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ABSTRACT
Data replication is a key technique for ensuring data availability.
Traditionally, researchers have focused on the availability of indi-
vidual objects, even though user-level tasks (calledoperations) typ-
ically request multiple objects. Our recent experimental study has
shown that theassignmentof object replicas to machines results in
subtle yet dramatic effects on the availability of these operations,
even though the availability of individual objects remainsthe same.

This paper is the first to approach the assignment problem from
a theoretical perspective, and obtains a series of results regarding
assignments that provide the best and the worst availability for user-
level operations. We use a range of techniques to obtain our results,
from standard combinatorial techniques and hill climbing methods
to Janson’s inequality (a strong probabilistic tool). Someof the re-
sults demonstrate that even quite simple versions of the assignment
problem can have surprising answers.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—distributed applications

General Terms
Algorithms, Design, Reliability, Theory

Keywords
Multi-object operation, inter-object correlation, availability, data
replication, object assignment

1. INTRODUCTION
Masking failures is a key goal in distributed computing, and

data replication is a well-known and widely-used techniqueto en-
sure data availability in the presence of failures. Traditionally, re-
searchers typically focus on the availability of individual data ob-
jects (e.g., individual file blocks [4] or individual variable-sized ob-
jects [7, 15]). On the other hand, a user-level task often needs to
request multiple data objects; we refer to this as amulti-object op-
eration. For example, in order to compile a project, all source files
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Figure 1: Two possible assignments of four objects, A, B, C,
and D, to four machines. Each box represents a machine.

need to be available. Similarly, a database query usually touches
multiple database objects. Our recent experimental study [26] shows
that theassignmentof object replicas to machines has a subtle yet
critical effect on the availability of such multi-object operations,
even though the availability of individual objects remainsthe same.

A simple yet subtle example. Consider the example in Figure 1
with 4 objects: A, B, C, and D. Each object has exactly 2 repli-
cas1. We have 4 identical machines to hold these 8 object replicas,
and each machine holds exactly 2 objects. Each machine may fail
(crash) independently with the same probabilityp, causing all its
data to become unavailable. An object is unavailable if and only
if both its replicas are unavailable. Clearly, there are many ways
to assign the object replicas to the machines. Figure 1 givestwo
possible assignments.

Imagine that the four objects are source files of a project andthe
user is trying to compile the project. Here, if any source fileis un-
available, the multi-object operation (i.e., the compilation process)
will fail. Which assignments in Figure 1 gives us a better probabil-
ity that all four files are available so that the operation succeeds? A
calculation will show that assignmentα provides better availability
thanβ.2

Assume now that, instead, the four objects are database objects
that have numerical values. Our multi-object operation intends to
compute the average of the values. Suppose we are willing to tol-
erate some error in the average, and the operation is considered
successful as long as we can retrieve three or more objects. Under
this assumption, assignmentβ now provides better availability than
α.3

There are several important observations from this example. First,
individual objects have the same availability (i.e.,1−p2) in α as in
β. Also, the 8 object replicas occupy the same number of machines

1The same assignment problem also arises [26] when using erasure
coding for the objects, but that is beyond the scope of this paper.
2The failure probabilities areFP (α) = p4+4p3(1−p)+2p2(1−
p)2 andFP (β) = p4 + 4p3(1 − p) + 4p2(1 − p)2.
3The failure probabilities (i.e., the probabilities that fewer than
three objects are available) areFP (α) = p4+4p3(1−p)+2p2(1−
p)2 andFP (β) = p4 + 4p3(1 − p).



in α as inβ, thus the difference does not result from “concentrat-
ing” or “spreading” the objects.

Second, all machines are completely identical, so for anyindi-
vidual object, it does not matter to which two machines the ob-
ject is assigned. This clearly distinguishes the assignment problem
from classic replica placement problems [3, 5, 27]. The difference
betweenα andβ arises purely frominter-object correlation: Be-
cause each machine has multiple objects, object failures are corre-
lated even when machine failures are independent. For example,
A is fully correlated with one object (i.e., B) inα, while A is par-
tially correlated with two objects (i.e., B and C) inβ. However, be-
cause neither the correlation inα nor the correlation inβ is strictly
stronger than the other, comparing the two assignments is subtle
and no single numerical value can be used to summarize/rank such
correlations in the general case.

Practical importance. The object assignment problem has sig-
nificant practical relevance, and applies to almost all replication
systems. A long list of previous replication systems and protocols
(such as CAN [16], CFS [4], Chord [20], Coda [13], FARSITE [1],
GFS [6], GHT [17], Glacier [7], Pastry [18], R-CHash [12], and
RIO [19]) use different object assignments, which can yielddra-
matically different availability for multi-object operations. For ex-
ample, it has been shown [26] that under practical settings,the fail-
ure probability of the TPC benchmark [23] can vary by four orders
of magnitude under different assignments used in these previous
system. Thus, a thorough understanding of the subject is critical to
guide system design.

Previous results. We recently first identified [26] the availability
effects of object assignments and inter-object correlation on multi-
object operations. This earlier work used simulation to compare
several specific assignments, including thePTN andRAND assign-
ments.PTN is the assignment where we partition the objects into
sets and mirror each set across multiple machines (as in assignment
α in Figure 1). RAND is obtained by randomly assigning object
replicas to machines. The simulation results [26] show that: (1)
previously proposed assignments can result in dramatically differ-
ent availability; (2) if the multi-object operation cannottolerate any
missing objects, thenPTN andRAND provide the best and the worst
availability among the set of assignments simulated, respectively;
and (3) in contrast, if the multi-object operation can tolerate a suf-
ficient number of missing objects, thenPTN andRAND provide the
worst and the best availability among the set of assignmentssim-
ulated, respectively. Our earlier work [26] further proposed de-
signs to approximatePTN and RAND for dynamic contexts, and
performed a thorough evaluation of their implementation onthe
PlanetLab. We are not aware of any other previous work on this
topic.

Our results. To the best of our knowledge, this paper is the first
to study this problem from a theoretical perspective. Experimen-
tal methods as in [26] have the following fundamental limitations:
Given the exponential number of possible assignments, it isinfea-
sible to experiment with them all. Are there better assignments that
were overlooked? Also, experimental methods can cover onlyspe-
cific parameter values (e.g., specificp values)—will the same con-
clusions hold under other parameter values? The theoretical results
in this paper not only provide a deep understanding of the problem,
but also help to ultimately confirm what was observed experimen-
tally.

Our goal in this paper is to find the best and the worst4 assign-

4We are interested in the worst assignment as well because (i)pre-
vious simulation results [26] suggest the best and the worstmay flip
when the “tolerance” level of the operation changes, (ii) knowing

ments, among all possible assignments, in terms of the availability
provided to multi-object operations. Achieving our goal, however,
is challenging for several reasons. First, human intuitionoften fails
here, even when the problem appears quite simple on the surface.
The example in Figure 1 already gave us some flavor of this, and
later in Section 7.2 we will show that the problem can become con-
siderably more intriguing. Second, natural approaches to solve the
problem (such as constrained optimization and hill-climbing meth-
ods) do not work out well. To address these challenges, this paper
leverages Janson’s inequality [2, 9, 11] to obtain results for the most
general cases. Combinatorial techniques and hill climbingare then
used to prove stronger results under more restricted settings. Our
final results are clean and simple:

• Calculating the availability of an arbitrary given assignment
is #P-hard.

• If the multi-object operation cannot tolerate any missing ob-
jects, thenPTN and RAND provide the best and the worst
(within small constants) availability among all possible as-
signments, respectively.

• In contrast, if the multi-object operation can tolerate a suffi-
cient number of missing objects, thenPTN andRAND provide
the worst and the best (within small constants) availability
among all possible assignments, respectively.

• Under some restricted settings, we are able to construct the
best and worst assignments and remove all constants.

• It is impossible for any single assignment strategy to achieve
the best of bothPTN andRAND.

2. RELATED WORK
On the surface, object assignment is related to the classic replica

placement problem. Replica placement has been extensivelystud-
ied for both performance and availability targets. Replicaplace-
ment research for availability [3, 5, 27] typically considers the avail-
ability of individual objects rather than multi-object operations.
Such results cannot be easily extended to our context because the
two problems are fundamentally different: Replica placement prob-
lems [3, 5, 27] stem from the heterogeneity of machines (e.g., dif-
ferent failure probabilities). In contrast, because of inter-object cor-
relation, object assignment affects availability even when all ma-
chines are identical (as shown in Figure 1). Chain replication [25]
investigates the availability ofindividual objects where the system
creates additional replicas to compensate for lost data. Here, if the
repair bandwidth is limited, different placements will result in dif-
ferent repair times and thus different availabilities forindividual
objects. Such effects are orthogonal to the inter-object correlation
effect observed by multi-object operations.

3. FORMAL MODEL AND ASSUMPTIONS
There areN dataobjectsin the system, where an object can be

a file block, a file, a database tuple, a group of database tuples,
an image, etc. (See Table 1.) Each object hask replicas, and the
object is consideredavailable as long as any of thek replicas is
available. There ares machines in the system, each of which may
independently experience crash (benign) failures with probability
p. This paper assumesp ≤ 0.5, because this is the common case
in practice. For the purpose of load balancing, each machineholds

the worst helps guide us to avoid it, and (iii) it is also of theoretical
interest.



N number of objects in the system
k number of replicas per object
l number of objects on each machine

s number of machines in the system (= Nk/l)
p failure probability of each machine

n number of objects requested by an operation
t number of objects needed for the operation

to succeed (out of then objects)

Table 1: Notation used in this paper, where N > l ≥ k ≥ 2.

the same number ofl = kN/s objects. To rule out trivial and
uninteresting scenarios, we assume thatN > l ≥ k ≥ 2. If a
machine fails, alll object replicas on it become unavailable.

A multi-object operation(or operation in short) requests (for
reading and/or writing) a specific subset ofn objects (out of the
N objects) in order to perform a certain user-level task. In some
application scenarios such as image databases [8, 22], the number
of objects requested can reach thousands or more. If not alln ob-
jects requested by the operation are available, the operation may or
may not be considered successful, depending on its tolerance for
missing objects. This paper studies thethresholdcriteria: an oper-
ation issuccessfulif and only if at leastt out of then objects are
available. Heret is a value from 1 ton depending on application
semantics.

An assignmentis a mapping from thekN objects (or more pre-
cisely, object replicas) to thes machines, where no machine holds
multiple replicas of the same object. Assigning multiple replicas
of the same object to the same machine obviously waste resources.
Thus we do not consider those scenarios (it is also easy to avoid in
practice).

ThePTN assignment is obtained by partitioning theN objects
into N/l groups of sizel, and then mirroring each group ontok
machines. Obviously there are many ways to do this partitioning,
but they all result in the same availability whenn = N , because the
operation needsanyt available objects to succeed. Forn < N , we
will refine the definition forPTN in Section 8. TheRAND assign-
ment is an assignment drawn uniformly randomly from all possible
assignments. Thus strictly speaking,RAND is a distribution of as-
signments. Similarly, the definition forRAND will be refined later
for n < N .

For a given operation, we define theavailability of an assign-
mentα to be the probability that the operation is successful under
α. The complement of availability is called thefailure probability,
denoted byFP (α). Our goal is to findα such thatFP (α) is ei-
ther minimized or maximized. Doing so for allt values in[1, n] is
challenging, and this paper focuses on cases wheret takes the two
extremes.

The next section explains the challenges. Section 5 throughSec-
tion 7 prove the best/worst assignment for the two extremalt val-
ues whenn = N . Finally, Section 8 explains why the results for
n = N easily generalize ton < N .

4. CHALLENGES
To find the best/worst assignment, a brute force enumerationof

all assignments is obviously infeasible. Thus the first natural at-
tempt would be to cast the problem into a constrained optimization
problem. To do this, we need a closed-form expression for the
failure probabilityFP () of any given assignment (the assignment
itself, of course, also needs to be expressed as constraints). Unfor-
tunately, our first theorem shows that even calculatingFP (α) is
difficult:

THEOREM 1. Calculating FP (α) for an arbitrary α is #-P
hard. This is true even if every object has only two replicas.

Proof: We reduce the #-P hard MONOTONE 2-SAT problem [24],
to calculatingFP (α). The MONOTONE 2-SAT problem asks for
the number of possible ways to satisfy a monotone boolean formula
in two-conjunctive normal form. For a given instance of MONO-
TONE 2-SAT withn two-conjunctive tuples, we consider each tu-
ple as an object and each literal in the problem as a machine. Each
object has exactly two replicas, assigned to the two literals in the
tuple. We add some dummy objects to the problem so that all ma-
chines have the same load, so that the assignment is valid. Let
s denote the total number of literals (machines). Aglobal state
describes exactly which of thes machines are available. Clearly
we have2s possible global states. If we setp = 0.5, then every
global state occurs with the same probability of0.5s. Now con-
sider an operation that requests all then objects except the dummy
objects, witht = n. One can see that the operation is available un-
der a global state if and only if that global state satisfies the original
boolean formula. Thus we have1 − FP (α) = 0.5s× (# of ways
to satisfy the boolean formula). 2

A second natural attempt to find the best/worst assignment isto
use hill-climbing methods. For example, we can hope to adjust any
given assignment step by step, where each step always increases
(or decreases if we want to find the worst) the availability. Unfor-
tunately, it is difficult to design these steps in general. Later in some
significantly simplified scenarios in Section 7.2, we will apply such
an approach.

Instead of using constrained optimization or hill climbing, in the
following, we first leverage a strong probabilistic tool to prove up-
per and lower bounds onFP (α). Then we show that some specific
assignments are small constants away from the respective bounds.

5. BEST AND WORST ASSIGNMENTS FOR
t = n = N

We start from the simple (and also perhaps most interesting)case
of n = N . It is most interesting because whenn = N , the objects
requested fully occupy all the machines (as in Figure 1). Thus there
is no difference resulting from “concentrating” or “spreading” the
objects, and inter-object correlation is the sole cause of the avail-
ability difference. This section considers the largestt, i.e., when
t = n.

5.1 Upper and Lower Bounds
We derive the upper and lower bounds using a probabilistic tool

called Janson’s inequality [2, 9, 11].5 Janson’s inequality is mainly
used to study the property of random graphs, and it provides atail
approximation for the sum of a set ofdependentBernoulli random
variables. We briefly describe Janson’s inequality for complete-
ness.

Let Jz , 1 ≤ z ≤ s be independent indicator random variables
denoting the failure of machinez in our context. In other words,
Jz is 1 if machinez fails. For1 ≤ i ≤ n, let Ii =

Q

z∈Qi
Jz ,

whereQi are arbitrary subsets of{1, 2, ..., s}. In our context,Qi

is the set of machines holding objecti, andIi indicates the loss
of objecti. We write i 6∼ j if i 6= j andQi ∩ Qj 6= ∅. Define
µ =

Pn
i=1 Pr[Ii] and∆ =

P

(i,j):i6∼j Pr[Ii∧Ij ]. Notice that the
sum is done over ordered pairs ofi andj. (The sum over unordered
pairs is∆/2.) Then we have:

5Not to be confused with the well-knownJensen’s inequality.
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Figure 2: Illustrating the ∆ term in Janson’s inequality, for
k = 3 and l = 4. Each row is a machine.

THEOREM 2. Janson’s inequality [2, 9, 11]

Pr[I1 = I2 = ... = In = 0] ≥
n
Y

i=1

Pr[Ii = 0] (1)

Pr[I1 = I2 = ... = In = 0] ≤ e−µ2/(∆+µ) (2)

Obviously, whent = n, we haveFP (α) = 1 − Pr[I1 = I2 =
... = In = 0]. An upper bound forFP (α) will then immediately
follow from Inequality 1. We will use Inequality 2 to obtain the
lower bound. For any assignmentα, the termµ is alwaysnpk. So
to obtain a lower bound onFP (α), all we need is to upper bound
∆. The term∆ can be written as

Pn
i=1(

P

j:j 6∼i Pr[Ii∧Ij ]). Now
consider a given objecti as in Figure 2, whosek replicas reside on
k machines. Each machine holdsl−1 additional objects, and these
k machines have a total ofk(l−1) empty slots for other objects. If
j 6∼ i, j must occupyx of these slots where1 ≤ x ≤ k. For such
j, we trivially havePr[Ii ∧ Ij ] = p2k−x.

There are many different ways of “filling up” thek(l − 1) slots.
One extreme is to usel−1 objects, where each object takesk slots.
The other extreme is to usek(l−1) objects, where each object takes
1 slot. In the first extreme, the total number of terms in the sum-
mation of

P

j:j 6∼i Pr[Ii ∧ Ij ] is minimized (l − 1 terms), but each

individual term is maximized (each ispk). In the second extreme,
the total number of terms is maximized (k(l− 1)), while each term
is minimized (p2k−1). Becausep ≤ 0.5, however, one would sus-
pect that the termp2k−x quickly decreases asx decreases. Thus,
the number of terms becomes less important, and the magnitude
of individual terms dominates. In other words, intuitively, the first
extreme above will likely maximize∆, while the second extreme
will likely minimize it.

It is interesting to note that the first extreme above exactlycorre-
sponds to thePTN assignment6, while the second extreme is closer
to theRAND assignment. In other words, the∆ term actually gives
us an intuition of why, whent = n = N , PTN is the best while
RAND is the worst (within constants).

THEOREM 3. Whent = n = N , for any assignmentα, we
have:

FP (α) ≤ 1 − (1 − pk)n (3)

FP (α) ≥ 1 − e−(n/l)pk

(4)

Proof: From Inequality 1, we trivially have1 − FP (α) ≥ (1 −
pk)n. To obtain the lower bound, consider a particular objecti.
Suppose there are altogetheru j’s such thatj 6∼ i. For each such
j, we definex = |Qi ∩ Qj |. Let theseu x’s be x1, x2, . . . , xu.
Clearly 1 ≤ x1, x2, . . . , xu ≤ k and x1 + x2 + . . . + xu =
(l−1)k (Figure 2). For the giveni, we have

P

j:j 6∼i Pr[Ii ∧Ij ] =

p2k−x1 + p2k−x2 + ... + p2k−xu . Lemma 15 in the appendix will
prove that this summation is upper bounded by(l−1)pk. When we

6This, of course, does not necessarily mean thatPTN is optimal.
All it says is that the failure probability ofPTN is lower bounded
by the lowest lower bound among all assignments.

consider all possiblei’s, we have∆ =
P

(i,j):i6∼j Pr[Ii ∧ Ij ] ≤

n(l−1)pk. Finally, from Inequality 2 and withµ = npk, we have:

1 − FP (α) ≤ e−µ2/(∆+µ) ≤ e−(n/l)pk

2

5.2 Approaching Upper and Lower Bounds
To show thatPTN is near the lower bound, we trivially have

FP (PTN) = 1 − (1 − pk)n/l, which is not far from the lower

bound of1 − e−(n/l)pk

:

THEOREM 4. Whent = n = N , for any assignmentα and any
constantε > 0:

1. FP (PTN) < 1.14FP (α).

2. When eitherp is sufficiently small or whenn is sufficiently
large7, FP (PTN) < (1 + ε)FP (α).

Proof: Theorem 3 tells us thatFP (α) ≥ 1 − e−(n/l)pk

. Let
x = n/l wherex ≥ 1, y = pk where0 < y ≤ 0.52 = 0.25, and
f(x, y) = (1− (1−y)x)/(1−e−xy). It can be shown that for any
constanty, f(x, y) is a monotonically decreasing function ofx.
Next defineg(y) = f(1, y). We can show thatg(y)′ ≥ 0 for any
y. Thusf(1, y) is a monotonically increasing function ofy, and
we havef(x, y) ≤ f(1, y) ≤ f(1, 0.25) < 1.14. Furthermore,
y → 0 asp → 0, x → ∞ asn → ∞, limy→0 f(x, y) → 1, and
limx→∞ f(x, y) → 1. 2

Different from performance measures, becauseFP (α) is usu-
ally a close-to-zero value in practice, having a multiplicative con-
stant is more desirable than an additive constant.

Next we intend to show thatRAND is close to the worst. Remem-
ber thatRAND is actually a distribution of assignments. Given the
#-P hardness of calculating failure probability, it is unlikely that we
can enumerate the failure probability of all assignments inthe dis-
tribution. Instead, we use Janson’s inequality to approximate the
failure probability of the assignments in the distribution. By care-
fully upper bounding∆, we can show that with high probability,
an assignment drawn according to the distribution is close to the
worst.

Recall from Figure 2 and the intuition in Theorem 3 that bound-
ing ∆ is all about bounding the summation

P

j:j 6∼i Pr[Ii ∧ Ij ] for
any giveni. Earlier we explained that, forp ≤ 0.5, the magnitude
of individual terms in the summation fori is more important than
the number of terms. For an objectj that occupiesx of thek(l−1)
slots in Figure 2,Pr[Ii ∧ Ij ] = p2k−x, which can vary between
p2k−1 to pk. We will show that inRAND, with high probability,
anyj will occupy at most roughlyk/2 slots (whenn ≥ 2l). This
is easy to imagine since withk(l − 1) object replicas, it is unlikely
that we end up with too many replicas from the same object. On
the other hand, this will upper boundPr[Ii ∧ Ij ] within roughly
p1.5k, which is sufficient to prove the result.

THEOREM 5. Whent = n = N , k ≥ 3, n ≥ 2l and2lpbk/2c ≤
1, for any assignmentα and any constantε > 0, with probability
at least1 − O(1/n):

1. FP (RAND) > 0.46FP (α).

2. When eitherp is sufficiently small orn is sufficiently large,
FP (RAND) > (1 − ε)FP (α).

7The assignment problem requires thats = Nk/l = nk/l and
n is not a “free” variable. In this paper, whenever we consider
“sufficiently large”n, we make the natural assumption thatk and
l are fixed, whiles changes withn ass = nk/l. This follows the
practical meaning of the problem: Namely, when the number of
objects increases, we will use more machines to hold them.



Proof: We know that for any assignmentµ = npk. Let
q = 4kkn(l/n)dk/2e+1. We will show that for RAND,
Pr[∆ > 2nlpk+bk/2c] ≤ nq. To study the distribution of∆, con-
sider a particular object and its corresponding indicator variableIi

as in Janson’s inequality. As in the proof of Theorem 3, we suppose
there are altogetheru j’s such thatj 6∼ i and for each suchj, we
definex = |Qi ∩ Qj |. Let theseu x’s bex1, x2, . . . ,xu. We have
1 ≤ x1, x2, . . . , xu ≤ k andx1 + x2 + . . . + xu = (l − 1)k. Let
z = max(x1, x2, . . . , xu) ≤ k. For the giveni, Lemma 15 tells
us that

P

j 6∼i Pr[Ii ∧ Ij ] = p2k−x1 + p2k−x2 + ... + p2k−xu ≤

d (l−1)k
z

ep2k−z ≤ kl
z
· p2k−z . Defineh(z) = kl

z
· p2k−z and we

have
P

j 6∼i Pr[Ii ∧ Ij ] ≤ h(z).
On the other hand, the definition ofz is exactly the same as in

Lemma 16, which tells us:

Pr[z > dk/2e] = Pr[z ≥ dk/2e + 1] ≤ q

Becausep ≤ 0.5, one can show thath(1) ≤ h(2) < h(3) <
h(4) < . . .. This means that if

P

j 6∼i Pr[Ii ∧ Ij ] > h(dk/2e), we
must haveh(z) > h(dk/2e) andz > dk/2e (sincedk/2e ≥ 2).
Thus for giveni:

q ≥ Pr[z ≥ dk/2e + 1] = Pr[z > dk/2e]

≥ Pr[
X

j 6∼i

Pr[Ii ∧ Ij ] >
kl

dk/2e
· p2k−dk/2e]

≥ Pr[
X

j 6∼i

Pr[Ii ∧ Ij ] > 2lpk+bk/2c]

When considering all possiblei’s, we have:

Pr[∆ > 2nlpk+bk/2c] ≤ nq

Thus Inequality 2 tells us that with at least1 − nq probability:

FP (RAND) ≥ 1 − e(−n2p2k)/(npk+2nlpk+bk/2c)

= 1 − e−npk/(1+2lpbk/2c) ≥ 1 − e−0.5npk

From Theorem 3, we know thatFP (α) ≤ 1 − (1 − pk)n. Let
x = n where1 ≤ x, y = pk where0 < y ≤ 0.52 = 0.25, and
f(x, y) = (1− e−0.5xy)/(1− (1− y)x). It can be shown that for
any constanty, f(x, y) is a monotonically increasing function ofx.
Next defineg(y) = f(1, y). One can show thatg′(y) ≤ 0 for any
y. Thusf(1, y) is a monotonically decreasing function ofy, and
we havef(x, y) ≥ f(1, y) ≥ f(1, 0.25) > 0.46. Furthermore,
we also havelimx→∞ f(x, y) → 1 andlimy→0 f(x, y) → 1. 2

A similar proof can be constructed fork = 2, which we omit
for brevity. The theorem also extends to some other parameter re-
gions where the condition of2lpbk/2c ≤ 1 is not met – we do not
tediously enumerate all such regions here because this is about the
worst assignment, which is less important than the best assignment.

Discussion on inter-object correlation in PTN and RAND. We
have shown thatPTN andRAND are the best and worst assignments
(within constants and under the conditions in the theorems). For
t = n, if the n objects were all independent, then the success prob-
ability of the operation would be(1−pk)n. Inter-object correlation
helps us to improve such probability: Conditioned upon one object
being available, other objects that reside on the same machines as
that object will have an availability larger than(1− pk). However,
notice that the availability ofRAND approaches(1−pk)n, meaning
that the inter-object correlation inRAND is weak and the availabil-
ity is almost as if then objects were independent. On the other
hand,PTN has a strong correlation and the availability(1− pk)n/l

is as if we only hadn/l independent objects. Whenpk is small, the
difference betweenFP (RAND) andFP (PTN) is about a factor ofl.

Because randomly assigning objects seems to be a good way to
minimize the correlation among objects, it may appear obvious that
RAND should be close to the worst. But such intuition overlooks the
subtlety in defining a single quantitative measure for inter-object
correlation. For example, fort = n, Janson’s inequality uses a sin-
gle quantity∆ to “summarize” inter-object correlation. We indeed
showed thatRAND tends to give us a small∆ for p ≤ 0.5, which
led to Theorem 5. On the other hand, whenp → 1, each term in
the summation of∆ =

P

(i,j):i6∼j Pr[Ii ∧ Ij ] approaches 1. As
a result, becauseRAND tends to maximize the number of terms in
the summation,RAND will actually give us a large∆ (much larger
than the∆ in PTN) whenp → 1. This, however, does not mean
that the correlation inRAND becomes larger now, since obviously
the correlation level is an inherent property of the assignment and
should not depend onp. Thus the only explanation is that∆ now
fails to accurately capture such correlation. In fact, one can prove
thatPTN is still the best assignment whenp → 1.

6. BEST AND WORST ASSIGNMENTS FOR
t = l+1 < n = N

Having discussed the largestt in the previous section, we now
turn to the smallestt in this section. Whent ∈ [1, l] the assignment
problem reduces to a trivial one, because all assignments have the
same availability. Thus the smallestt we consider isl + 1.

We first use basic combinatorial arguments to prove thatPTN is
the worst assignment whent = l + 1. The intuition is that we need
one machine to be available to give usl objects, and some other
machines to be available such that at least one of these machines
provides at least one other object. This does not happen onlywhen
all the available machines have exactly the same set of objects. A
counting argument will show that the number of such scenarios is
maximized underPTN.

To formalize such arguments, we introduce some definitions that
are used only in this section. AconfigurationG is the subset of
the available machines out of thes machines. A configuration is
unavailable(under a given assignment) if the number of available
objects in that configuration is smaller thant.

THEOREM 6. Whent = l + 1 < n = N , FP (PTN) ≥ FP (α)
for any assignmentα.

Proof: For a given assignment and any1 ≤ i ≤ s and1 ≤ v ≤ s,
we defineUi,v to be:

{G|i ∈ G, |G| = v, andG is an unavailable configuration}

The failure probability of the assignment is then:

ps +
s
X

v=1

s
X

i=1

[|Ui,v |/v × (1 − p)vps−v]

In the expression, the term|Ui,v |/v is the total number of size
v configurations that are unavailable (each such configuration ap-
pears inv differentUi,v ’s).

To proveFP (PTN) ≥ FP (α), it suffices to show that for anyi
andv, |Ui,v | is maximized underPTN. In any configurationG ∈
Ui,v , machinei must be available. Thus at leastl objects are al-
ready available. AsG is not available under the threshold ofl + 1,
all other machines inG must hold exactly the same set of objects
as machinei. With each object havingk replicas, we can have at
mostk − 1 such machines. Thus|Ui,v | ≤

`

k−1
v−1

´

for 1 ≤ v ≤ k

and |Ui,v | = 0 for k + 1 ≤ v ≤ s. On the other hand, inPTN,
we have exactly|Ui,v| =

`

k−1
v−1

´

for 1 ≤ v ≤ k. Thus |Ui,v| is
maximized underPTN. 2



Next we want to find the best assignment fort = l+1. This is not
difficult, because all we need is that no two machines hold exactly
the same set of objects. It is simple to construct such an assignment
using a sliding-window approach. We number all objects from1 to
n and place them sequentially on a ring. Imagine that there is a
window of sizel. The first machine holds object 1 through object
l. Then we slide the “window” to the right byl/k, and have the
second machine hold object(l/k+1) through(l/k+ l). Similarly,
the third machine will hold object(2l/k + 1) through(2l/k + l),
and so on.

In the following, however, we intend to derive a more interesting
result—we will prove thatRAND is close to optimal whent = l+1.
This means that just randomly picking an assignment can be al-
most as good as carefully constructing one. The intuition issimple:
if we randomly assign object replicas, then it is unlikely that two
machines will have exactly the same set of objects.

THEOREM 7. Whent = l + 1 < n = N , for any assignment
α and any positive constantε, we haveE[FP (RAND)] ≤ (1 +
ε)FP (α) whenn is sufficiently large.

Proof: For any assignment, if less than two machines are available,
there must be less thanl + 1 objects. Thus whent = l + 1, for
any assignmentα, we have the trivial lower bound ofFP (α) ≥
ps + s(1 − p)ps−1.

ForRAND, we define random variableUi to be the set of unavail-
able configurations whose size isi. From the linearity of expecta-
tion, we haveE[FP (RAND)] as:

ps + s(1 − p)ps−1 +
k
X

i=2

E[|Ui|](1 − p)ips−i

It is important to notice thats is not a constant and whenn → ∞,
we also haves = nk/l → ∞. Thus the lower bound ofps +s(1−
p)ps−1 will approach zero whenn → ∞. To prove the theorem,
showingE[|Ui|] → 0 is not sufficient – we need to prove that it
approaches zero at a faster rate than the lower bound, as following.

Let Ci to be the set of all configurations whose size isi, and
we have|Ci| =

`

s
i

´

. Notice thatCi is not a random variable.
Define indicator random variablexi,j , wherexi,j = 1 if and only
if the jth configuration inCi belongs toUi. Obviously, we have
E[|Ui|] = E[

P

j xi,j ] =
`

s
i

´

E[xi,1] ≤ siE[xi,1]. Notice that
E[xi,1] is the probability of having exactlyl distinct objects on a
given set ofi machines inRAND. ThusE[xi,1] decreases withi and
we haveE[|Ui|] ≤ skE[x2,1].

Determining the probability (i.e.,E[x2,1]) of having exactlyl
distinct objects on a given set of 2 machines is actually not triv-
ial because a machine is not allowed to hold multiple replicas of
the same object. As a result, the number of ways to assign object
replicas to the remainingn − 2 machines is dependent on how we
assign the object replicas to the2 machines. Lemma 17 in the ap-
pendix proves thatE[x2,1] < (l/n)l ≤ (l/n)k. Thus we have
E[FP (RAND)] as:

ps + s(1 − p)ps−1 +
k
X

i=2

E[|Ui|](1 − p)ips−i

< ps + s(1 − p)ps−1 + k · sk · (l/n)k · (1 − p) · ps−k

≤ ps + s(1 − p)ps−1 + s(1 − p)ps−1 ·

„

1

pk−1
·
kkl

n

«

≤ (1 + ε)FP (α) whenn sufficiently large

2
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Figure 3: Illustrating the area bounded by the availability
curve. The curve is actually a step function, so the area
bounded by the curve exactly equals the sum of the rectangular
areas.

COROLLARY 8. For any assignmentα and any positive con-
stantsε1 and ε2, whent = l + 1 < n = N andn is sufficiently
large,Pr[FP (RAND) ≥ (1 + ε1)FP (α)] ≤ ε2.

7. A DEEPER LOOK

7.1 Impossibility of Remaining Optimal Across
All Values of t

Our results so far show that whent decreases fromn to l +
1, the best assignment (PTN) becomes the worst, while the worst
assignment (RAND) becomes the best. Ideally, we would prefer an
assignment that is optimal for allt values. However, the following
shows that no such assignment exists.

Our proof is based on the area bounded by the availability curve
(Figure 3) for any assignment, where thex-axis ist and they-axis
is the availability of the given assignment. We will prove that the
area is a constant independent of the assignment. If we want to
raise one part of the curve, some other part must necessarilydrop
to keep the area constant. It is impossible for a single assignment
to be optimal under allt values because otherwise the area will
no longer remain constant. Also because the difference between
PTN andRAND is usually large, it is not even possible for a single
assignment to be near to the optimal under allt value.

Specifically, for any assignment, letqi be the probability that
exactlyi objects are available, for0 ≤ i ≤ n. The area bounded
by the availability curve is:

(q1 + · · · + qn) + (q2 + · · · + qn) + · · · + (qn) =

n
X

i=1

iqi

On the other hand, the summation
Pn

i=1 iqi is exactly the expected
number of available objects in the system. In any assignment, each
object is available with probability1−pk. Linearity of expectation
tells us that

Pn
i=1 iqi = n(1 − pk), which is independent of the

assignment.

7.2 Removing Constant Factors When t = n =

N and k = l = 2

Fort = l+1, we already obtained the best and the worst assign-
ments without any constant factors. While fort = n, the best and
the worst assignments are within constant factors (Theorem4 and
Theorem 5). In particular, the worst “assignment”RAND is actually
a distribution, which does not shed much light onto the structure of
the worst assignment. Thus this section aims to find the best/worst
assignment (without constants) fort = n, under some significantly
restricted scenarios.

The scenarios we consider are when every object has 2 replicas
and each machine holds 2 objects (as in Figure 1). We will see
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Figure 4: When k = l = 2, each assignment can be uniquely
represented as a set of rings. Each box represents a machine.

that even under such significantly restricted and perhaps imprac-
tical parameters, the problem is still far from trivial. To simplify
discussion, the rest of this section assumes thatn|2 andn|3.

Whenk = l = 2, any assignment can be uniquely represented as
a set of rings (Figure 4). Each ring edge represents an object, and
each ring node corresponds to a machine holding the two adjacent
edges (objects). The size of a ring can range from 2 ton. Obvi-
ously, if two adjacent nodes on any ring fail, then we lose an object
and the assignment becomes unavailable undert = n. Notice that
because all objects are equivalent, it is not important which object
corresponds to which ring edge – only the ring sizes matter. Define
f(x) to be the probability of not having any two adjacent nodes fail-
ing on a ring of sizex for 2 ≤ x ≤ n. If assignmentα corresponds
to rings of sizex, y, z, . . ., thenFP (α) = 1 − f(x)f(y)f(z) . . ..

To find the best (worst) assignment, we use hill-climbing and
adjust an assignment repeatedly so that at each stepFP () is de-
creased (increased). For any assignment, the sum of the sizes of all
rings is alwaysn. To keep this invariant, an adjustment step can
either split a big ring of sizex + y into two smaller ones of sizex
andy, or merge two smaller rings of sizex andy into one big ring
of sizex + y. Any assignment can be transformed into any other
assignment via a sequence of these adjustment steps. The crux is
to understand how availability changes in these steps, or more pre-
cisely, which off(x)f(y) andf(x + y) is larger. Interestingly, the
comparison outcome is uniquely determined by the parity of the
smaller ofx andy:

LEMMA 9.

f(x) = zx
1 + zx

2 , where:q =
p

(3p + 1)(1 − p),

z1 = (1 − p + q)/2, z2 = (1 − p − q)/2

We also havez1 > 0, z2 < 0, and0 < |z2| < |z1| < 1.

Proof: Consider a string ofn nodes (i.e., a broken ring). Define
g(x) to be the probability of not having any two adjacent nodes
failing on a string of sizex for x ≥ 1. Defineg(0) = 1. One can
show the following linear recurrence forx ≥ 2:

g(x) = (1 − p)g(x− 1) + p(1 − p)g(x− 2) (5)

Using standard techniques to solve the recurrence, we have for x ≥
0:

g(x) = azx
1 + bzx

2 , where:

a = (q + 1 + p)/(2q), b = (q − 1 − p)/(2q)

z1, z2 andq are as defined in the Lemma

Forx ≥ 3, we have:

f(x) = (1 − p)2g(x − 2) + 2p(1 − p)2g(x − 3) (6)

One can easily verify thatf(x) = zx
1 + zx

2 satisfies the above
equation. It is trivial to show thatf(2) = z2

1 + z2
2 . 2

LEMMA 10. Letx andy be integers wherex ≥ y ≥ 2:

• f(x)f(y) > f(x + y) if y is even.

• f(x + y) > f(x)f(y) if y is odd.

Proof:

f(x)f(y) − f(x + y)

= (zx
1 + zx

2 )(zy
1 + zy

2 ) − (zx+y
1 + zx+y

2 )

= zx
1zy

2 + zy
1zx

2 = zy
1zy

2 (zx−y
1 + zx−y

2 )

Because(x − y) ≥ 0, z1 > 0, and|z1| > |z2|, the term(zx−y
1 +

zx−y
2 ) is positive. Thus the sign of the above expression must be

the same as the sign ofzy
2 . 2

We are now ready to prove the two main theorems of this section,
which say thatn/2 size-2 rings are the best whilen/3 size-3 rings
are the worst. This is somewhat surprising because it is tempting to
conjecture that a single ring of sizen is the worst.

THEOREM 11. Whent = n = N and k = l = 2, the as-
signment corresponding ton/3 size-3 rings has the highest failure
probability.

Proof: Consider the set of rings corresponding to any given assign-
mentα. We want to adjust the rings to ultimately obtainn/3 size-
3 rings. To always decrease availability in the adjustment steps,
Lemma 10 allows two kinds of adjustments:

• Merge two rings of sizex andy into one ring of size(x + y)
wherex ≥ y andy is even.

• Split a ring of size(x + y) into two rings of sizex andy
wherex ≥ y andy is odd.

Now we adjust the set of rings corresponding to assignmentα.
First, for any odd size ring whose size is at least 7, we split it into
two smaller rings where one of them is of size 3. We will end up
with three kinds of rings: size-3 rings, size-5 rings, and even size
rings. We merge all even size rings into a single big one, and then
keep ripping size-3 rings out of the big ring until the size ofthe big
ring is either 3, 4, or 5. If we do have a size-4 ring, then theremust
be at least one size-5 ring (sincen|3). We merge the size-4 ring and
the size-5 ring into a size-9 ring. This ring can then be splitinto 3
size-3 rings. Now we have only size-3 rings and size-5 rings.One
can easily show thatf3(5) > f5(3), which enables us to adjust all
size-5 rings into size-3 rings. At this point, we obtainn/3 size-3
rings.2

Note that the ring structure ofRAND significantly differs from
n/3 size-3 rings. Fork = l = 2, RAND can be roughly viewed
as selecting a random permutation of1..n. In a random permuta-
tion, the expected number of cycles of sizem ≤ n is 1/m and the
average cycle size isΘ(n/ log n) [14], which is far fromn/3.

THEOREM 12. Whent = n = N andk = l = 2, the assign-
ment corresponding ton/2 size-2 rings (i.e., thePTN assignment)
has the lowest failure probability.

Proof: To always increase availability in the adjustment, Lemma 10
allows two kinds of adjustments:

• Merge two rings of sizex andy into one ring of size(x + y)
wherex ≥ y andy is odd.

• Split a ring of size(x + y) into two rings of sizex andy
wherex ≥ y andy is even.
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Figure 5: Illustrating the availability of the assignment corre-
sponding to n/x rings of size x.

Now we adjust the set of rings corresponding to assignmentα.
We first break all even size rings whose size is at least 4 into size-2
rings. For all odd size rings whose size is at least 5, we keep ripping
out size-2 rings until all odd size rings become size 3. We nowhave
only size-2 rings and size-3 rings. We merge all rings of size3 into
one big ring, and then split the big ring into size-2 rings.2

As we mentioned, it was tempting to conjecture that a single
size-n ring has the worst availability. Given that is not true, what
availability does a single size-n ring provide? Is it close to the best
or close to the worst? What about rings of other sizes? To shed
light onto these question, we consider assignments that correspond
to rings of homogeneous sizes (i.e.,(n/x)8 rings of sizex). We
will prove that:

• If x is odd, then the largerx is, the better the availability. For
example, 3 rings of size 25 is better than 5 rings of size 15.

• If x is even, then the largerx is, the worse the availability.
For example, 4 rings of size 12 is worse than 6 rings of size
8.

• If x is even andy is odd, then(n/x) size-x rings is always
better than(n/y) size-y rings.

Figure 5 illustrates these results, where as we increasex, the avail-
ability oscillates with a decreasing oscillation magnitude. Notice
that these results, however, do not necessarily imply Theorem 11
and 12, which also apply to rings of heterogeneous sizes.

THEOREM 13.

• For any odd integersx and y wherex > y ≥ 3, we have
(f(x))n/x > (f(y))n/y.

• For any even integersx and y wherex > y ≥ 2, we have
(f(x))n/x < (f(y))n/y.

• For any even integerx ≥ 2 and any odd integery ≥ 3, we
have(f(x))n/x > (f(y))n/y.

Proof: For the first case, definez3 = −z2 > 0. We have from
Lemma 9 thatf(x) = zx

1 − zx
3 andf(y) = zy

1 − zy
3 :

(f(x))n/x > (f(y))n/y ⇔ (zx
1 − zx

3 )y > (zy
1 − zy

3 )x

⇔ (1 − (z3/z1)
x)y > (1 − (z3/z1)

y)x

On the other hand, because0 < z3/z1 < 1, we have
(1 − (z3/z1)

x)y > (1 − (z3/z1)
x)x > (1 − (z3/z1)

y)x. The
other two cases are similar.2

8To simplify discussion, wherever we use the notationn/x below,
we assumen|x.

8. GENERALIZING TO n < N
So far we have considered onlyn = N . Whenn < N , thenk

replicas of then requested objects may not be evenly distributed
among thes machines. Each machine may hold any number (rang-
ing from 0 tol) of the replicas for thesen objects. This provides
us with another degree of freedom, andPTN andRAND as defined
in Section 3 are no longer well-defined. We refine these definitions
as follows. ThePTN assignment is obtained by partitioning theN
objects intoN/l groups of sizel where then objects requested by
the operation belong to exactlyn/l groups, and then mirroring each
group ontok machines. In other words, then objects “concentrate”
and occupy as few machines as possible. TheRAND assignment is
a random assignment drawn uniformly randomly from all assign-
ments where each machine holds exactlynk/s object replicas of
then objects requested by the operation. In other words, then ob-
jects “spread” and occupy (evenly) as many machines as possible.

Now regarding the best/worst assignments fort = n < N , ob-
serve that Theorem 3 can be trivially modified to apply to the case
of n < N , while Theorem 4 applies without modification. Thus
PTN is optimal within a constant of 1.14. Similarly, it is trivial to
show that Theorem 5 applies fort = n < N , which means that
RAND is the worst within a constant of 0.46. As for the best and
worst assignments for smallt, notice that the smallest interestingt
value is now 1 (instead ofl + 1). Fort = 1, we only need any ma-
chine holding any of thenk object replicas to be available for the
operation to be successful.PTN uses the minimal number of ma-
chines for then objects, whileRAND uses the maximum number of
machines. Thus trivially, they are the best and worst assignment,
respectively.

In practice, the application may have multiple multi-object op-
erations, and each multi-object operation may access a different
subset ofn objects. Mathematically modelling these operations is
challenging because the access pattern can be complex and simply
assuming that each operation accesses a uniformly random subset
will be far from reality. Our previous experimental study [26] has
investigated these scenarios for some specific applications.

9. CONCLUSION
This paper has proved a series of strong results regarding the

best and the worst assignments (from object replicas to machines)
in terms of the availability they provide to multi-object operations.
Quite different from classic research on replica placement, here
the availability difference arises from inter-object correlation (even
when machine failures are independent and identical). As men-
tioned in Section 1, the same assignment problem arises under era-
sure coding. We have also obtained similar initial results by using
a later version [10] of Suen’s inequality [21]. Obtaining a complete
set of results for erasure coding is part of our future work.
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APPENDIX
LEMMA 14. For 1 ≤ x1, x2 ≤ z, we have:

• If p ≤ 0.5, thenp−x1 + p−x2 ≤ p−(x1+x2).

• If x1 + x2 ≥ z + 1, thenp−x1 + p−x2 ≤ p−z + p−x1−x2+z

Proof:

• Without loss of generality, assumex1 ≤ x2. Let q = 1/p ≥
2. We haveqx1−x2 ≤ 1 ⇒ qx1−x2 + 1 ≤ 2 ≤ qx1 ⇒
qx1 + qx2 ≤ qx1+x2 .

• Let d = x1 + x2 and definef(x) = p−x + p−(d−x) for
d − z ≤ x ≤ z. We only need to prove thatf(x1) ≤
f(z). We havef ′(x) = (ln p)(px−d − p−x) andf ′′(x) =
(ln p)2(p−x + px−d) > 0. Thus the maximum off(x) must
occur at the boundary. On the other hand,f(d−z) = f(z) =

p−z + p−(d−z). So we havef(x1) ≤ f(z).

2

LEMMA 15. Consider 1 ≤ x1, x2, ..., xu ≤ z where
Pu

i=1 xi = (l− 1)k. We havep2k−x1 + p2k−x2 + ...+ p2k−xu ≤

d (l−1)k
z

ep2k−z whenp ≤ 0.5.

Proof: It suffices to show thatp−x1 + p−x2 + ... + p−xu ≤

d (l−1)k
z

ep−z . We combine the terms on the left-hand side step
by step. Ifxi + xj ≤ z, we combine the two terms ofp−xi and
p−xj into one termp−xi−xj . Otherwise we convert the two terms
to p−z + p−x1−x2+z . From Lemma 14, we know that the summa-
tion is never decreased at any of these steps. Thusp−x1 + p−x2 +

... + p−xu ≤ d (l−1)k
z

ep−z . 2

LEMMA 16. Consider theRAND distribution and a given object
A. Without loss of generality assume that machine1, 2, ...,k each
holds a replica ofA. Let random variablez (1 ≤ z ≤ k) denote
the maximum number of replicas that thesek machines hold for
any other object. ThenPr[z ≥ a] ≤ 4kkn(l/n)a for anya, 1 ≤
a ≤ k.

Proof: After A is already been assigned to the machine1 through
k, we define aremainder assignmentto be the assignment from the
remainingn − 1 objects (each withk replicas) to the remaining
space on thes machines. Among theses machines,k will each
take l − 1 additional object replicas, whiles − k will each takel
additional object replicas.

We will bound the probability of the firstk machines holding
exactlyi (1 ≤ i ≤ k) replicas of a given objectB. Because the
first k machines are all identical, we have:

Pr[first k machines hold exactlyi replicas ofB]/

 

k

i

!

= Pr[first i machines holdi replicas ofB and

the nextk − i machines do not holdB]

< Pr[machine 1 holdsB] ×

Pr[machine 2 holdsB |machine 1 holdsB] × ... ×

Pr[machine i holdsB |machine1..(i − 1) holdB] (7)

To simplify the notation, we define the event “machine 0 holdsB”
to be an event that always happens. We will prove that for any
1 ≤ j ≤ i, Pr[machinej holdsB| machine0..(j − 1) holdB] <
1/(s − j + 1).

For any given j, define pr = Pr[machiner holdsB
|machine0..(j − 1) holdB] for j ≤ r ≤ s. By symmetry, we



know thatpj = pj+1 = ... = pk andpk+1 = ... = ps. Also, we
havepj + pj+1 + ... + pk + pk+1 + ... + ps = 1. Thus to prove
thatpj < 1/(s − j + 1), it suffices to show thatpj < ps, which
we prove in the following.

Let Γ be the set of remainder assignments where machine 1
throughj holds objectB, and letΛ be the set of remainder assign-
ments where machine 1 throughj − 1 and also machines holds
objectB. To prove thatpj < ps, it suffices to show that|Γ| < |Λ|.
DefineΓ′ = Γ− (Γ∩Λ) andΛ′ = Λ− (Γ∩Λ). In turn, it suffices
to prove that|Γ′| < |Λ′|. We defineΓ′

w for 0 ≤ w ≤ l−2 to be the
subset ofΓ′ where machinej and machines have exactlyw objects
in common. Obviously,Γ′

w ’s are all disjoint andΓ′ = ∪l−2
w=0Γ

′
w.

Similarly, defineΛ′
w for 0 ≤ w ≤ l−1 to be the subset ofΛ′ where

machinej and machines have exactlyw objects in common. We
again haveΛ′ = ∪l−1

w=0Λ
′
w. To prove that|Γ′| < |Λ′|, it suffices to

show that|Γ′
w| < |Λ′

w| for any0 ≤ w ≤ l − 2.
For the purpose of counting, we define a many-to-many mapping

betweenΓ′
w andΛ′

w. Consider any remainder assignmentγ ∈ Γ′
w.

We can obtain another remainder assignmentλ ∈ Λ′
w by swapping

B on machinej with some other objectC on machines as long
asC is not already on machinej. There are exactlyl − w choices
for C. Similarly, for any remainder assignmentλ ∈ Λ′

w , we can
obtain another remainder assignmentγ ∈ Γ′

w by swappingB on
machines with some other objectC on machinej as long asC is
not already on machines. There are exactlyl − w − 1 choices for
C. We say thatγ is the pre-image ofλ andλ is the after-image of
γ. Eachγ has exactlyl−w after-images, while eachλ has exactly
l − w − 1 pre-images. Thus it must be the case that|Γ′

w| < |Λ′
w|.

We just proved thatpj < ps, which implies that for any1 ≤ j ≤
i, Pr[machinej holdsB |machine0..(j − 1) holdB] < 1/(s −
j + 1). Together with Inequality 7, this means that:

Pr[first k machines hold exactlyi replicas ofB]

<

 

k

i

!

·
1

s
·

1

s − 1
· ... ·

1

s − (i − 1)
<

„

k

s − k

«i

=

„

l

n − l

«i

≤

„

4l

n

«i

The last step follows fromn ≥ 2l. Finally we take a summation
for i from a to k, and also consider all possibleB’s:

Pr[z ≥ a] < n

k
X

i=a

„

4l

n

«i

< 4kkn(l/n)a

2

LEMMA 17. For any given 2 machines in theRAND assign-
ment, the probability that they hold exactly the same set of objects
is less than(l/n)l.

Proof: We consider two scenarios where the first scenario requires
that the 2 machines hold exactly the same set of objects whilethe
second scenario does not have any such requirement. Recall that
a machine is never allowed to hold multiple replicas of the same
object. In the first scenario, the number of ways to assign object
replicas to the 2 machines is

`

n
l

´

. For each such way, letx be
the number of possibleremainder assignments, where aremainder
assignmentis the assignment of the remaining object replicas to the

remainingn − 2 machines. In the second scenario, the number of
ways to assign the objects to the2 machines is

`

n
l

´`

n
l

´

. For each
such way, lety be the number of possible remainder assignments.

We would like to prove thatx is always smaller than or equal to
y. In the first scenario, after we assign objects to the 2 machines,
we letk − 2 ≤ a1 ≤ a2 ≤ ... ≤ an ≤ k denote the number of
remaining replicas for then objects. Obviously,a1 = ... = al =
k − 2 andal+1 = ... = an = k. The value ofx does not depend
on the identities of the objects, and is uniquely determinedby the
sequencea1a2...an. We definek − 2 ≤ b1 ≤ b2 ≤ ... ≤ bn ≤ k
similarly in the second scenario. We know thata1 ≤ b1, ...,al ≤ bl

andal+1 ≥ bl+1, ..., an ≥ bn. Again, the value ofy is uniquely
determined by the sequenceb1b2...bn.

The sequenceb1b2...bn contains at most three distinct values:
k − 2, k − 1, andk. There must be an even number ofbi’s with a
value ofk − 1. We associate the firstk − 1 with the lastk − 1 and
call that apair. We then consider the remaining values and form a
second pair, and so on. We will prove thatx ≤ y via an induction
on the number of pairs.

For the induction base, if the number of pairs is 0, then the two
sequencesa1a2...an andb1b2...bn are the same. Since the identi-
ties of the objects do not affect the accounting, we havex = y.

Now assume thatx ≤ y if the number of pairs isd, and we
need to prove thatx ≤ y if the number of pairs isd + 1. For
the sequenceb1b2...bn, let (bi, bj) be the first pair formed where
i < j. Without loss of generality, we number the objects such that
bi corresponds to the number of remaining replicas for objecti. We
construct a third sequencec1c2...cn from b1b2...bn by changingbi

from k− 1 to k− 2 andbj from k− 1 to k. Let z be the number of
possible remainder assignments for sequencec1c2...cn. Because
c1c2...cn hasd pairs, based on our inductive assumption, we know
thatx ≤ z. In the next, we will prove thatz ≤ y, thus finishing the
inductive step.

For any machine (except the given 2 machines) holding objects
i and/orj, there are three possibilities: the machine holdsi only,
the machine holdsj only, the machine holds bothi andj. For any
remainder assignment for sequencec1c2..cn, let ui be the number
of machines (except the given two machines) holding only objecti.
Similarly defineuj . Becauseci = k−2 andcj = k, we must have
that0 ≤ ui = uj − 2 < uj ≤ k. For any remainder assignment
for sequenceb1b2...bn, let vi be the number of machines (except
the given two machines) holding only objecti. Similarly definevj .
Becausebi = bj = k − 1, we must have0 ≤ vi = vj ≤ k − 1.

For any given integerw where2 ≤ w ≤ k, we consider the
setΓ of all remainder assignments for sequencec1c2...cn where
uj = w and the setΛ of all remainder assignments for sequence
b1b2...bn wherevj = w − 1. For the purpose of counting, we
construct a many-to-many mapping fromΓ to Λ. An assignment
γ ∈ Γ is mapped to another assignmentλ ∈ Λ if we can obtainλ
by picking one of theuj machines inγ that hold objectj only and
substituting objectj with objecti on that machine. We say thatγ is
the pre-image ofλ andλ is the after-image ofγ. Eachγ has exactly
uj = w after-images, while eachλ has exactlyvi = vj = w − 1
pre-images. Thus it must be the case that|Γ| < |Λ|. Since this is
true for allw, we know thatz ≤ y.

Finally, the probability that the2 machines hold exactly the same
set of objects is thus smaller than(

`

n
l

´

· x)/(
`

n
l

´`

n
l

´

· y) < (l/n)l.
2


