Optimal Inter-Object Correlation
When Replicating for Availability

Haifeng Yu

National University of Singapore
haifeng@comp.nus.edu.sg

ABSTRACT

Data replication is a key technique for ensuring data alvgity
Traditionally, researchers have focused on the avaitgtofi indi-
vidual objects, even though user-level tasks (catieeration$ typ-
ically request multiple objects. Our recent experimentadlg has
shown that thessignmenbf object replicas to machines results in
subtle yet dramatic effects on the availability of theserafens,
even though the availability of individual objects rematims same.

This paper is the first to approach the assignment problem fro
a theoretical perspective, and obtains a series of reegerding
assignments that provide the best and the worst availafoliuser-
level operations. We use a range of techniques to obtaireguits,
from standard combinatorial techniques and hill climbingtihods
to Janson’s inequality (a strong probabilistic tool). Savhéhe re-
sults demonstrate that even quite simple versions of thgrament
problem can have surprising answers.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—distributed applications

General Terms
Algorithms, Design, Reliability, Theory

Keywords

Multi-object operation, inter-object correlation, awdllity, data
replication, object assignment

1. INTRODUCTION

Masking failures is a key goal in distributed computing, and
data replication is a well-known and widely-used technitjuen-
sure data availability in the presence of failures. Tradiily, re-
searchers typically focus on the availability of individluata ob-
jects (e.g., individual file blocks [4] or individual varikgssized ob-
jects [7, 15]). On the other hand, a user-level task ofterdsi¢e
request multiple data objects; we refer to this asudti-object op-
eration For example, in order to compile a project, all source files

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

PODC’'07,August 12-15, 2007, Portland, Oregon, USA.
Copyright 2007 ACM 978-1-59593-616-5/07/00085.00.

Phillip B. Gibbons
Intel Research Pittsburgh

phillip.b.gibbons@intel.com

assignment «

assignment §

Figure 1. Two possible assignments of four objects, A, B, C,
and D, to four machines. Each box represents a machine.

need to be available. Similarly, a database query usualighies
multiple database objects. Our recent experimental s@@hshows
that theassignmenof object replicas to machines has a subtle yet
critical effect on the availability of such multi-object emtions,
even though the availability of individual objects rematims same.

A simple yet subtle example. Consider the example in Figure 1
with 4 objects: A, B, C, and D. Each object has exactly 2 repli-
cag. We have 4 identical machines to hold these 8 object replicas
and each machine holds exactly 2 objects. Each machine ritay fa
(crash) independently with the same probabififycausing all its
data to become unavailable. An object is unavailable if amlgt o

if both its replicas are unavailable. Clearly, there are ynanys

to assign the object replicas to the machines. Figure 1 gives
possible assignments.

Imagine that the four objects are source files of a projecthad
user is trying to compile the project. Here, if any sourceifilan-
available, the multi-object operation (i.e., the compdlatprocess)
will fail. Which assignments in Figure 1 gives us a betteratail-
ity that all four files are available so that the operationceecs? A
calculation will show that assignmentprovides better availability
than3.?

Assume now that, instead, the four objects are databasetsbje
that have numerical values. Our multi-object operatioerids to
compute the average of the values. Suppose we are willing-to t
erate some error in the average, and the operation is coedide
successful as long as we can retrieve three or more objentierU
thias assumption, assignmehnow provides better availability than
Q.

There are several important observations from this exanfilst,
individual objects have the same availability (il p?) in a as in
(. Also, the 8 object replicas occupy the same number of mashin

1The same assignment problem also arises [26] when usingreras
coding for the objects, but that is beyond the scope of thiepa

2The failure probabilities ar&' P(«) = p* +4p*(1—p) +2p*(1—
p)? andFP(B) = p* +4p*(1 — p) + 4p*(1 — p)*.

The failure probabilities (i.e., the probabilities thatvisr than
three objects are available) @& («) = p* +4p®(1—p)+2p*(1—
p)* andFP(B) = p* + 4p®(1 — p).

in o as ing3, thus the difference does not result from “concentrat-
ing” or “spreading” the objects.

Second, all machines are completely identical, so foriadi
vidual object, it does not matter to which two machines the ob-
ject is assigned. This clearly distinguishes the assighpreilem
from classic replica placement problems [3, 5, 27]. Theedédhce
betweena and 3 arises purely froninter-object correlation Be-
cause each machine has multiple objects, object failusesare-
lated even when machine failures are independent. For dgamp
A is fully correlated with one object (i.e., B) ia, while A is par-
tially correlated with two objects (i.e., B and C)th However, be-
cause neither the correlationdnnor the correlation irf is strictly
stronger than the other, comparing the two assignmentsbigesu
and no single numerical value can be used to summarize/tafik s
correlations in the general case.

Practical importance. The object assignment problem has sig-
nificant practical relevance, and applies to almost allicafibn
systems. A long list of previous replication systems andquals
(such as CAN [16], CFS [4], Chord [20], Coda [13], FARSITE,[1]
GFS [6], GHT [17], Glacier [7], Pastry [18], R-CHash [12],dan
RIO [19]) use different object assignments, which can yidld-
matically different availability for multi-object opeiiahs. For ex-
ample, it has been shown [26] that under practical settthgsfail-
ure probability of the TPC benchmark [23] can vary by foureysd
of magnitude under different assignments used in thesequev
system. Thus, a thorough understanding of the subjecttisadrio
guide system design.

Previous results. We recently first identified [26] the availability
effects of object assignments and inter-object corrafaio multi-
object operations. This earlier work used simulation to pare
several specific assignments, including B¥eN and RAND assign-
ments. PTN is the assignment where we partition the objects into
sets and mirror each set across multiple machines (as grassit

« in Figure 1). RAND is obtained by randomly assigning object
replicas to machines. The simulation results [26] show: tii&t
previously proposed assignments can result in dramatidéfer-

ent availability; (2) if the multi-object operation canroterate any
missing objects, theRTN andRAND provide the best and the worst
availability among the set of assignments simulated, ietaty;
and (3) in contrast, if the multi-object operation can tatera suf-
ficient number of missing objects, th&TN andRAND provide the
worst and the best availability among the set of assignmsnis
ulated, respectively. Our earlier work [26] further propdsde-
signs to approximat®TN and RAND for dynamic contexts, and
performed a thorough evaluation of their implementationttos
PlanetLab. We are not aware of any other previous work on this
topic.

Our results. To the best of our knowledge, this paper is the first
to study this problem from a theoretical perspective. Eixpen-
tal methods as in [26] have the following fundamental lirtiétas:
Given the exponential number of possible assignmentsjrifés-
sible to experiment with them all. Are there better assigmsthat
were overlooked? Also, experimental methods can cover spdy
cific parameter values (e.g., specifizalues)—will the same con-
clusions hold under other parameter values? The thedregmalts
in this paper not only provide a deep understanding of thblpno,
but also help to ultimately confirm what was observed expenim
tally.

Our goal in this paper is to find the best and the woasssign-

*We are interested in the worst assignment as well becaugeefi)
vious simulation results [26] suggest the best and the waastflip
when the “tolerance” level of the operation changes, (igwimg

ments, among all possible assignments, in terms of theadoitity
provided to multi-object operations. Achieving our goawever,

is challenging for several reasons. First, human intuitiften fails
here, even when the problem appears quite simple on thecsurfa
The example in Figure 1 already gave us some flavor of this, and
later in Section 7.2 we will show that the problem can becoare ¢
siderably more intriguing. Second, natural approachesli@she
problem (such as constrained optimization and hill-clingaineth-
ods) do not work out well. To address these challenges, tpsip
leverages Janson’s inequality [2, 9, 11] to obtain resalt#fe most
general cases. Combinatorial techniques and hill climbiegthen
used to prove stronger results under more restricted gstti@ur
final results are clean and simple:

e Calculating the availability of an arbitrary given assigemh

is #P-hard.

If the multi-object operation cannot tolerate any missibg o
jects, thenPTN and RAND provide the best and the worst
(within small constants) availability among all possibke a
signments, respectively.

In contrast, if the multi-object operation can tolerate fiisu
cient number of missing objects, thEfMNandRAND provide
the worst and the best (within small constants) availahbilit
among all possible assignments, respectively.

Under some restricted settings, we are able to construct the
best and worst assignments and remove all constants.

Itis impossible for any single assignment strategy to achie
the best of botfPTN andRAND.

2. RELATED WORK

On the surface, object assignment is related to the clasgiica
placement problem. Replica placement has been extensituely
ied for both performance and availability targets. Repfitace-
ment research for availability [3, 5, 27] typically consisliéhe avail-
ability of individual objects rather than multi-object opé&ons.
Such results cannot be easily extended to our context bec¢hes
two problems are fundamentally different: Replica placenpeob-
lems [3, 5, 27] stem from the heterogeneity of machines,(dif.
ferent failure probabilities). In contrast, because ofiirtbject cor-
relation, object assignment affects availability even mwh# ma-
chines are identical (as shown in Figure 1). Chain repbcaf25]
investigates the availability ahdividual objects where the system
creates additional replicas to compensate for lost datee, lfehe
repair bandwidth is limited, different placements will wétsn dif-
ferent repair times and thus different availabilities fodividual
objects. Such effects are orthogonal to the inter-objecetation
effect observed by multi-object operations.

3. FORMAL MODEL AND ASSUMPTIONS

There areN dataobjectsin the system, where an object can be
a file block, a file, a database tuple, a group of databasestuple
an image, etc. (See Table 1.) Each object hasplicas, and the
object is consideredvailable as long as any of thé replicas is
available. There are machines in the system, each of which may
independently experience crash (benign) failures wittbabdity
p. This paper assumegs < 0.5, because this is the common case
in practice. For the purpose of load balancing, each madioids

the worst helps guide us to avoid it, and (iii) it is also ofdhatical
interest.

number of objects in the system

number of replicas per object

number of objects on each machine
number of machines in the system (Vk/1)
failure probability of each machine
number of objects requested by an operatipn
number of objects needed for the operation
to succeed (out of the objects)

Table 1: Notation used in thispaper, where N > [> k > 2.

0#3"@(,3&.??.2

the same number df = kN/s objects. To rule out trivial and
uninteresting scenarios, we assume tNat> [> k > 2. Ifa
machine fails, all object replicas on it become unavailable.

A multi-object operation(or operationin short) requests (for
reading and/or writing) a specific subsetofobjects (out of the
N objects) in order to perform a certain user-level task. Ime&o
application scenarios such as image databases [8, 22]uthber
of objects requested can reach thousands or more. If natait
jects requested by the operation are available, the opanatay or
may not be considered successful, depending on its tolermc
missing objects. This paper studies theesholdcriteria: an oper-
ation issuccessfuif and only if at leastt out of then objects are
available. Here is a value from 1 ta» depending on application
semantics.

An assignmenis a mapping from thé& N objects (or more pre-
cisely, object replicas) to themachines, where no machine holds
multiple replicas of the same object. Assigning multiplplieas
of the same object to the same machine obviously waste rur
Thus we do not consider those scenarios (it is also easy td awvo
practice).

The PTN assignment is obtained by partitioning the objects
into N/1 groups of sizd, and then mirroring each group onko
machines. Obviously there are many ways to do this pariitgn
but they all result in the same availability when= N, because the
operation needanyt available objects to succeed. FoK N, we
will refine the definition forPTN in Section 8. TheRAND assign-
ment is an assignment drawn uniformly randomly from all gaes
assignments. Thus strictly speakif®AND is a distribution of as-
signments. Similarly, the definition f&RAND will be refined later
forn < N.

For a given operation, we define thgailability of an assign-
menta to be the probability that the operation is successful under
«. The complement of availability is called tifelure probability,
denoted byF P(«). Our goal is to findx such thatF'P(«) is ei-
ther minimized or maximized. Doing so for dllvalues in[1, n] is
challenging, and this paper focuses on cases whigies the two
extremes.

The next section explains the challenges. Section 5 thrSegh
tion 7 prove the best/worst assignment for the two extrenval-
ues whem = N. Finally, Section 8 explains why the results for
n = N easily generalize ta < N.

4. CHALLENGES

To find the best/worst assignment, a brute force enumerafion
all assignments is obviously infeasible. Thus the first radtat-
tempt would be to cast the problem into a constrained opétitn
problem. To do this, we need a closed-form expression for the
failure probability ¥ P() of any given assignment (the assignment
itself, of course, also needs to be expressed as consjrdihtfor-
tunately, our first theorem shows that even calculafig(«) is
difficult:

THEOREM 1. Calculating FP(«) for an arbitrary « is #-P
hard. This is true even if every object has only two replicas.

Proof: We reduce the #-P hard MONOTONE 2-SAT problem [24],
to calculatingF’ P(a). The MONOTONE 2-SAT problem asks for
the number of possible ways to satisfy a monotone booleamuiar
in two-conjunctive normal form. For a given instance of MONO
TONE 2-SAT withn two-conjunctive tuples, we consider each tu-
ple as an object and each literal in the problem as a machaeh E
object has exactly two replicas, assigned to the two liseirakthe
tuple. We add some dummy objects to the problem so that all ma-
chines have the same load, so that the assignment is valit. Le
s denote the total number of literals (machines).glabal state
describes exactly which of the machines are available. Clearly
we have2’ possible global states. If we spt= 0.5, then every
global state occurs with the same probability0o°. Now con-
sider an operation that requests all thebjects except the dummy
objects, witht = n. One can see that the operation is available un-
der a global state if and only if that global state satisfiesitiginal
boolean formula. Thus we hade— FP(a) = 0.5° x (# of ways
to satisfy the boolean formulalp

A second natural attempt to find the best/worst assignment is
use hill-climbing methods. For example, we can hope to adjog
given assignment step by step, where each step always sesrea
(or decreases if we want to find the worst) the availabilitpfdy-
tunately, itis difficult to design these steps in generateka some
significantly simplified scenarios in Section 7.2, we wilpapsuch
an approach.

Instead of using constrained optimization or hill climbijigthe
following, we first leverage a strong probabilistic tool tmpe up-
per and lower bounds afi P(«). Then we show that some specific
assignments are small constants away from the respectivelbo

5. BEST ANDWORST ASSIGNMENTSFOR
t=n=N

We start from the simple (and also perhaps most interestamg
of n = N. Itis most interesting because whenr= N, the objects
requested fully occupy all the machines (as in Figure 1).sthare
is no difference resulting from “concentrating” or “spreagl the
objects, and inter-object correlation is the sole causd@faail-
ability difference. This section considers the largeste., when
t=n.

5.1 Upper and Lower Bounds

We derive the upper and lower bounds using a probabilistit to
called Janson'’s inequality [2, 9, 11Janson’s inequality is mainly
used to study the property of random graphs, and it provides a
approximation for the sum of a set dépendenBernoulli random
variables. We briefly describe Janson’s inequality for clatep
ness.

Let J., 1 < z < s be independent indicator random variables
denoting the failure of machinein our context. In other words,
J. is 1 if machinez fails. Forl < ¢ < n, letl; = HzeQi J.,
whereQ); are arbitrary subsets dfl, 2, ..., s}. In our context,Q;
is the set of machines holding objegtand I; indicates the loss
of objecti. We writei « jif i # j andQ; N Q; # 0. Define
p=>2, PrllijandA = %7, ., . Pr{Ii\I;]. Notice that the
sum is done over ordered pairs:and;. (The sum over unordered
pairs isA/2.) Then we have:

5Not to be confused with the well-knowlensen’s inequality

| object i | object j | \ \

k \ object i \ object j \ \ \

| object i | | | |

Figure 2. lllustrating the A term in Janson’s inequality, for
k =3 and [= 4. Each row isa machine.

THEOREM 2. Janson’sinequality [2, 9, 11]

Prihi=L=..=I,=0 > [[Prii=0] (1)
i=1
Prili=lh=..=1,=0 < e /&)

Obviously, whert = n, we haveF P(a) = 1 — Pr[l1 = I»
... = I, = 0]. An upper bound fo’ P(«) will then immediately
follow from Inequality 1. We will use Inequality 2 to obtaihe
lower bound. For any assignmemnt the termy is alwaysnp®. So
to obtain a lower bound of'P(«), all we need is to upper bound
A. The termA can be writtenad =", (3", ., Pr[l: AL;]). Now
consider a given objeétas in Figure 2, whoskg replicas reside on
k machines. Each machine holds 1 additional objects, and these
k machines have a total &{! — 1) empty slots for other objects. If
j 4, 7 must occupyr of these slots wheré < x < k. For such
4, we trivially havePr[I; A I;] = p**~=.

There are many different ways of “filling up” thigl — 1) slots.
One extreme is to ude- 1 objects, where each object takeslots.
The other extreme is to ué€l—1) objects, where each object takes
1 slot. In the first extreme, the total number of terms in the-su
mation ofy ", ., Pr(I; A I;] is minimized (— 1 terms), but each
individual term is maximized (each j&). In the second extreme,
the total number of terms is maximizekl({ — 1)), while each term
is minimized ﬁ)%’l). Because < 0.5, however, one would sus-
pect that the termp?*~® quickly decreases asdecreases. Thus,
the number of terms becomes less important, and the magnitud
of individual terms dominates. In other words, intuitivetlye first
extreme above will likely maximizé\, while the second extreme
will likely minimize it.

Itis interesting to note that the first extreme above exaxitye-
sponds to th@TN assignmerit while the second extreme is closer
to theRAND assignment. In other words, tleterm actually gives
us an intuition of why, when = n = N, PTNis the best while
RAND is the worst (within constants).

THEOREM 3. Whent = n = N, for any assignment, we
have:

FP(x)
FP(x)

IN

1—(1—p")"
1— e*(”/l)PlC

(©)
4)

Proof: From Inequality 1, we trivially haveé — FP(a) > (1 —
p*)™. To obtain the lower bound, consider a particular object
Suppose there are altogethey’s such thatj « i. For each such
J, we definex = |Q; N Q;|. Lettheseu z's bex1, z2,...,zq.
Clearly1 < z1,22,...,24 < kandzi; + a2 + ... + x
(I—1)k (Figure 2). For the given, we haved ., Prll; AIj] =
p2kTm pp?kmm2 4y p2Rou | emma 15 in the appendix will
prove that this summation is upper bounded by 1)p*. When we

>

5This, of course, does not necessarily mean HEN is optimal.
All it says is that the failure probability TN is lower bounded
by the lowest lower bound among all assignments.

consider all possiblé's, we haveA = Z(i’j):iw Pril; NI <
n(l —1)p*. Finally, from Inequality 2 and witlx = np*, we have:

1—FP(a) < M/ (At < o= (n/Dp"
5.2 Approaching Upper and Lower Bounds

To show thatPTN is near the lower bound, we trivially have
FP(PTN) = 1 — (1 — p*)"/!, which is not far from the lower

bound ofl — e~ (/D"

O

THEOREM 4. Whent = n = N, for any assignment and any
constante > 0:

1. FP(PTN) < 1.14F P(a).

2. When eithep is sufficiently small or when is sufficiently
large’, FP(PTN) < (1 4 ¢)FP().

Proof: Theorem 3 tells us thaF P(a) > 1 — e~ ™/DP" Let
z =n/l wherez > 1,y = p* where0 < y < 0.5 = 0.25, and
flz,y)=(1—-(1-9y)*)/(1—e*¥). It can be shown that for any
constanty, f(z,y) is a monotonically decreasing function of
Next defineg(y) = f(1,y). We can show thag(y)" > 0 for any
y. Thusf(1,y) is a monotonically increasing function gf and
we havef(z,y) < f(1,y) < f(1,0.25) < 1.14. Furthermore,
y — 0asp — 0,z — oo asn — oo, limy—¢ f(z,y) — 1, and
lim, o0 f(z,y) = 1.0

Different from performance measures, becafige(«) is usu-
ally a close-to-zero value in practice, having a multigiiea con-
stant is more desirable than an additive constant.

Next we intend to show th&®AND s close to the worst. Remem-
ber thatRAND is actually a distribution of assignments. Given the
#-P hardness of calculating failure probability, it is lely that we
can enumerate the failure probability of all assignmenthiéndis-
tribution. Instead, we use Janson’s inequality to apprexarthe
failure probability of the assignments in the distributid@y care-
fully upper boundingA, we can show that with high probability,
an assignment drawn according to the distribution is closthé
worst.

Recall from Figure 2 and the intuition in Theorem 3 that boeund
ing A is all about bounding the summatidn . . . Pr[l; A I;] for
any given:. Earlier we explained that, fgr < 0.5, the magnitude
of individual terms in the summation faris more important than
the number of terms. For an objecthat occupies: of thek(I —1)
slots in Figure 2,Pr[I; A I;] = p**~%, which can vary between
p?k~1 to p*. We will show that inRAND, with high probability,
any j will occupy at most roughlyt/2 slots (whem: > 20). This
is easy to imagine since with(l — 1) object replicas, it is unlikely
that we end up with too many replicas from the same object. On
the other hand, this will upper boun@r|I; A I;] within roughly
p'%% which is sufficient to prove the result.

THEOREM 5. Whent = n = N, k > 3,n > 2l and2lpl*/?! <
1, for any assignment and any constant > 0, with probability
atleastl — O(1/n):

1. FP(RAND) > 0.46F P(c).

2. When eithep is sufficiently small or is sufficiently large,
FP(RAND) > (1 — €)FP(«).

"The assignment problem requires tkat= Nk/I = nk/l and

n is not a “free” variable. In this paper, whenever we consider
“sufficiently large”n, we make the natural assumption ttaand

[are fixed, whiles changes witlm ass = nk/l. This follows the
practical meaning of the problem: Namely, when the number of
objects increases, we will use more machines to hold them.

Proof: We know that for any assignment np®. Let
q 4% kn(1/n)!*/21+1, We will show that for RAND,
Pr[A > 2nip*+1*/2]] < ng. To study the distribution of\, con-
sider a particular object and its corresponding indicasoiable;
as in Janson’s inequality. As in the proof of Theorem 3, wepssp
there are altogether j's such thatj «¢ ¢ and for each sucli, we
definex = |Q; N Q;|. Lettheseu z’s bex1, z2, ..., z.. We have
1<z1,22,..., 2w < kandzi + 2+ ...+ z, = (I — 1)k. Let
z = maz(x1,x2,...,24) < k. For the giveni, Lemma 15 tells
usthaty:, . Prli A Ij] = p** ="t 4+ p**7%2 4 4 p?F 7o <
[EDE)p2h=s < B p?== Defineh(z) = & . p?* == and we
haved_, ,, Prll; A I;] < h(z).

On the other hand, the definition efis exactly the same as in
Lemma 16, which tells us:

Priz > [k/2]] = Prjz > [k/2] + 1] < ¢

Becausep < 0.5, one can show that(1) < h(2) < h(3) <
h(4) <....Thismeansthatif_, Pr(l; A I;] > h([k/2]), we
must haveh(z) > h([k/2]) andz > [k/2] (since[k/2] > 2).
Thus for giveni:

Priz > [k/2] + 1] = Pr[z > [k/2]]

kl
Pr[%; Pr(I; A ;] > TRya]
Pr(> " PrL; A L] > 2p")
ot
When considering all possibiés, we have:

q 2

%

2k— Uc/ﬂ]

%

Pr[A > 2nlp" /2] < ng
Thus Inequality 2 tells us that with at ledst- nqg probability:

1— 6(77L2p2k)/(npk+27llpk+Lk/2j)

FP(RAND) >

- 1_ efnpk/(1+2lpuc/2j) >1— ef()jnpk
From Theorem 3, we know tha@fP(a) < 1 — (1 — p¥)™. Let
xz = n wherel < z,y = p® where0 < y < 0.5 = 0.25, and
flz,y) = (1 —e 25) /(1 — (1 —y)™). It can be shown that for
any constany, f(x,y) is a monotonically increasing function of
Next defineg(y) = f(1,y). One can show that' (y) < 0 for any
y. Thus f(1,y) is a monotonically decreasing function gf and
we havef(z,y) > f(1,y) > f(1,0.25) > 0.46. Furthermore,
we also havéim, . f(z,y) — 1 andlimy—o f(z,y) — 1. O

A similar proof can be constructed fér = 2, which we omit
for brevity. The theorem also extends to some other paramete
gions where the condition &fip!*/2] < 1 is not met — we do not
tediously enumerate all such regions here because thisig #ie
worst assignment, which is less important than the begjassnt.

Discussion on inter-object correlation in PTN and RAND. We
have shown tha®TN andRAND are the best and worst assignments
(within constants and under the conditions in the theorergy

t = n, if the n objects were all independent, then the success prob-
ability of the operation would bél — p*)™. Inter-object correlation
helps us to improve such probability: Conditioned upon drjec
being available, other objects that reside on the same meslais
that object will have an availability larger thgih — p*). However,
notice that the availability dRAND approachegl — p*)™, meaning
that the inter-object correlation RAND is weak and the availabil-
ity is almost as if then objects were independent. On the other
hand,PTN has a strong correlation and the availability— p*)"/

is as if we only hadh /I independent objects. Whefi is small, the
difference betweet’ P(RAND) and F' P(PTN) is about a factor of.

Because randomly assigning objects seems to be a good way to
minimize the correlation among objects, it may appear amvibat
RAND should be close to the worst. But such intuition overlooles th
subtlety in defining a single quantitative measure for hafgect
correlation. For example, fdr= n, Janson’s inequality uses a sin-
gle quantityA to “summarize” inter-object correlation. We indeed
showed thaRAND tends to give us a smal for p < 0.5, which
led to Theorem 5. On the other hand, wher- 1, each term in
the summation o\ = 37, .. - Pr[l; A I;] approaches 1. As
a result, becausBAND tends to maximize the number of terms in
the summationRAND will actually give us a large\ (much larger
than theA in PTN) whenp — 1. This, however, does not mean
that the correlation ifRAND becomes larger now, since obviously
the correlation level is an inherent property of the assigminand
should not depend op. Thus the only explanation is that now
fails to accurately capture such correlation. In fact, ome prove
thatPTNis still the best assignment when— 1.

6. BEST ANDWORST ASSIGNMENTSFOR
t=Il+1<n=N

Having discussed the largeisin the previous section, we now
turn to the smallestin this section. When € [1, {] the assignment
problem reduces to a trivial one, because all assignmentstha
same availability. Thus the smallesive consider i + 1.

We first use basic combinatorial arguments to prove Fid is
the worst assignment when= [+ 1. The intuition is that we need
one machine to be available to give bsbjects, and some other
machines to be available such that at least one of these neschi
provides at least one other object. This does not happervdriyn
all the available machines have exactly the same set of tshjéc
counting argument will show that the number of such scemsasio
maximized undePTN.

To formalize such arguments, we introduce some definitioat t
are used only in this section. @onfigurationG is the subset of
the available machines out of themachines. A configuration is
unavailable(under a given assignment) if the number of available
objects in that configuration is smaller than

THEOREM 6. Whent =1+1 <n = N, FP(PTN) > FP(a)
for any assignment.

Proof: For a given assignment and ahy< ¢ < sandl < v < s,
we definel;,,, to be:

{G|i € G, |G| = v, andG is an unavailable configurati¢n

The failure probability of the assignment is then:

P YD Uil /v x (1=)"
v=11i=1
In the expression, the terfi; ,|/v is the total number of size
v configurations that are unavailable (each such configuratm
pears inv differentU; ,,'s).

To prove F P(PTN) > F P(«), it suffices to show that for any
andw, |U;,,| is maximized undePTN. In any configuratiorG &
Us;,», machinei must be available. Thus at ledsbbjects are al-
ready available. A€ is not available under the thresholdlof 1,
all other machines it must hold exactly the same set of objects
as machine. With each object having replicas, we can have at
mostk — 1 such machines. Thy#/; .| < (*77) for1 < v <k
and|U; | = 0fork +1 < v < s. On the other hand, iRTN,
we have exactlyU; | = (*~1) for 1 < v < k. Thus|Ui,.| is
maximized undePTN. O

Next we want to find the best assignmentfer [+1. Thisis not
difficult, because all we need is that no two machines holdtéxa
the same set of objects. It is simple to construct such agrassint
using a sliding-window approach. We number all objects fioto
n and place them sequentially on a ring. Imagine that there is a
window of sizel. The first machine holds object 1 through object
. Then we slide the “window” to the right by/k, and have the
second machine hold obje@y/ k + 1) through(l/k). Similarly,
the third machine will hold objed®2!/k + 1) through(2{/k + 1),
and so on.

In the following, however, we intend to derive a more intéires
result—we will prove thaRAND s close to optimal wheh= [+1.

This means that just randomly picking an assignment can e al
most as good as carefully constructing one. The intuitiGingple:

if we randomly assign object replicas, then it is unlikelgttiwo
machines will have exactly the same set of objects.

THEOREM 7. Whent =1+ 1 < n = N, for any assignment
a and any positive constanrt we haveFE[F P(RAND)] < (1 +
€)F P(«) whenn is sufficiently large.

Proof: For any assignment, if less than two machines are available,
there must be less thdn- 1 objects. Thus when = [+ 1, for
any assignment, we have the trivial lower bound af' P(a) >
p°+s(1—pp~ "

For RAND, we define random variablg; to be the set of unavail-
able configurations whose sizeiisFrom the linearity of expecta-
tion, we haveE[F P(RAND)] as:

k
p°+s(1—p)p° "+ > E[UI(1—p)'p°

=2

It is important to notice that is not a constant and when— oo,
we also have = nk/l — oo. Thus the lower bound ¢f° + s(1 —
p)p°~* will approach zero whem — co. To prove the theorem,
showing E/[|U;|] — 0 is not sufficient — we need to prove that it
approaches zero at a faster rate than the lower bound, ewiiog.

Let C; to be the set of all configurations whose sizé,isnd
we have|C;| = (%). Notice thatC; is not a random variable.
Define indicator random variable; ;, wherez; ; = 1 if and only
if the jth configuration inC; belongs tolU;. Obviously, we have
Bl|U[] = E[Y., zi5] = (5)E[zi1] < s'Elxia). Notice that
Elz;,1] is the probability of having exactly distinct objects on a
given set of machines irRAND. ThusFE|z;,1] decreases withand
we haveE[|UZ|] < SkE[xQA’l].

Determining the probability (i.e.F[x2,1]) of having exactlyl
distinct objects on a given set of 2 machines is actually net t
ial because a machine is not allowed to hold multiple replich
the same object. As a result, the number of ways to assigrctobje
replicas to the remaining — 2 machines is dependent on how we
assign the object replicas to tBemachines. Lemma 17 in the ap-
pendix proves thaE[z21] < (I/n)' < (I/n)*. Thus we have
E[FP(RAND)] as:

k
P +s(L—pp° "t + > EU[(1—p)p"
=2
< PP Hs(l—pp*+k-s"(Un)-1-p)p"
1 kkl)

P’ +s(l—p)p* 't +s(1—p)p~ - <pk71 g

n
(1 + ¢)FP(«) whenn sufficiently large

<

<

availability of the assignment

1

Figure 3: lllustrating the area bounded by the availability
curve. The curve is actually a step function, so the area
bounded by the curve exactly equalsthe sum of therectangular
areas.

COROLLARY 8. For any assignment and any positive con-
stantse; andes, whent = 14+ 1 < n = N andn is sufficiently
large, Pr[FP(RAND) > (1 + €1)FP(a)] < e2.

7. A DEEPER LOOK

7.1 Impossibility of Remaining Optimal Across

All Valuesof ¢

Our results so far show that whendecreases from to [+
1, the best assignmenPTN) becomes the worst, while the worst
assignmentRAND) becomes the best. Ideally, we would prefer an
assignment that is optimal for alivalues. However, the following
shows that no such assignment exists.

Our proof is based on the area bounded by the availabilityecur
(Figure 3) for any assignment, where th@xis ist and they-axis
is the availability of the given assignment. We will provattithe
area is a constant independent of the assignment. If we want t
raise one part of the curve, some other part must necessaoiy
to keep the area constant. It is impossible for a single assgt
to be optimal under all values because otherwise the area will
no longer remain constant. Also because the differencedsstw
PTN andRAND is usually large, it is not even possible for a single
assignment to be near to the optimal under ahlue.

Specifically, for any assignment, lef be the probability that
exactly: objects are available, fdr < i < n. The area bounded
by the availability curve is:

i=1

On the other hand, the summatidn’’_; ig; is exactly the expected
number of available objects in the system. In any assignneecch
object is available with probability — p*. Linearity of expectation
tells us thaty ", ig: = n(1 — p*), which is independent of the
assignment.

7.2 Removing Constant FactorsWhen ¢ = n =
Nandk=1=2

Fort = [+ 1, we already obtained the best and the worst assign-
ments without any constant factors. While foe n, the best and
the worst assignments are within constant factors (Thedremd
Theorem 5). In particular, the worst “assignmeR&ND is actually
a distribution, which does not shed much light onto the $tmecof
the worst assignment. Thus this section aims to find thebe:st!
assignment (without constants) for= n, under some significantly
restricted scenarios.

The scenarios we consider are when every object has 2 replica
and each machine holds 2 objects (as in Figure 1). We will see

(AB][AB]
[cp][DE
[CE]

example assignment

corresponding set of rings

Figure 4: When k = | = 2, each assignment can be uniquely
represented asa set of rings. Each box represents a machine.

that even under such significantly restricted and perhajpsai
tical parameters, the problem is still far from trivial. Tionplify
discussion, the rest of this section assumesrthzandn|3.

Whenk = [= 2, any assignment can be uniquely represented as

a set of rings (Figure 4). Each ring edge represents an olajedt
each ring node corresponds to a machine holding the two exdjac
edges (objects). The size of a ring can range from 2.t®bvi-
ously, if two adjacent nodes on any ring fail, then we loselgpat
and the assignment becomes unavailable uhdem. Notice that
because all objects are equivalent, it is not important lvbigject
corresponds to which ring edge — only the ring sizes mattefing
f(x) to be the probability of not having any two adjacent nodds fai
ing on aring of sizex for 2 < x < n. If assignmentx corresponds
to rings of sizer, y, z, ..., thenFP(a) =1 — f(x)f(y)f(z)

To find the best (worst) assignment, we use hill-climbing and
adjust an assignment repeatedly so that at each/sfeg is de-
creased (increased). For any assignment, the sum of tredfiaé
rings is always:. To keep this invariant, an adjustment step can
either split a big ring of size + y into two smaller ones of size
andy, or merge two smaller rings of sizeandy into one big ring
of sizex 4+ y. Any assignment can be transformed into any other
assignment via a sequence of these adjustment steps. Thescru
to understand how availability changes in these steps, oe pre-
cisely, which off(z) f(y) and f(x + y) is larger. Interestingly, the
comparison outcome is uniquely determined by the parityhef t
smaller ofx andy:

LEMMA 9.
flz) = 27+ 23, where:g =+/(3p+1)(1—p),
21 = (1-p+q)/2, 22 = (1-p—q)/2

We also have; > 0, z2 < 0, and0 < |z2| < |z1| < 1.

Proof: Consider a string of: nodes (i.e., a broken ring). Define
g(z) to be the probability of not having any two adjacent nodes
failing on a string of sizer for z > 1. Defineg(0) = 1. One can
show the following linear recurrence for> 2:

9() = (1 —p)g(z —1) +p(1 —p)g(z - 2) ®)
Using standard techniques to solve the recurrence, we bawet
0:
azi + bz, where:

(¢+1+p)/(29), b= (¢—1-p)/(29)
21, z2 andq are as defined in the Lemma

g(z) =

Forxz > 3, we have:

f(@) = (1—p)*g(z — 2) + 2p(1 — p)’g(z — 3) (6)

One can easily verify thaf(z) = 2¥ + 25 satisfies the above
equation. Itis trivial to show thaf(2) = 27 + 22. O

LEmMMA 10. Letz andy be integers where > y > 2:

o f(x)f(y) > f(z+y)if yiseven.

o flz+y)> flz)f(y)if yis odd.

Proof:

@) f(y) — fz+y)
(5 + 28) (¥ + 28) — (5 + 25+)
= At = A)
Becausdz — y) > 0, z1 > 0, and|z1| > |22, the term(27 ™Y +
z5 ¥) is positive. Thus the sign of the above expression must be
the same as the sign ef. O
We are now ready to prove the two main theorems of this section

which say thai/2 size-2 rings are the best white/3 size-3 rings
are the worst. This is somewhat surprising because it istiegio
conjecture that a single ring of sizeis the worst.

THEOREM 11. Whent = n = N andk = | = 2, the as-
signment corresponding to/3 size3 rings has the highest failure
probability.

Proof: Consider the set of rings corresponding to any given assign-
menta. We want to adjust the rings to ultimately obtaifi3 size-

3 rings. To always decrease availability in the adjustmeepst
Lemma 10 allows two kinds of adjustments:

e Merge two rings of size: andy into one ring of sizéx + y)
wherez > y andy is even.

e Split a ring of size(x + y) into two rings of sizex andy
wherez > y andy is odd.

Now we adjust the set of rings corresponding to assignment
First, for any odd size ring whose size is at least 7, we dplitd
two smaller rings where one of them is of size 3. We will end up
with three kinds of rings: size-3 rings, size-5 rings, andresize
rings. We merge all even size rings into a single big one, had t
keep ripping size-3 rings out of the big ring until the sizdtaf big
ring is either 3, 4, or 5. If we do have a size-4 ring, then theust
be at least one size-5 ring (sineg3). We merge the size-4 ring and
the size-5 ring into a size-9 ring. This ring can then be $pid 3
size-3 rings. Now we have only size-3 rings and size-5 ril@yse
can easily show thaf*(5) > f°(3), which enables us to adjust all
size-5 rings into size-3 rings. At this point, we obtaifi3 size-3
rings. O

Note that the ring structure d®AND significantly differs from
n/3 size-3 rings. Fok = [= 2, RAND can be roughly viewed
as selecting a random permutationlofz. In a random permuta-
tion, the expected number of cycles of size< n is 1/m and the
average cycle size 8(n/log n) [14], which is far fromn /3.

THEOREM 12. Whent = n = N andk = [= 2, the assign-
ment corresponding ta/2 size2 rings (i.e., thePTN assignment)
has the lowest failure probability.

Proof: To always increase availability in the adjustment, Lemma 10
allows two kinds of adjustments:

e Merge two rings of size: andy into one ring of sizéx + y)
wherez > y andy is odd.

e Split a ring of size(z + y) into two rings of sizex andy
wherez > y andy is even.

8. GENERALIZINGTOn < N

So far we have considered only= N. Whenn < N, thenk
: replicas of then requested objects may not be evenly distributed
: among thes machines. Each machine may hold any number (rang-
ing from 0 to!) of the replicas for these objects. This provides

availability

us with another degree of freedom, a@itiN andRAND as defined
in Section 3 are no longer well-defined. We refine these digfirst
as follows. ThePTN assignment is obtained by partitioning the
Figure 5: Illustrating the availability of the assignment corre- objects intoN/! groups of sizé where then objects requested by
sponding to n/z ringsof sizex. the operation belong to exactty/'! groups, and then mirroring each
group ontak machines. In other words, theobjects “concentrate”

Now we adjust the set of rings corresponding to assignment and occupy as few machines as possible. RAND assignment is

Il 1
2 3 4 5 6 7 8 X

We first break all even size rings whose size is at least 4 inee2 a random assignment drawn uniformly randomly from all assig
rings. For all odd size rings whose size is at least 5, we kipgjng ments where each machine holds exaetky/s object replicas of
out size-2 rings until all odd size rings become size 3. We have then objects requested by the operation. In other wordsntbb-
only size-2 rings and size-3 rings. We merge all rings of 8o jects “spread” and occupy (evenly) as many machines asipessi
one big ring, and then split the big ring into size-2 rings. Now regarding the best/worst assignmentstfer n < N, ob-

As we mentioned, it was tempting to conjecture that a single Serve that Theorem 3 can be trivially modified to apply to thsec
sizen ring has the worst availability. Given that is not true, what ©f » < N, while Theorem 4 applies without modification. Thus

availability does a single size-ing provide? Is it close to the best ~ PTNis optimal within a constant of 1.14. Similarly, it is triVieo
or close to the worst? What about rings of other sizes? To shed Show that Theorem S applies for= n < N, which means that

light onto these question, we consider assignments thegsmond RAND is the worst within a constant of 0.46. As for_the begt and
to rings of homogeneous sizes (i.u,/x)® rings of sizex). We worst assignments for smallnotice that the smallest interesting
will prove that: value is now 1 (instead df+ 1). Fort = 1, we only need any ma-

chine holding any of thexk object replicas to be available for the
e If zis odd, then the larger s, the better the availability. For ~ Operation to be successfuPTN uses the minimal number of ma-
example, 3 rings of size 25 is better than 5 rings of size 15. chines for the: objects, whileRAND uses the maximum number of
machines. Thus trivially, they are the best and worst assin,
e If z is even, then the larger is, the worse the availability. respectively.

For example, 4 rings of size 12 is worse than 6 rings of size N practice, the application may have multiple multi-objep-
8. erations, and each multi-object operation may access ereiift

subset ofn objects. Mathematically modelling these operations is
challenging because the access pattern can be complexraply si
assuming that each operation accesses a uniformly randosetsu
will be far from reality. Our previous experimental stud[has
Figure 5 illustrates these results, where as we increatee avail- investigated these scenarios for some specific application

ability oscillates with a decreasing oscillation magnéudNotice

that these results, however, do not necessarily imply Tredil 9. CONCLUSION

and 12, which also apply to rings of heterogeneous sizes.

e If z is even andy is odd, then(n/x) size« rings is always
better than(n/y) sizey rings.

This paper has proved a series of strong results regardang th
best and the worst assignments (from object replicas to imesh
THEOREM 13. in terms of the availability they provide to multi-objecteyations.
Quite different from classic research on replica placembate

" nly the availability difference arises from inter-object edation (even
(f(@)) > (Fy)™e. when machine failures are independent and identical). As-me
) tioned in Section 1, the same assignment problem arises enale
e For any even integers andy wherex > y > 2, we have sure coding. We have also obtained similar initial reswtsiging

(F@)™* < (Fly)"". a later version [10] of Suen’s inequality [21]. Obtainingaplete
set of results for erasure coding is part of our future work.

e For any odd integers: and y wherex > y > 3, we have

e For any even integer > 2 and any odd integey > 3, we

2/ n/y
have(f(x)™* > (/) 10. ACKNOWLEDGMENTS

Proof: For the first case, define; = —z2 > 0. We have from We thank Suman Nath for various discussions related to s p
Lemma 9 thatf(z) = 27 — 25 and f(y) = z¥ — 23: per. We also thank Avishai Wool and the anonymous reviewars f
many helpful comments on the paper. This work is partly stiego
(F@)™™ > (Fy)™Y & (27 — 25)Y > (2 — 28)" by NUS grant R-252-050-284-101 and R-252-050-284-133.

& (1—=(23/21)")Y > (1 = (23/21)")"

On the other hand, because < z23/21 < 1, we have

11. REFERENCES

[1] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. ChaikenRJ

(1 = (23/21)")Y > (1 = (23/21)")" > (1 — (23/21)")". The Douceur, J. Howell, J. R. Lorch, M. Theimer, and R. P. Wattéeh

other two cases are similan FARSITE: Federated, Available, and Reliable Storage for an
Incompletely Trusted Environment. WSENIX OSDJ|2002.

8To simplify discussion, wherever we use the notatighr below, [2] N. Alon and J. H. Spencefhe Probabilistic MethodJohn Wiley &

we assume:|x. Sons, 2000.

(3]

9

[10]

(11]

[12]

[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer. Fbiiy of
a Serverless Distributed File System Deployed on an ExjSiet of
Desktop PCs. INCM SIGMETRICS2000.

F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and |. 84oi
Wide-area Cooperative Storage with CFSAGM SOSP2001.

J. R. Douceur and R. P. Wattenhofer. Competitive Hillr@ing
Strategies for Replica Placement in a Distributed File Systin
DISC, 2001.

S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google Bystem.
In ACM SOSP2003.

A. Haeberlen, A. Mislove, and P. Druschel. Glacier: HigBurable,
Decentralized Storage Despite Massive Correlated Faillne
USENIX NSD|2005.

L. Huston, R. Sukthankar, R. Wickremesinghe, M. Satyayanan,
G. Ganger, E. Riedel, and A. Ailamaki. Diamond: A Storage
Architecture for Early Discard in Interactive SearchUBENIX
FAST, 2004.

S. Janson. Poisson Approximations for Large Deviatiétandom
Structures and Algorithmd4.:221-230, 1990.

S. Janson. New Versions of Suen’s Correlation Inegudfandom
Structures and Algorithmd4.3(3-4):467-483, 1998.

S. Janson, T. Luczak, and A. Rucinski. An ExponentialiBdfor the
Probability of Nonexistence of a Specified Subgraph in a Rand
Graph. InRandom Graphs’87 (M. Karo'nski and J. Jaworski and A.
Ruci'nski, Eds.)John Wiley & Sons, 1990.

D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewimc

R. Panigrahy. Consistent Hashing and Random Trees: Distdb
Caching Protocols for Relieving Hot Spots on the World WidebwW
In ACM STOC 1997.

J. Kistler and M. Satyanarayanan. Disconnected Ojperat the
Coda File SystemACM Trans. Comput. SystL0(1):3—-25, 1992.

D. E. Knuth.The Art of Computer Programming, VolumeAlddison
Wesley, 1997.

J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. GeelsGemmadi,
S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao.
OceanStore: An Architecture for Global-scale Persisténotage. In
ACM ASPLOS2000.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and SnigheA
Scalable Content-addressable NetworkA@M SIGCOMM 2001.
S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. GovindaYin,
and F. Yu. Data-Centric Storage in Sensornets with GHT, A
Geographic Hash Tabl&lobile Networks and Application8(4),
2003.

A. Rowstron and P. Druschel. Pastry: Scalable, Digtad Object
Location and Routing for Large-scale Peer-to-peer SystemAsCM
Middleware 2001.

J. Santos, R. Muntz, and B. Ribeiro-Neto. Comparingdeam Data
Allocation and Data Striping in Multimedia Serviers. ACM
SIGMETRICS$2000.

I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Bakhnan.
Chord: A Scalable Peer-To-Peer Lookup Service for Internet
Applications. INnACM SIGCOMM 2001.

S. Suen. A Correlation Inequality and a Poisson Limie@tem for
Nonoverlapping Balanced Subgraphs of a Random Giaphdom
Structures and Algorithmd4.(2):231-242, 1990.

A. Szalay, P. Kunszt, A. Thakar, J. Gray, and D. SlutzsiBeing and
Mining Multi-Terabyte Astronomy Archives: The Sloan DigitSky
Survey. INnACM SIGMOD 2000.

TPC Benchmarkht t p: / / ww. t pc. org/ .

L. G. Valiant. The Complexity of Enumeration and Rellip
ProblemsSIAM J. on Computing(3):410-421, 1979.

R. van Renesse and F. B. Schneider. Chain Replication fo
Supporting High Throughput and Availability. IDSENIX OSD|
2004.

H. Yu, P. B. Gibbons, and S. Nath. Availability of Mul®bject
Operations. IJSENIX NSD|2006.

H. Yu and A. Vahdat. Minimal Replication Cost for Availgity. In
ACM PODG 2002.

APPENDIX

LEMMA 14, For1 < z1, 722 < z, we have:
e If p < 0.5 thenp™®t + p~2 < p~ (@1 F22),
o Ifxy+x0> 2+ 1, thenp ™™ 4 p72 < p= 7 4 p "1 722

Proof:

e Without loss of generality, assume < z,. Letqg = 1/p >
2. We haveg® ™2 < 1 = ¢*1 %2 +1 < 2 < ¢*' =
qwl _|_qz2 < qz1+12_

o Letd = z; + 2 and definef(z) = p~® + p~ (4= for
d—z < z < z. We only need to prove that(z:) <
f(2). We havef’(z) = (Inp)(p*~* — p~*) and f"(z) =
(Inp)2(p~® + p®~%) > 0. Thus the maximum of (z) must
occur at the boundary. On the other hafiti —z) = f(z) =

p~* 4+ p~ 972, Sowe havef(z1) < f(z).

LEMMA 15. Consider 1 < z1,22,....,2. < 2z where
S w = (I—1)k. We have® ~™1 4 p?F=72 4 p?h—mu <
[E=DR7,26=2 whenp < 0.5.

Proof: It suffices to show thap™@' + p™®2 4+ ... + p 7 <
(—(lj)k}p*z. We combine the terms on the left-hand side step
by step. Ifz; + z; < z, we combine the two terms gf “* and
p~ %7 into one termp~*i~%7, Otherwise we convert the two terms
top™* + p~*1~*2%% From Lemma 14, we know that the summa-
tion is never decreased at any of these steps. phtis + p~ 2 +

et p T < [UEDE)E O

LEMMA 16. Consider theRANDdistribution and a given object
A. Without loss of generality assume that machine, ..., k each
holds a replica ofA. Let random variable: (1 < z < k) denote
the maximum number of replicas that thésenachines hold for
any other object. The®r[z > a] < 4°kn(l/n) for anya, 1 <
a<k.

Proof: After A is already been assigned to the machirterough
k, we define aemainder assignmenmo be the assignment from the
remainingn — 1 objects (each withk replicas) to the remaining
space on the machines. Among these machinesk will each
takel — 1 additional object replicas, while — k will each takel
additional object replicas.

We will bound the probability of the firsk machines holding
exactly: (1 < ¢ < k) replicas of a given objecB. Because the
first k machines are all identical, we have:

Pr[first k machines hold exactlyreplicas ofB]/ <I:>

= Prlfirsti machines hold replicas ofB and
the nextk — ¢ machines do not hold]
< Pr[machine 1 holdB] x
Pr[machine 2 hold$3 | machine 1 hold$3] x ... x

Pr[machine i holdsB | machinel..(i — 1) hold B] (7)

To simplify the notation, we define the event “machine 0 hdiis
to be an event that always happens. We will prove that for any
1 < j <4, Pr[machinej holds B| machine0..(j — 1) hold B] <
1/(s—j+1).

For any given j, define p, = Pr[machiner holdsB
| machine0..(5 — 1) hold B] for j < r < s. By symmetry, we

know thatp; = pj+1 = ... = pr andpr41 = ... = ps. Also, we
havep; + pj+1 + ... + P& + Prt1 + ... + ps = 1. Thus to prove
thatp; < 1/(s — j + 1), it suffices to show that; < ps, which
we prove in the following.

remainingn — 2 machines. In the second scenario, the number of

ways to assign the objects to tBemachines if(7}) (/). For each

such way, lety be the number of possible remainder assignments.
We would like to prove that is always smaller than or equal to

Let I" be the set of remainder assignments where machine 1y. In the first scenario, after we assign objects to the 2 mashin

throughj holds objectB, and letA be the set of remainder assign-
ments where machine 1 through— 1 and also machine holds
objectB. To prove thap; < ps, it suffices to show thgl’| < |A].
Definel” =T — (I'NA) andA’ = A — (T'NA). Inturn, it suffices
to prove tha{l'| < |A’|. We definel™, for 0 < w < [—2to be the
subset of’ where maching and machine have exactlyw objects
in common. ObviouslyI”,’s are all disjoint and” = U, 2 T7,.
Similarly, defineA’, for 0 < w < [—1to be the subset of’ where
machinej and machine have exactlyw objects in common. We
again have\’ = U', !, A/, To prove thatl”| < |A’|, it suffices to
show thatT';, | < |A7,| forany0 < w <[—2.

weletk — 2 < a; <as < ... <a, <k denote the number of
remaining replicas for the objects. Obviouslya; = ... = a; =
k —2anda;+1 = ... = an = k. The value ofr does not depend
on the identities of the objects, and is uniquely determimgthe
sequenceas...a,. We definek —2 <b; <bxa < ..<b, <k
similarly in the second scenario. We know that< b1, ...,a; < ¥
anda;+1 > bit1, ...,an > by. Again, the value of is uniquely
determined by the sequentghs...b,.

The sequencé; bs...b, contains at most three distinct values:
k — 2,k — 1, andk. There must be an even numberbgs with a

value ofk — 1. We associate the firét— 1 with the lastk — 1 and

For the purpose of counting, we define a many-to-many mapping call that apair. We then consider the remaining values and form a

betweerl™,, andA’,. Consider any remainder assignmeng I',,.
We can obtain another remainder assignmeat A, by swapping
B on machinej with some other objeof” on machines as long
asC'is not already on maching There are exactly — w choices
for C. Similarly, for any remainder assignmehtc A/,, we can
obtain another remainder assignment I';, by swappingB on
machines with some other objeaf’ on machinej as long ag”' is
not already on machine There are exactly— w — 1 choices for
C. We say thaty is the pre-image ok and) is the after-image of
~. Eachry has exactly — w after-images, while each has exactly
I —w — 1 pre-images. Thus it must be the case {li4t| < |A7,|.

We just proved thap; < ps, which implies that for any < j <
i, Pr[machinej holds B | machine0..(j — 1) hold B] < 1/(s —
j + 1). Together with Inequality 7, this means that:

Prlfirst k machines hold exactlyreplicas ofB]

i] s s—1 7 s—(i—1) s—k
- ()=
n—101) —\n
The last step follows froon > 2I. Finally we take a summation
for i from a to k, and also consider all possibigs:

Prlz>d] < nzk: (%l) < 4%kn(l/n)"

LEMMA 17. For any given 2 machines in thRAND assign-
ment, the probability that they hold exactly the same sebjeats
is less thar(l/n)".

second pair, and so on. We will prove thak y via an induction
on the number of pairs.

For the induction base, if the number of pairs is 0, then the tw
sequencesias...a, andbibz...b, are the same. Since the identi-
ties of the objects do not affect the accounting, we havey.

Now assume that < y if the number of pairs igl, and we
need to prove that < y if the number of pairs isl + 1. For
the sequencé; b...b,, let (b;, b;) be the first pair formed where
i < j. Without loss of generality, we number the objects such that
b; corresponds to the number of remaining replicas for objedte
construct a third sequenegc,...c, fromb1b2...b, by changingh;
fromk —1tok —2 andb; from k — 1 to k. Let z be the number of
possible remainder assignments for sequenesg...c,. Because
cica...cn, hasd pairs, based on our inductive assumption, we know
thatz < z. In the next, we will prove that < y, thus finishing the
inductive step.

For any machine (except the given 2 machines) holding abject
1 and/orj, there are three possibilities: the machine haldsly,
the machine holdg only, the machine holds bothand;. For any
remainder assignment for sequenrges,..c,, letu; be the number
of machines (except the given two machines) holding onlgcihj
Similarly defineu;. Because; = k — 2 andc; = k, we must have
that0 < u; = u; — 2 < u; < k. For any remainder assignment
for sequencé, b2...b,, letv; be the number of machines (except
the given two machines) holding only objectSimilarly definev;.
Becausé; = b; =k — 1, we musthav® < v; =v; <k — 1.

For any given integetw where2 < w < k, we consider the
setT" of all remainder assignments for sequenrge,...c, where
u; = w and the set\ of all remainder assignments for sequence
b1bs...b, wherev; = w — 1. For the purpose of counting, we
construct a many-to-many mapping frdmto A. An assignment
~v € T' is mapped to another assignment A if we can obtain\
by picking one of the:; machines iny that hold object only and

Proof: We consider two scenarios where the first scenario requires substituting objecj with objecti on that machine. We say thais

that the 2 machines hold exactly the same set of objects wiele
second scenario does not have any such requirement. Rea@all t
a machine is never allowed to hold multiple replicas of thesa
object. In the first scenario, the number of ways to assigeabbj
replicas to the 2 machines {§'). For each such way, let be
the number of possibleemainder assignmenteshere aemainder

the pre-image ok and) is the after-image of. Eachy has exactly
u; = w after-images, while each has exactly; = v; = w —1
pre-images. Thus it must be the case tfidt< |A|. Since this is
true for allw, we know that: < .

Finally, the probability that th@ machines hold exactly the same

set of objects is thus smaller tha(f}) - z)/((}) (}) -y) < (I/n)".

assignmenis the assignment of the remaining object replicas to the

