhead under the EEC parameters that we use later in our two
applications. Conveniently, the EEC parameters in those two appli-
cations happen to differ substantially (due to different application
needs), allowing a more comprehensive comparison. See Section 5
and 6 for why the two applications use these particular EEC param-
eters. There are many kinds of error correcting codes, and we use



 0.01

 0.1

 1

 10

 100

 0.0001  0.001  0.01  0.1

m
ill

is
e

c
o

n
d

s

Bit Error Rate

RS-code decoding
RS-code encoding

EEC encoding
EEC estimating
EEC decoding

 0.01

 0.1

 1

 10

 100

 0.0001  0.001  0.01  0.1

m
ill

is
e

c
o

n
d

s

Bit Error Rate

RS-code decoding
RS-code encoding

EEC encoding
EEC estimating
EEC decoding

(a) Under parameters in Wi-Fi rate adaptation (b) Under parameters in video streaming

Figure 4: EEC’s computational overhead for BER ranging from 1/20000 to 1/2, with both axes in log-scale. Notice that with 1500-

byte packet size, the smallest possible non-zero BER is 1/12000. The grey area corresponds to the time available for processing a

packet under 802.11a/g data rate (6-54Mbps). Since RS codes need 10p relative redundancy to recover a packet with p BER (see

text), here RS codes cannot correct BER above 0.1.

Reed-Solomon codes (RS codes) [22] as an example. We choose
RS codes because it is particularly suitable for low computational
overhead software implementation, while many other error correct-
ing codes often need to be implemented in hardware. Since we need
to deal with general flipping errors, erasure codes [3, 24, 27, 33] are
not applicable.

EEC’s redundancy. Our first application, Wi-Fi rate adaptation, is
concerned with estimating packet BER within the range of
[1/1000, 0.15]. Thus we use 9 EEC levels, with s = 32 bits per
level. The relative redundancy added to a 1500-byte packet is thus
(9 × 32)/(1500 × 8) = 2.4%. Our second application, real-time
video streaming, needs to determine whether the BER of individual
240-byte block within a packet is above a certain threshold. Thus
we use a single EEC level with s = 32 bits. This adds extra 4-byte
to each block, with a relative redundancy of around 2.0%.

It is easy to imagine that the redundancy needed by error cor-
recting codes is much larger. For RS codes, the redundancy needed
to recover a packet depends on the packet BER and the size of the
RS symbols. Each RS symbol is simply a certain number of bits.
Let symbol error rate (SER) be the fraction of corrupted symbols.
Given a packet BER p, the SER of the packet is almost never below
2p (since even if we randomly set each bit to 0 or 1, half of the bits
in a symbol remains correct).

Depending on the RS symbol size, a 1500-byte packet may need
to hold multiple RS codewords. Different codewords may have
different SER (some above 2p and some below 2p), and we usually
need to add sufficient redundancy to recover the codeword with
the most error. We capture such factor using the results from [21].
Their results characterize the ratio ρ between the largest SER of
a codeword in a packet to the SER of that packet, in real-world
scenarios. Under symbol size of 8, 6, and 4, this ratio ρ is 2.5,
7.4, and 35.1, respectively. We have also independently confirmed
these results with our own wireless traces. For symbol size ≥ 11,
a 1500-byte packet only holds one codeword, thus the ratio is 1.
However, such large symbol size also incurs substantially higher
computational overhead (see below).

RS codes can recover one corrupted symbol with two redun-
dancy symbols. Given that the largest SER of a codeword in a
packet is 2ρp, the relative redundancy needed for RS codes to re-
cover a packet with BER p is 4ρp. Even for symbol size of 8, this
will be 10p. If one were to use the 2.4% EEC redundancy for error
correction via RS codes, it would only recover packets with BER
below 0.24% in such a case.

EEC’s computational overhead. Figure 4 presents EEC’s com-

putational overhead under the two settings in the two applications,
when processing 1500-byte packets. For the second setting, it is
for processing all EECs on all blocks in a packet. These results are
obtained on Soekris Net5501-70 platform with a 500MHz Geode
LX single chip processor, which is a typical platform for wireless
mesh networks.

EEC encoding and decoding overheads are independent of the
packet BER. Estimating BER involves verifying the EEC bits. This
overhead is independent of BER in the video streaming setting
(Figure 4(b)), since we only use a single level EEC there. In the
Wi-Fi rate adaptation setting (Figure 4(a)), the algorithm verifies
the 9 EEC levels sequentially from the first to the last. For large
BER, the algorithm may be able to exit before verifying all levels
and thus the computational overhead decreases with BER.

To put these overheads into context, Figure 4 also plots the time
available for processing a packet under the 802.11a/g data rates
(i.e., from 6Mbps to 54Mbps). The results show that the computa-
tional overheads of our pure software implementation of EEC are
small enough to support even the highest data rate.

Figure 4 further includes the computational overhead of RS codes
(with symbol size 8) for correcting a packet with a given BER p
(i.e., using redundancy 4ρp). We use the RS codes implementation
from DSP and FEC Library v3.0.14. The decrease of RS encod-
ing time when BER exceeds 5% (or relative redundancy exceeds
50%) is due to RS codes’ inherent properties. The results show
that on our platform, RS codes overheads are too large to support
the 54Mbps data rate. Even for 6Mbps, the overhead can keep up
with the data rate only when BER is rather small. These obser-
vations are consistent with previous work that needs to use a PC
with 3.0GHz CPU (instead of typical wireless routers) to perform
RS encoding/decoding at 802.11 data rates [21]. Thus we believe
that EEC, with its 10 to 100 times lower computational overhead,
is an interesting approach that can provide useful meta-information
about the packets at Wi-Fi data rate.

Finally, we have also experimented with other RS symbol sizes
(results not included in Figure 4 for clarity). Our results show that
smaller RS symbol sizes result in similar computational overhead
as symbol size of 8, because the increased ρ factor roughly offsets
the computational overhead reduction from smaller symbol sizes.
Larger symbol size (e.g., 11) will incur much higher overhead (up
to 4 times), except in corner cases where BER is below 0.04%.

4http://www.ka9q.net/code/fec/



5. EEC APPLICATION:

WI-FI RATE ADAPTATION
This section presents the implementation and evaluation results

of EEC-Rate. EEC-Rate is a rate adaptation scheme that uses EEC
to guide Wi-Fi rate change decisions. It is designed for systems
that can use partial packets. A concrete example of such a system
would be large unicast transfers over wireless network [15], where
partial packets are recovered via end-to-end error correction. For
these systems, packet-level throughput (which only counts correct
packets) fails to capture the system goodput.5 Thus we will directly
use goodput as the measure of goodness. For a packet with BER
p, we assume that the fraction of application-levels bits that can be
recovered is (1 − γp), where the constant γ depends on how the
application utilizes partial packets. For example, if the application
uses forward error correction with RS codes with symbol size of
8, then to correct a BER of p, the relative redundancy needs to be
about 10p (as explained in Section 4). In such a case, γ = 10,
since only (1−10p) fraction of the packet is application-level bits.
We assume that the source of each packet includes γ in the packet
header, to expose this information to the wireless routers for better
rate adaptation. Except that, we allow the routers to be oblivious to
how the application uses partial packets.

5.1 EEC-Rate Design and Implementation

Existing approaches. Over the years, researchers have proposed
many different rate adaptation schemes, and we do not intend to
provide a complete survey here. For comparison purpose, we con-
sider three representative prior rate adaptation schemes: SampleR-
ate [2], Robust Rate Adaptation Algorithm (RRAA) [38], and
Receiver-Based AutoRate (RBAR) [11]. We do not consider Soft-
Rate [35], which uses SoftPHY [12] and thus requires special hard-
ware not commercially available today.

SampleRate and RRAA both adjust rates based on packet loss
statistics. SampleRate sends packets at different data rates period-
ically to obtain packet loss statistics on those rates, while RRAA
adjusts rate purely based on the statistics from the current rate.
In RBAR, the receiver measures the SNR of the RTS packet re-
ceived. This information is then piggybacked on the CTS packet to
the sender for it to adjust rate.

EEC-Rate overview. We design EEC-Rate by combining key ideas
from RRAA and SoftRate. As in SoftRate, we modify RRAA to
use packet BER information instead of packet loss statistics. Dif-
ferent from SoftRate, EEC-Rate obtains the BER information from
EEC instead of from SoftPHY. Also, EEC-Rate does not use the
BER under one rate to predict the BER under other rates (since we
are not clear about the prediction accuracy).

Fundamentally, EEC-Rate is able to achieve better goodput than
the other schemes [2, 11, 38] for similar reasons why SoftRate out-
performs them [35]. Namely, SoftRate and EEC-Rate can leverage
the fine-grained and direct BER information, while other schemes
only use coarse-grained packet loss statistics [2, 38] or indirect
SNR information [11].

EEC-Rate design details. In EEC-Rate, each packet comes with
EEC which allows the receiver to estimate the packet BER. EEC-
Rate maintains a moving BER average p̄ of the recent (both correct
and partial) packets, with a weighting factor of 0.2 for the most
recent packet. Given two consecutive packets sent at the same rate,
if the second packet’s BER minus the first packet’s BER is larger
than 0.1, then the second packet is considered as being interfered

5As defined in Section 2, goodput refers to the number of useful
application-level bits that the system can transmit per second.

and will not be included in the moving average. This is similar to
SoftRate [12], which also excludes interfered packets.

Similar to RRAA and SoftRate, EEC-Rate maintains two con-
stants (αi and βi) and one variable (wi) for each rate Ri. If p̄ > βi,
then the sender will decrease rate from the current rate Ri to the
next lower rate Ri−1. The value of βi is obtained by solving
Ri × (1 − γβi) = Ri−1. This means that when p̄ > βi, the
goodput at Ri is likely to be smaller than the goodput at rate Ri−1,
if the BER will be zero at rate Ri−1. Thus it may be better to de-
crease rate. The current rate Ri is increased if p̄ < αi and if the
number of packets received at rate Ri exceeds wi. Here wi (initial-
ized to 2) is a dynamic window size to limit excessive rate-increase
attempts. A rate-increase attempt fails if after rate increase, the pro-
tocol immediately decreases rate due to the high BER at the higher
rate. Each failed rate-increase attempt from Ri doubles wi (with a
cap of 32). Any successful rate-increase attempt brings wi back to
2. Notice that here the fine-grained BER information enables EEC-
Rate to use a smaller window than RRAA. Following [38], we set
the rate-increase threshold αi−1 = βi/3 for all i.

For 802.11a/g data rates and γ = 10 (i.e., a packet with BER
of p contains (1 − 10p) fraction of recoverable application-level
bits), the previous two formulas yield αi and βi values ranging
from 0.2% to nearly 5% (for different i). Together with the need to
detect interference, EEC-Rate thus needs to estimate BER ranging
from 0.1% to 15%. EEC-Rate uses 9 levels of EEC bits to do so,
where each level has 32 bits. This is sufficient to provide an average
relative estimation error (i.e., average over |p̂ − p|/p) of roughly
30%. Finally, the receiver in EEC-Rate feeds back the BER to the
sender in a way that balances timeliness and overhead, which is
detailed in our technical report [6].

Implementation. We have implemented EEC-Rate in MadWifi
0.9.46. We disable the default MAC-layer auto retransmission for
failed packets. For comparison, we have also implemented
RRAA [38] and an SNR-based scheme following the design of
RBAR [11]. Since we cannot modify firmware to feedback SNR
at MAC layer as in RBAR (which is a limitation of RBAR it-
self), we feedback the SNR asynchronously as in EEC-Rate. Our
SNR-based protocol also incorporates a key salient feature from
CHARM [13] and uses the weighted moving average of SNR across
multiple packets. Since we already have low overhead asynchronous
feedback [6], we do not need to rely on the channel reciprocity as-
sumption in CHARM. When evaluating the SNR-based scheme,
we always carefully train the rate-to-SNR-threshold mapping be-
fore our experiments. Finally for SampleRate, we directly use the
implementation from the MadWifi driver, except that we use one
second as the interval over which transmission time averages are
computed, since it gives SampleRate a better performance [36].

The original versions of SampleRate and RRAA equate partial
packets to lost packets. In our evaluation, to make our results pes-
simistic, we also consider simple optimizations to the original ver-
sions so that partial packets are not treated as lost packets. We
call these optimized versions as pSampleRate and pRRAA, respec-
tively. Specifically, the sender in pSampleRate and pRRAA is in-
formed (through asynchronous feedback as in EEC-Rate) of the de-
livery of partial packets. The BER of the partial packets, however,
is not fed back since they do not use EEC.

5.2 Evaluation Results
We compare the goodput achieved by EEC-Rate, RRAA, Sam-

pleRate, pRRAA, pSampleRate, and the SNR-based scheme, un-
der γ = 10 (see earlier discussion for the rationale behind this γ

6http://madwifi-project.org



 2

 4

 6

 8

 10

 12

 2  4  6  8  10  12  14  16  18

g
o

o
d

p
u

t 
(M

b
p

s
)

Setting #

EEC-Rate
SNR-based

pSampleRate
pRRAA
RRAA

SampleRate

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24

1  5  10  15  20  25  30  35  40  45

g
o

o
d

p
u

t 
(M

b
p

s
)

Experiment #

EEC-Rate
SNR-based

pRRAA
pSampleRate

 0

 2

 4

 6

 8

 10

 12

1  10  20  30  40  50  60  70  80

g
o

o
d

p
u

t 
(M

b
p

s
)

Experiment #

EEC-Rate
SNR-based

pRRAA
pSampleRate

(a) Indoor with Interference (b) Walking (c) Outdoor

Figure 5: Goodput of different rate adaptation schemes under various settings.

value). All experiments are performed using Soekris net5501-70
routers with 802.11a/b/g Mini-PCI (Wistron CM9) cards. The bit
errors that we observe in our experiments are often bursty.

Indoor environment with interference. Our first set of results are
obtained on 6 different wireless links in our indoor mesh network
testbed. We experiment with each link under three different trans-
mission power levels (5dBm, 10dBm, and 15dBm). In experiment,
the sender continuously sends 1500-byte packets for 30 seconds.
For a given link and transmission power, we evaluate each rate
adaptation scheme in 10 independent experiments (in round-robin
fashion), and then compute the average goodput.

Figure 5(a) presents the goodput when the links operate on
802.11g channel. These experiments are subject to strong inter-
ference from an overlapping campus Wi-Fi network and a dozen
of other access points nearby. For clarity, the 18 different set-
tings (link × transmission power) in the figure are sorted in in-
creasing order of their goodput under EEC-Rate. Among the 6
schemes, EEC-Rate achieves the highest goodput, while the SNR-
based scheme and pSampleRate achieve similarly high goodput as
well. RRAA and SampleRate have the lowest goodput since they
are unaware of the delivery of partial packets, and thus often oper-
ate on inappropriate rates. In all our later experiments, their per-
formance is still always worse than pRRAA and pSampleRate, re-
spectively. Thus for clarity, we will not report their results fur-
ther. pRRAA’s goodput is significantly below EEC-Rate’s good-
put, because the interference triggers pRRAA to decrease rate fre-
quently. Our experiments also show that enabling RRAA’s adaptive
RTS/CTS mechanism [38] does not improve RRAA’s or pRRAA’s
goodput in our setting. Similar conclusions have been made else-
where [35] as well. For space limitations, we leave the indoor
interference-free results for 802.11a channel to our technical re-
port [6]. There all the schemes have similar performance as in Fig-
ure 5(a), except that pRRAA’s performance becomes better (though
still not as good as EEC-Rate).

Overall, in indoor environments, the channel coherence time tends
to be large (i.e., multiple seconds) and the best rate is often quite
stable, making it relatively easy to choose the best rate. Because of
this, simple schemes (e.g., pSampleRate) can already obtain close
to optimal performance [2], and more advanced techniques will not
bring significant extra improvement.

Walking scenario. In our second set of experiments, the sender
(operating on 802.11a channel) is moved at walking speed along a
straight corridor. Each walk lasts for around 90 seconds, with the
sender moving away from and then moving back to the receiver.
The total walking distance is 90 meters. We perform 5 walks for
each scheme (in round-robin fashion). Each 90-second walk for a

given scheme is considered as nine 10-second experiments for that
scheme, and we measure the goodput in each experiment.

Figure 5(b) plots the goodput measured. For clarity, the 45 good-
put values (from the 45 experiments) for each scheme are plot-
ted in increasing order. The figure shows that EEC-Rate and the
SNR-based scheme achieve similarly high goodput, and outper-
form pRRAA and pSampleRate. The average relative goodput
(across all the experiments) of EEC-Rate, as compared to pRRAA
and pSampleRate, reaches 130% and 150% respectively. pSam-
pleRate performs the worst since it allows only one rate change per
second, for the purpose of stability. This prevents it from adapt-
ing promptly enough. EEC-Rate performs better than pRRAA, be-
cause per-packet BER information allows it to i) use a smaller rate
adaptation window and ii) be more robust to random packet losses.

Outdoor challenging scenario. In our last set of experiments, the
sender and receiver (operating on 802.11a channel) are placed on
the opposite sides of a busy road and are 30 meters apart. The
pedestrian speed is around 3kmph, and the vehicular speed is less
than 20kmph. Our setting is similar to the residential urban outdoor
environment in [4], where the average coherence time between a
pair of static nodes is usually 100 ms, but passing cars can drive
the coherence time down to 15 ms. Notice that Section 4 showed
that evaluating a packet’s BER using EEC takes less than 0.3 ms.
Such processing delay is over an order of magnitude smaller than
the coherence time even in such challenging environments.

For each scheme, we do 80 experiments of 10 seconds each (in
round-robin fashion), and measure the goodput in each experiment.
Figure 5(c) plots the goodput achieved. Again, we plot the good-
put values in increasing order for clarity. Here EEC-Rate signif-
icantly outperforms the other three schemes. Its average relative
goodput is about 230% when compared to pRRAA and pSam-
pleRate, and is about 180% when compared to the SNR-based
scheme. pRRAA suffers from frequent and unnecessary rate re-
duction caused by the large number of random packet losses in this
environment. pSampleRate, on the other hand, is not able to adapt
promptly enough to the fast-varying channel quality. Finally, even
though we trained the rate-to-SNR-threshold mapping for the SNR-
based scheme, during our experiments, the changing traffic pattern
quickly renders the mapping inaccurate. This causes the goodput
of the SNR-based scheme to decline, as compared to EEC-Rate.

6. EEC APPLICATION:

REAL-TIME VIDEO STREAMING
This section presents the implementation and evaluation results

of applying EEC in real-time video streaming over wireless mesh
networks. Section 2 explained how EEC enables the routers in
this application to perform BER-aware packet retransmission (de-



noted as BER-aware). We use no-retran to denote the exist-
ing approach [32] described in Section 2, where a partial packet is
always directly forwarded to the next hop7, in the hope that for-
ward error correction will take care of the errors. For compari-
son, we further consider two other schemes, packet-retran
and frag-retran, where the routers always request the retrans-
mission of a partial packet (and forward error correction is thus
not needed). packet-retran uses whole packet retransmission,
while frag-retran splits a packet into multiple fragments, uses
CRC on each fragment, and only retransmits corrupted fragments.
We set the fragment size to 240 bytes, which gives the best results
for frag-retrans in our experiments.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.02  0.04  0.06  0.08  0.1

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

Bit Error Rate

Figure 6: Packet BER distribution.

Quantify the potential gain. We want to first gain some insight
into whether BER-aware will likely lead to significant improve-
ments. Figure 6 presents the CDF for packet BER as measured
on an 802.11a link with intermediate quality in our indoor mesh
network testbed. Results from other researchers [21] are similar.
The figure shows that most of the partial packets have BER below
2%, confirming the utility of using forward error correction. How-
ever, the distribution also has a long tail, and 5% of the packets
even have BER over 10%. This implies that no-retran may
greatly suffer from unrecoverable packets. The figure also implies
that packet-retran and frag-retran will request retrans-
mission for over 70% of the packets. Doing so can potentially
cause more packets to miss deadline, especially when there is no
idle bandwidth. Leveraging EEC, BER-aware will only need to
retransmit much fewer packets, while ensuring that the packets can
be recovered.

6.1 Implementation and Experimental Setting
We implement the four schemes on Soekris net5501-70 routers

as a Linux kernel module to interface with MadWifi 0.9.4. We
configure all wireless interfaces in monitor mode, and implement
a glue layer to expose the wireless interface as an Ethernet inter-
face to the native Linux kernel network stack. We disable the de-
fault MAC-layer auto retransmission for failed packets. Packets are
transmitted in increasing order of their deadlines.

For our experiments, we set up real-time video streaming over
two wireless links and three dual-radio routers (A → B → C), in
an office environment. Following common practice, we let the two
wireless links operate on 802.11g and 802.11a channel respectively
to avoid self-interference. Both wireless links use the fixed (lowest)
data rate of 802.11a/g (i.e., 6Mbps). Same as before, the bit errors
in these real-world experiments are often bursty. The source (con-
nected to A) uses EvalVid [17] to stream video to the destination
(connected to C). We generate the test video at 30 frames per sec-
ond from the 300-frame Foreman sequence8 , which is commonly

7Note that if a packet is entirely lost or if its header is corrupted,
the packet will still be retransmitted.
8http://www.cipr.rpi.edu/resource/sequences/sif.html

used for such purpose. The test video is encoded using the x264
encoder under MPEG4 baseline profile setting, with one I-frame
every 30 video frames.

We use RS codes (with symbol size of 8 and codeword/block
size of 240 bytes) to add forward error correction to the video pack-
ets, so that the destination can recover a codeword with 2% BER.
This 2% value is roughly at the knee of the BER distribution in
Figure 6. The figure also shows that given the long tail, further
increasing the redundancy will not likely provide significant ben-
efit. For BER-aware, the router applies a single level EEC with
32 EEC bits to each 240-byte block in the packet. We intentionally
use 32 EEC bits to demonstrate that EEC’s overhead can be as low
as a typical CRC while still be able to significantly benefit the end
application.

6.2 Evaluation Results

Measure of goodness. We use the standard Peak Signal-to-Noise
Ratio (PSNR) [26] to measure the quality of the streamed video.
PSNR is defined on log-scale in terms of dB, and thus a small dif-
ference in PSNR values can be significant visually. PSNR differ-
ence above 0.5dB is usually considered visually noticeable, and
the MPEG committee uses an informal threshold of 0.5dB to de-
cide whether to incorporate a coding optimization [31]. Usually
the video quality is considered “Excellent” if PSNR is above 37dB,
and “Bad” if PSNR is below 20dB [17].

Results without interference. In each of our first set of experi-
ments, we stream the test video under one specific scheme. We
evaluate the different schemes in a round-robin fashion. We adjust
the transmission power of the router B so that the link between B
and C is often of intermediate quality due to weak signal. Because
of human movements in our office environment, the link quality
here can still vary non-trivially over time. On the other hand, video
streaming quality as measured by PSNR can be highly sensitive to
wireless channel conditions. To compare the schemes under simi-
lar channel conditions, we group the experiments into four quartiles
based on the packet reception ratio (PRR)9 of the link in each ex-
periment.

When the channel condition is bad (i.e., PRR ∈ [0, 1

4
] or [ 1

4
, 2

4
]),

all the schemes achieve similarly low PSNR (most experiments
below 20dB), though BER-aware slightly outperforms all other
schemes by around 0.5dB. Here PSNR is largely determined by
whether the link can provide enough raw bandwidth to stream the
video, and retransmission schemes have little effect. The poor
PSNR in most of the experiments are due to the fact the link is
fundamentally not able to deliver certain I-frames on time.

Figure 7 and Figure 8 present the PSNR of the different schemes
under the remaining two PRR quartiles. We only plot PSNR below
40dB because video quality is considered “Excellent” for PSNR
above 37dB. The difference between two PSNR values that are
above 40dB bears little practical relevance.10 For similar reasons,
we focus on PSNR values above 15dB. For clarity, the PSNR values
in different experiments of each scheme are plotted in increasing
order.

Figure 7 shows that for channel condition with PRR ∈ [ 2
4
, 3

4
],

BER-aware achieves on average about 5dB higher PSNR over
other schemes. As expected, frag-retran suffers from conges-
tion due to its higher bandwidth consumption, while no-retran
suffers from many unrecoverable packets. Such a trend continues in

9We count both correct and partial packets as received packets
when calculating PRR.

10Including those PSNR values above 40dB actually would make
our results better.



 15

 20

 25

 30

 35

 40

 20  40  60  80  100  120

P
S

N
R

(d
B

)

Experiment #

BER-aware
no-retran

frag-retran
packet-retran

Figure 7: Link with PRR ∈ [ 2
4
, 3

4
].

 15

 20

 25

 30

 35

 40

 10  20  30  40  50  60

P
S

N
R

(d
B

)

Experiment #

BER-aware
no-retran

frag-retran
packet-retran

Figure 8: Link with PRR ∈ [ 3
4
, 1].

 10

 15

 20

 25

 30

 35

 40

 10  20  30  40  50

P
S

N
R

(d
B

)

Experiment #

BER-aware
no-retran

frag-retran
packet-retran

Figure 9: Setting with interference.

Figure 8, though all schemes in Figure 8 perform fairly well. This
is simply because with the good link quality (PRR ∈ [ 3

4
, 1]), there

are few errors and even naive schemes can achieve near-optimal
results.

Effects of interference. For these experiments with interference,
we set up a hidden terminal to router B. To isolate the effect of
interference from that of weak signal, we set B to transmit at its
maximum power. Also because of this, we no longer need to cate-
gorize the experiments based on PRR. Figure 9 presents the PSNR
results under such setting. The results show BER-aware eas-
ily out-performs no-retran and packet-retran by over 5-
10dB. This is simply because no-retran relays many unrecov-
erable packets, while packet-retran’s aggressive retransmis-
sion causes many packets to miss their deadlines. frag-retran
performs similarly well as BER-aware. Compared to the earlier
results under weak signal, here the errors in a packet are much more
clustered. This enables frag-retran to effectively correct the
errors by retransmitting only a rather small number of fragments.

7. RELATED WORK

Error estimating codes. While error correcting codes have been
extensively studied, we are not aware of any prior rigorous study on
codes for estimating BER. The need for error estimation has been
occasionally mentioned in some prior work in different contexts
(e.g., [35] and [28]). The general technique of inserting known bits
(called pilot bits) into a packet can be viewed as a naive form of
EEC. Section 3.3 explained that pilot bits are poorly suited for esti-
mating BER, which tends to be a small value such as a few percent.
This limitation stems from fundamental lower bound [8] on sam-
pling. Given certain target estimation quality (e.g., as in our two
applications), pilot bits can incur over 20 times more redundancy
than our EEC algorithm.

Computing parity bits over groups of data bits is a common tech-
nique in coding. However, because our goal is to estimate instead
of to correct errors, our specific way of forming groups and using
the parity information is rather different from other coding algo-
rithms. For example, in terms of algorithmic technique, the most
relevant coding algorithm to our EEC algorithm is perhaps low-
density parity-check codes (or LDPC codes) [22], which is a kind
of error correcting codes. Both LDPC codes and our EEC algo-
rithm compute parity bits over groups of data bits. In LDPC codes,
each data bit belongs to multiple groups to enable error correction.
While in our EEC algorithm, bits in one group may or may not be
in other groups. Such design makes low redundancy possible, but
also requires a completely different and new way of properly us-
ing the parity information. The second key difference is the degree

distribution of the parity bits, where the degree of a parity bit is
the size of the corresponding group of data bits. LDPC codes are

by definition low density with small average degree for the parity
bits. In comparison, the degrees of our parity bits are geometrically
distributed, with the average being as large as Θ(n/ log n). These
high-degree parity bits are crucial for estimating small BER effec-
tively. We are able to still achieve O(n) computational overhead
despite these high-degree parity bits. Similarly, our EEC algorithm
is also related to many other error correcting codes, such as Tornado
code [3], LT codes [24], Raptor codes [33], Online codes [27], and
Growth codes [14]. Again, our EEC algorithm differs in terms of
the geometrically distributed degrees and in terms of how the parity
bits are actually used.

Finally, in our prior work [39] on secure aggregation queries
in sensor networks, we address a similar theoretical problem of
efficiently estimating a small value (i.e., the fraction of “errors”,
in EEC terms). There the algorithm defines groups of different
sizes and then relies on knowing whether a group has any error (in
EEC terms). In comparison, our EEC algorithm relies on knowing
whether the number of errors in a group is even or odd. Such parity
information can be efficiently obtained via a single parity bit. A
second key difference is that the algorithm in [39] is interactive and
requires multiple rounds.

SoftPHY. Coding is certainly not the only way of estimating BER.
Recently, some researchers propose the SoftPHY [12] physical layer
design, exposing a confidence level for each bit received. Such in-
formation can of course, be used to estimate BER. Today’s com-
mercial Wi-Fi hardware does not yet provide SoftPHY functional-
ity. Furthermore, it does not seem possible to provide SoftPHY by
only modifying the Hardware Abstraction Layer or firmware (and
without changing the hardware). Fundamentally, this is because
today’s Wi-Fi chips implement physical layer functionality in non-
programmable application-specific integrated circuit, and the con-
fidence level information is internal to the physical layer.

Compared to SoftPHY, our EEC design provides a pure software
based alternative. A software based approach is usually easier for
adoption or for upgrading existing systems. In particular, the com-
putational overhead of our software based approach is small enough
to run at maximum 802.11a/g data rate. Even if SoftPHY becomes
available on future Wi-Fi hardware, EEC will continue to be use-
ful on lower-end wireless devices (such as sensors), where the ad-
ditional hardware cost in SoftPHY (such as more output pins or
wider system bus) may not justify the benefit. Finally, we also note
that SoftPHY provides strictly more information than just packet
BER. For applications that need the confidence level information
for individual bits, EEC will not be suitable. In summary, with all
these differences between EEC and SoftPHY, we believe that EEC
and SoftPHY will always have their respective suitable application
domains.

Using SNR in place of BER. Another alternative approach [4, 13,
40] is to use Signal-Noise Ratio (SNR) in place of packet BER,



since the theoretical relationship between SNR and BER is well-
understood. Such an approach has two known drawbacks. First,
to accurately measure SNR, today’s commodity wireless network
hardwares (e.g., Wi-Fi devices) often require hardware-specific cal-
ibration [40]. Second, the mapping from SNR to BER depends on
the specific deployment. To obtain a good mapping, in-situ training
of the system is often needed [4].

8. CONCLUSION
This paper is motivated by recent emerging systems that can

leverage partial packets in wireless networks. We observe that
such systems would significantly benefit from the BER informa-
tion of the partial packets. This paper thus proposes the novel con-
cept of error estimating codes (EEC). Without correcting the er-
rors, EEC enables the receiver of a partial packet to estimate the
packet’s BER. Our EEC algorithm provides provable estimation
quality, with rather low redundancy and computational overhead.
We have exploited and implemented EEC in two wireless network
applications, Wi-Fi rate adaptation and real-time video streaming.
Our real-world experiments have demonstrated that these applica-
tions can significantly benefit from EEC.

While we have only focused on applying EEC to wireless net-
working in this paper, the utility of EEC can be much broader. For
example, EEC’s functionality can also help data storage recovery
from multiple partially correct copies [28]. Generally speaking,
EEC may find potential application wherever partially correct data
can be utilized.

Acknowledgments

We thank Ramachandran Ramjee for shepherding this paper. We
thank the anonymous reviewers, Mun Choon Chan, and Ben Leong
for many helpful comments on this paper. We thank Kyle Jamieson
and Brad Karp for helpful discussions. We thank Ha Yajun and
Samarjit Chakraborty for answering our hardware-related questions.
This work is partly supported by National University of Singapore
Young Investigator Award R-252-000-334-101.

9. REFERENCES
[1] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris. Link-level

measurements from an 802.11b mesh network. In SIGCOMM, 2004.

[2] J. C. Bicket. Bit-rate selection in wireless networks. Master’s thesis,
MIT, 2005.

[3] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digital
fountain approach to reliable distribution of bulk data. In SIGCOMM,
1998.

[4] J. Camp and E. Knightly. Modulation rate adaptation in urban and
vehicular environments: Cross-layer implementation and
experimental evaluation. In MobiCom, 2008.

[5] K. Chebrolu, B. Raman, and S. Sen. Long-distance 802.11b links:
Performance measurements and experience. In MobiCom, 2006.

[6] B. Chen, Z. Zhou, Y. Zhao, and H. Yu. Efficient error estimating
coding: Feasibility and applications. Technical report, National
University of Singapore, June 2010. Available at
http://www.comp.nus.edu.sg/~yuhf/eec-tr.pdf.

[7] D. S. J. D. Couto, D. Aguayo, J. Bicket, and R. Morris. A
high-throughput path metric for multi-hop wireless routing. In
MobiCom, 2003.

[8] P. Dagum, R. Karp, M. Luby, and S. Ross. An Optimal Algorithm for
Monte Carlo Estimation. SIAM Journal on Computing, 29(5), 2000.

[9] H. Dubois-Ferriere, D. Estrin, and M. Vetterli. Packet combining in
sensor networks. In SenSys, 2005.

[10] M. Elaoud and P. Ramanathan. Adaptive use of error-correcting
codes for real-time communication in wireless networks. In
INFOCOM, 1998.

[11] G. Holland, N. Vaidya, and P. Bahl. A rate-adaptive MAC protocol
for multi-hop wireless networks. In MobiCom, 2001.

[12] K. Jamieson and H. Balakrishnan. PPR: Partial packet recovery for
wireless networks. In SIGCOMM, 2007.

[13] G. Judd, X. Wang, and P. Steenkiste. Efficient channel-aware rate
adaptation in dynamic environments. In MobiSys, 2008.

[14] A. Kamra, V. Misra, J. Feldman, and D. Rubenstein. Growth codes:
Maximizing sensor network data persistence. In SIGCOMM, 2006.

[15] S. Katti, D. Katabi, H. Balakrishnan, and M. Medard. Symbol-level
network coding for wireless mesh networks. In SIGCOMM, 2008.

[16] V. Kawadia and P. R. Kumar. Principle and protocols for power
control in wireless ad hoc networks. IEEE Journal on Selected Area
in Communications, 23(5):76–88, 2005.

[17] J. Klaue, B. Rathke, and A. Wolisz. EvalVid - a framework for video
transmission and quality evaluation. Performance TOOLS, 2003.

[18] J. Laneman, D. Tse, and G. Wornell. Cooperative diversity in
wireless networks: Efficient protocols and outage behavior. IEEE

Transactions on Information Theory, 50(12):3062–3080, 2004.

[19] L. Larzon, M. Degermark, and S. Pink. UDP Lite for real time
multimedia applications. In ICC, 1999.

[20] Y. Li and B. Vucetic. On the performance of a simple adaptive
relaying protocol for wireless relay networks. In VTC-Spring, 2008.

[21] K. Lin, N. Kushman, and D. Katabi. ZipTx: Harnessing partial
packets in 802.11 networks. In MobiCom, 2008.

[22] S. Lin and D. J. Costello. Error Control Coding. Prentice-Hall, Inc.,
2004.

[23] X. Liu, A. Sheth, M. Kaminsky, K. Papagiannaki, S. Seshan, and
P. Steenkiste. DIRC: Increasing indoor wireless capacity using
directional antennas. In SIGCOMM, 2009.

[24] M. Luby. LT codes. In FOCS, 2002.

[25] M. Ma and D. H. K. Tsang. Joint design of spectrum sharing and
routing with channel heterogeneity in cognitive radio networks.
Physical Communication, 2:127–137, 2009.

[26] M. O. Martínez-Rach, O. López, P. Pinol, M. P. Malumbres,
J. Oliver, and C. T. Calafate. Quality assessment metrics vs. PSNR
under packet loss scenarios in manet wireless networks. In
International Workshop on Mobile Video, 2007.

[27] P. Maymounkov. Online codes. Technical report, New York
University, 2002.

[28] M. Mitzenmacher. On the theory and practice of data recovery with
multiple versions. In International Symposium on Information

Theory, 2006.

[29] B. Raman and K. Chebrolu. Experiences in using WiFi for rural
Internet in India. IEEE Communications Magazine, 45(1):104–110,
January 2007.

[30] P. Roshan and J. Leary. 802.11 Wireless LAN Fundamentals. Cisco
Press, 2003.

[31] D. Salomon. Data Compression: the Complete Reference. Springer,
2007.

[32] Y. Shan, S. Yi, S. Kalyanaraman, and J. W. Woods. Two-stage FEC
scheme for scalable video transmission over wireless networks. In
SPIE Multimedia Systems and Applications VIII, 2005.

[33] A. Shokrollahi. Raptor codes. IEEE Trans. on Information Theory,
52(6):2551–2567, June 2006.

[34] A. Singh, A. Konrad, and A. D. Joseph. Performance evaluation of
UDP Lite for cellular video. In NOSSDAV, 2001.

[35] M. Vutukuru, H. Balakrishnan, and K. Jamieson. Cross-layer
wireless bit rate adaptation. In SIGCOMM, 2009.

[36] M. Vutukuru, K. Jamieson, and H. Balakrishnan. Harnessing exposed
terminals in wireless networks. In NSDI, 2008.

[37] Y. Wang and Q. Zhu. Error control and concealment for video
communication: A review. Proceedings of the IEEE, 86(5):974–997,
May 1998.

[38] S. Wong, H. Yang, S. Lu, and V. Bharghavan. Robust rate adaptation
for 802.11 wireless networks. In MobiCom, 2006.

[39] H. Yu. Secure and highly-available aggregation queries in large-scale
sensor networks via set sampling. In IPSN, 2009.

[40] J. Zhang, K. Tan, J. Zhao, H. Wu, and Y. Zhang. A practical
SNR-guided rate adaptation. In INFOCOM, 2008.


