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Abstract

Replication is a key approach to scaling wide-area ap-
plications. However, the overhead associated with large-
scale replication quickly becomes prohibitive across wide-
area networks. One effective approach to addressing this
limitation is to allow applications to dynamically trade re-
duced consistency for increased performance and availabil-
ity. Although extensive study has been performed on relaxed
consistency models in traditional replicated databases,
none of the models can simultaneously achieve the fol-
lowing two typically conflicting requirements imposed by
wide-area applications:generality(capturing application-
specific consistency semantics) andpracticality (enabling
efficient application-independent consistency protocols to
be designed and providing natural ways to express appli-
cation semantics).

In this paper, we propose a conit-based continuous con-
sistency model designed to simultaneously achieve general-
ity and practicality. Our conit theory provides generality,
where application-specific consistency requirements are ex-
ported asconits. Practicality is achieved by using a simple,
spanning set of metrics for conit consistency and by using
a per-write weight specification. We demonstrate the gen-
erality of our model through representative wide-area ap-
plications and by showing that a number of existing mod-
els can be expressed as instances of our model. Our ef-
ficient, application-independent consistency protocols and
prototype implementation verify its practicality.

1. Introduction

Replication is a key approach to scaling wide-area ap-
plications, such as e-commerce systems, dynamic content
distribution, wide-area collaborative applications, sensor
networks, and electronic bulletin boards. At the same

time, the overhead associated with strong consistency in
large-scale replication quickly becomes prohibitive across
wide-area networks. One effective approach to addressing
this limitations to allow these applications to dynamically
trade reduced consistency for increased performance and
availability[5, 9, 12, 20, 29, 28] based on a continuous (re-
laxed) consistency model. This diverse class of wide-area
applications imposes the following two typically conflicting
requirements,generalityandpracticality, on the continuous
consistency model:

Generality These applications have rich and application-
specific consistency semantics. For example, a shared
editor may have well-defined, but totally different con-
sistency semantics from an inventory maintenance system
for e-commerce. Thus the consistency model must be suf-
ficiently general and abstract to capture a wide range of
consistency semantics.

Practicality The wide applicability of Internet data replica-
tion requires the model to be practical to use in regular
application design. More specifically, by practicality, we
mean i) in spite of application-specific semantics, the pro-
tocols maintaining such consistency semantics should be
application-independent and highly-efficient and ii) the
way that consistency semantics are expressed must be
natural and easy to use.

The goals of generality and practicality typically conflict
with one another. One effective approach to achieve gener-
ality is to avoid defining a uniform consistency model for
all applications. Instead, applications are allowed to spec-
ify their own consistency semantics. However, the consis-
tency protocols enforcing such a model typically cannot be
optimized in an application-independent manner. Also, to
capture arbitrary semantics, the model has to be abstract,
providing no natural ways for application programmers to
use the model in many cases.
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Figure 1. How the conit-based consistency
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goals.

In the context of traditional replicated databases, much
research [2, 3, 4, 7, 8, 9, 15, 16, 17, 20, 21, 22, 25, 26]
has been performed on relaxed consistency models. How-
ever, such traditional models typically achieve only one of
generality and practicality. Some of the consistency mod-
els [2, 16, 17, 26] are general enough to allow a wide
range of applications to express their consistency semantics.
However, they provide no practical, efficient, application-
independent protocols to enforce the model and no natural
API for application programmers, thus failing to meet the
practicality requirement. Other relaxed consistency models
[3, 4, 7, 8, 9, 15, 20, 21, 22, 25] have easy to use inter-
faces and can be efficiently implemented, but they typically
address the consistency requirements of a specific class of
applications.

In this paper, we propose a conit-based continuous con-
sistency model for wide-area data replication to simultane-
ously achieve generality and practicality (Figure 1). Gener-
ality is achieved by our conit theory. Eachconit logically
represents one particular application-specific consistency
requirement. For example, in a replicated bulletin board,
one possible consistency requirement is to bound the num-
ber of messages posted by other users but not seen locally.
Another requirement can be the ordering among displayed
news messages. These requirements serve as the definitions
of conits. Consistency is defined on conits rather than data
items and each conit has an application-independent con-
sistency level. Each access (i.e. read or write) specifies the
required consistency level for each conit it depends on.

Practicality is achieved in our model by i) using a simple,
spanning set of metrics for conit consistency and ii) express-
ing semantics by simply specifying per-write weights. The
flexibility of conits allows application-specific consistency
semantics to be “absorbed” by the conit definition layer.
Thus we can use a simple, application-independent, span-

ning set of metrics to define conit consistency, which en-
ables the design of highly-efficient application-independent
consistency maintenance protocols. To provide natural API
to application programmers, we avoid the complexity of
exporting abstract conit definitions. Instead, each access
specifies the conit set it depends on and each write carries
information about how it affects the consistency of each
conit. The application programmer thus uses the model
by attaching the necessary information to each access and
never needs to explicitly define conits. Our prototype imple-
mentation and three sample application (replicated bulletin
board, airline reservation and QoS load balancing for web
servers)[28] have verified the practicality and scalability of
the model.

The rest of this paper is organized as follows. Section
2 describes the replication model we assume. In Section 3,
we present the conit-based continuous consistency model
and discuss its generality and practicality. Next, Section 4
further explores the generality of our model through some
representative wide-area applications and studies how some
previous relaxed consistency models can be expressed as
special instances of our model. An overview of the proto-
cols implementing our consistency model is given in Sec-
tion 5. Finally, Section 6 places our work in the context of
related work and Section 7 presents our conclusions.

2. System model

Application data, referred to as the database for simplic-
ity, is replicated in full at multiple sites. Each replica ac-
cepts logicalreadsandwrites from users that may consist
of multiple primitive read/write operations. Writes in our
model are procedures and replicas maintain consistency by
propagating write procedures (rather than the data written)
as in Bayou[19] and N-ignorant systems[15]. A write pro-
cedure checks for conflicts with the underlying database be-
fore updating the database state, allowing for application-
specific conflict checking in a relaxed consistency environ-
ment. In case of a conflict, a write procedure may take an
alternative action.

Each replica maintains a write log, containing all writes
applied to its database image. Furthermore, each replica
uses standard concurrency control mechanisms to ensure lo-
cal serializability. The replica that first accepts anaccess
(i.e., read or write) from a client is called theoriginating
replica for that access. All other replicas areremote repli-
cas. When first applied to a replica, a write is in atenta-
tive state and returns anobserved resultto the user. The
write can then be propagated to other replicas. Writes in a
replica’s write log may be reordered, e.g. rolled-back and
then re-applied in a different order, with potentially differ-
ent results. Write reordering is assumed to be isolated from
reads and writes. At some point, a write becomescommit-
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Figure 2. Role of the conit theory.

ted, which means it will never be reordered again. Theac-
tual resultof a write is thus defined to be its return value
when finally committed. Reads are processed once and are
never reordered. Theobserved resultof a read is the value
returned to a client query, while itsactual resultis the value
that should be returned to the user if 1SR with external order
(defined below) were maintained.

The traditional definition of strong consistency for repli-
cated data is one-copy serializability (1SR)[6]. However,
the lack of timing information in 1SR makes it inappropriate
for Internet applications. For example, in replicated stock
quotes systems, stale values are allowed to be read even if
1SR is maintained, those reads can be considered to execute
“in the past” by 1SR. As in timed consistency[23, 24] and
external consistency[1], we augment 1SR withexternal or-
der, which is a partial order over all accesses. An accessA1

externally precedesanother accessA2 if A1 returns its ob-
served result to the user (in strict wall-clock time) beforeA2

is submitted to its originating replica. We say an execution
on replicated data is1SR with external order(1SR+EXT)
if the execution is equivalent to a serial execution that is
compatible to external order. Hereafter, we equate “strong
consistency” with 1SR+EXT.

3. Conit-based continuous consistency model

In this section, we first present the conit theory and ex-
plain how it supports the consistency semantics of a broad
range of replicated wide-area applications. Next, we for-
mally define conits and their application-independent con-
sistency level. We finish this section by demonstrating how
applications can specify their consistency semantics by sim-
ply assigning weights to individual write operations.

3.1. Conit theory, application semantics and conit
consistency

Applications observe consistency from the results of
reads and writes. With strong consistency, the observed
result always equals its actual result. As we relax consis-
tency, the observed result and the actual result begin to di-
verge. The meaning of the difference to the end users de-
pends on application semantics. Thus, in order to quantify
consistency and capture the semantic discrepancy between
observed and actual results, we believe that a pre-defined
uniform consistency model is inappropriate. Instead, the
consistency model should allow the application to export its
specific consistency requirements, so that the model can ad-
dress the consistency semantics that the application is sen-
sitive to.

The approach we adopt in our model is to allow appli-
cations to define each consistency requirement as aconit.
For example, in a replicated bulletin board, sample consis-
tency requirements include: i) the difference between ob-
served/actual number of messages, ii) the number of out-
of-order messages in the current view, and iii) the consis-
tency of messages posted by friends. These requirements
can all serve as conit definitions. Using these conit defini-
tions, our conit theory maps the physical world, composed
of the physical database together with the reads and writes
operating on physical data items, to a logical world (Figure
2). The logical world contains asemantics-base, consist-
ing of application-specific consistency semantics (conits),
and reads/writes conceptually operating on the semantics.
Here a read/writedepends onthe conits with which it is
concerned, and conits areaffectedby writes. The semantic
difference between the observed and actual return value of
an access is then solely determined by the depend-on conit
set. For example, suppose we define a conit to capture the
consistency of messages posted by a user’s friends. Then
if the user only cares about messages posted by her friends,



the semantic difference between the observed and actual re-
sult of a read is solely determined by that conit. A write
(message post) by a friend will affect the conit, while a write
from other users has no effect on the conit.

In dealing with consistency, only the semantics-base is
interesting to the application. Thus in our model, consis-
tency is never specified on data items, rather, each conit has
a consistency level. Each access then specifies the required
consistency level for each conit it depends upon. Because
the definition of each conit can be very flexible, we expect
that the mapping between the physical world and the log-
ical world can “absorb” most application-specific consis-
tency semantics. This allows us to use a simple, application-
independent, spanning set of metrics for conit consistency.
We choose three metrics,Numerical Error, Order Error and
Staleness, for conit consistency. Each conit has a logical nu-
merical value. For example, in a bulletin board, the value of
a conit could be the number of messages. Numerical error is
the difference between the observed value of a conit and its
actual value if strong consistency were enforced. With the
previous conit definition, numerical error will be reflected
back to the physical world as the difference between the
observed and actual number of messages. Order error is
the weighted out-of-order writes (subject to reordering and
changing behavior) that affect a conit. In the bulletin board
example, order error is the number of out of order messages.
Staleness is the age of the oldest write (globally across the
system) affecting the conit that has not been seen by the
local replica. Depending on conit definitions, these three
metrics for conit consistency will translate to different ap-
plication semantics. Section 4 will further discuss the gen-
erality provided by user-defined conits and the meaning of
these metrics in various situations.

3.2. Formal conit/consistency definition

We now formalize the previous discussion on conit and
consistency, starting from the concept of history. Ahistory
is a totally ordered (serial) set of reads and writes. Because
standard concurrency control mechanisms on each replica
ensure local serializability, we can define thelocal history
of a replica to be the history corresponding to the equivalent
serial execution of all accesses processed by that replica.
The local histories are subject to reordering (due to write
reordering).Causal orderis a partial order defined over all
accesses. An accessA1 causally precedesanother access
A2 if A1 is in the local history ofA2’s originating replica
whenA2 is accepted. To define a consistency spectrum, we
need to use a global history that corresponds to a strongly
consistent execution for reference purpose. Thus, we de-
fine ECG history(external-order-compatible, causal-order-
compatible, global history) to be a history that is compati-
ble with external and causal order and contains all accesses

accepted by the system. Unless otherwise specified, the fol-
lowing discussion defines the consistency spectrum as the
distance between local histories and a particular ECG his-
tory.

We useD to denote the database state at a particular
time. DefineDinit to be the initial state of the database.
The notationD+W denotes the database state after apply-
ing write procedureW to database stateD, while D + H

means the database state after applying all writes in history
H (in history order) toD. For each access, itsobserved
prefix history(PHobserved) is its originating replica’s local
history when the access is submitted.Dinit + PHobserved

is called the access’sobserved database state(Dobserved),
which determines the observed result of an access. Theac-
tual prefix history(PHactual) of an access is the longest
prefix of the ECG history that does not contain that access.
Dinit + PHactual is called the access’sactual database
state(Dactual), which determines the actual result of the ac-
cess. The difference between the observed and actual result
of an access is then determined by the “difference” between
Dobserved andDactual.

A conit is a functionF that maps a database stateD
to a real numberV . An application defines a conit set
F = fF1; F2; :::g, which can be infinite, to export its con-
sistency semantics. Define the functionnweight (numeri-
cal weight) of a writeW , conitF and database stateD to
benweight(W;F;D) = F (D +W ) � F (D). Define the
functionoweight (order weight) to be a mapping from the
tuple (W;F;D) to a non-negative real value. To simplify
discussion, we assume thatnweight andoweight are inde-
pendent ofD (although our model is more general), so we
can use the notationsnweight(W;F ) andoweight(W;F ).
A write affectsa conitF if either nweight(W;F ) 6= 0 or
oweight(W;F ) 6= 0. For a historyH , define thewrite or-
der projectionof H on a conit setfF1; F2; ::; Fng (denoted
byH jfF1; F2; ::; Fng) to be the sequence of writes obtained
by deleting all writesW in H , such thatoweight(W;Fi) =
0; 8 i; 1 � i � n. Define prefix(H1; H2) to be the
longest common prefix ofH1 andH2.

For an accessA depending on a conit set
fF1; F2; :::; Fng consistencyC is defined for eachFi

(1 � i � n) and is a three-dimensional vector(Numerical
Error, Order Error, Staleness) as in Figure 3. In the
figure, functionstime(A) (rtime(A)) is the wall-clock
time that accessA is submitted by (returns to) the user.

Figure 4 illustrates the definition of our three consis-
tency metrics. For simplicity, we assume that the writes
do not depend upon any conit and carry unit numerical
weight and unit order weight for each affected conit. In
this example, the readR2 depends on two conits,F1 and
F2. SinceW1, W2 and W5 affect F1 and each write
has a numerical weight of one, we haveF1(Dactual) =
F1(Dinit) + 3 in the ECG history. On the other hand, in



Numerical Error(absolute) = Fi(Dactual)� Fi(Dobserved) Numerical Error(relative) = 1� Fi(Dobserved)=Fi(Dactual)

Order Error =
X

foweight(W;Fi) j W 2 (PHobservedjfF1; ::; Fng � prefix(PHobservedjfF1; ::; Fng; PHactualjfF1; ::; Fng))g

Staleness = stime(A)�minfrtime(W ) j W 2 (PHactual � PHobserved) ^ nweight(W;Fi) 6= 0 ^ W externally precedes A)g

Figure 3. Conit consistency metrics.
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Figure 4. Conit consistency example.

the local history ofReplica1, we haveF1(Dobserved) =
F1(Dinit) + 2. Thus, the absolute numerical error
of F1 is 1 and staleness isstime(R2) � rtime(W5).
For order error, from the ECG history, we know that
PHactualjfF1; F2g = W1W2W4W5. In the local his-
tory, for readR2, PHobservedjfF1; F2g = W1W4W2.
Thus, the order error forF1 is oweight(W4; F1) +
oweight(W2; F1) = 0 + 1 = 1. Similarly, the consistency
of F2 for readR2 is (0; 1; 0).

To choose a consistency level, the application specifies
bounds for the three metrics on a per-access and per-conit
basis. Consistency is properly maintained if an ECG his-
tory, H , exists such that the numerical error, order error
and staleness of each (access, conit) tuple are within bounds
with respect toH . The following theorem ensures that the
result of each access is independent of the consistency level
of other accesses. This self-determination property allows
the application to provide differentiated consistency qual-
ity of service on a per access basis. Due to space limita-
tions, the proof of this theorem and of all other theorems
and corollaries are made available separately[27].

Theorem 1 (Self-Determination)The semantic difference
between the observed result and actual result of an access
is guaranteed by the consistency level of the access, inde-
pendent of the consistency of other accesses.

3.3. Extremes of the continuous consistency model

Tuning bounds on numerical error, order error and stal-
eness of each access/conit can provide different levels of
consistency. To determine the range covered by our con-
tinuous consistency model, we study the two extremes of
the spectrum: when the metrics are set to(1;1;1) and
(0; 0; 0). The weak consistency extreme is achieved when

none of the metrics are bounded and the system does not
impose any restrictions on execution. We will explore the
properties of the strong consistency extreme of our model
by studying its relationship with 1SR[6].

Theorem 2The conit-based continuous consistency model
produces 1SR+EXT history if the application specifies the
following consistency:

1. A conitF is defined for each data item in the database,
whereF (D) is the total number of writes applied to that
data item.

2. A write affects the conit set corresponding to the data
items the write updates, with unit order weight.

3. Each access depends upon the conit set corresponding
to the data items it reads.

4. Zero numerical error (implying zero staleness) and zero
order error are enforced in all cases.

In the last section, we discussed the self-determination
of each access. Now we highlight the implications of this
result for strongly consistent accesses.

Corollary 1 (Self-Determination of Strongly Consistent
Accesses)If a conit is defined for each data item and each
write carries a unit numerical/order weight for each af-
fected conit, then for an access requiring zero numerical
error and zero order error on all conits it depends upon, the
observed result equals the actual result.

If we only require 1SR for the strong consistency ex-
treme, then reads are allowed to observe non-zero numeri-
cal error:

Theorem 3The conit-based continuous consistency model
produces 1SR history if the application specifies the follow-
ing consistency:



        // require (3, 0, 60) on "MsgFronFriends"
        DependonConit("MsgFromFriends", 3, 0, 60);

        AffectConit("AllMsg", 1, 1);
        // unit nweight and unit oweight 

PostMessage(String msg) {

        

        // this write does not depend on any conit

        
        if (I am a friend of Alice) 
                // unit nweight and unit oweight
                AffectConit("MsgFromFriends", 1, 1);

ReadMessages() {
        // require (10, 5, 99999) on "AllMsg"
        DependonConit("AllMsg", 10, 5, 9999);

        
        Retrieve news messages;

}

}

(b)(a)

        Append msg to the bulletin board;

Figure 5. Using weight specification in replicated bulletin board.

1. A conitF is defined for each data item in the database,
whereF (D) is the total number of writes applied to that
data item.

2. A write affects the conit set corresponding to the data
items the write updates, with unit order weight.

3. Each access depends upon the conit set corresponding
to the data items it reads.

4. Zero numerical error and zero order error are enforced
for all conits a write depends upon.

5. Zero order error is enforced for all conits a read de-
pends upon.

3.4. Exporting conit definitions through weight
specification

To achieve practicality, we use weight specification to
provide natural API for application programmers and avoid
the complexity of exporting abstract conit definition func-
tions. Recall from Section 3.2 that we define a conit as a
function mapping database states to real numbers. How-
ever, to use our model, application programmers do not
need to formally, or even conceptually, define such func-
tions. Rather, the application programmers can follow the
following conceptual steps to use our model:

1. Crystallize high-level application consistency semantics.
2. Study how each write affects such semantics and deter-

mining the corresponding numerical/order weight.
3. Use AffectConit() statements to attach numeri-

cal/order weights to writes.
4. Determine the depend-on conit set and consistency level

of each access according to application requirements.
5. AddDependonConit() statements to accesses to ex-

press such requirements.

In the weight specification step, the application directly
tells the system how each write affects the return value of
a conitF , and the system can then infer the return value
of F by summing all numerical weights accumulated. The
application programmers may not even be aware of the conit
functions they define in such a process.

Following is a concrete example of how this can be done
in a replicated bulletin board. We first define a conit with
symbolic name “AllMsg”, whose value is the number of
news messages, to export the consistency requirements on
all news messages. Besides these semantics, a user Al-
ice also defines another conit with a symbolic name “Ms-
gFromFriends”, whose value is the number of news mes-
sages posted by Alice’s friends. Thus each write has a nu-
merical weight of one for each affected conit. For simplic-
ity, we also use unit order weight. Figure 5(a) is the message
posting routine. In this example, a write does not depend
on any conits and each message posted affects the conit
“AllMsg” with unit numerical weight and unit order weight.
If the author of the message is a friend of Alice, the message
also affects the conit “MsgFromFriends”. When Alice uses
the routine in Figure 5(b) to retrieve news messages, she
specifies the required consistency levels for the two conits
the read depends on. For example, she requires the nu-
merical error, order error and staleness on conit “MsgFrom-
Friends” to be within 3, 0 and 60 (seconds), respectively. In
this way, the actual definitions of the two conits “AllMsg”
and “MsgFromFriends” are never directly exported to the
system. Weight specification can even express subjective
conit definition functions. For example, subjective numeri-
cal weight can be attached to each news message to export
its relative importance.

4. Generality of the conit-based consistency
model

4.1. Exporting application semantics through conits

In this section, we argue for the utility of our approach
by discussing how a number of wide-area applications can
specify their consistency semantics using conits. We will
notice that not all applications below can fully utilize fine-
grained continuous consistency in our model. For exam-
ple, a distributed sensor system monitoring traffic condi-
tions may be interested in all possible values of staleness
bounds, while a banking system may be interested in only



four different staleness bounds: zero, one hour, one day and
one week. Such “non-continuity” on the consistency spec-
trum is inherent in the application’s semantics and a con-
tinuous consistency model can only quantify consistency to
the extent allowed by the applications’ semantics. Also note
that because our consistency model is designed to capture a
wide range of semantics, not all applications below will use
all three consistency metrics.

Dynamic Content Distribution Modern web services pro-
duce much of their content dynamically based on
database state. Consistency is a key hurdle to replicating
dynamic services across the wide area. Conits address
this problem by applying application-specific semantics
to allow services to relax from strong consistency un-
der certain circumstances. Consider a dynamic web page
tracking the score of a football game. The application can
define a conit for this page and attach subjective numer-
ical weights to changes in the score. For example, score
changes near the end of a close game may be considered
more important. Conits may further be used to limit dis-
crepancies in inventory for e-commerce services or the
error in stock quotes provided by financial services.

Shared Editor We use this application to represent wide-
area collaborative applications. In a shared editor, multi-
ple authors work on the same document simultaneously.
Consistency requirements include the “amount” of modi-
fications from remote authors not seen by a user and the
“instability” of the current version due to uncommitted
modifications. Several definitions of conits are possible.
One approach is to define two conits per paragraph repre-
senting the number of characters in the paragraph. One
conit tracks character additions, while the other tracks
deletions. Numerical error then captures the “amount”
of modifications not seen by a user. We can define the
order weight of a modification also to be the number of
characters it affects, and order error will capture the “in-
stability” of the observed version. More functionality can
be provided by, for example, defining a conit for each
(paragraph, author) pair, so that modifications from dif-
ferent authors can have different consistency levels. Fi-
nally, staleness can be used to enforce a bound on modi-
fication propagation delay.

WAN Resource Accounting/Sensor NetworksThese two
very different applications represent a broader class of
services that maintain pure numerical records that are
read/updated from multiple locations. In resource ac-
counting, the data records are the resource consumption
of principles, while in sensor networks, the data records
are the data measured by the sensors. A conit can be de-
fined for each data record or group of records with nu-
merical error capturing the accuracy of the record values.

Airline Reservation SystemOne important aspect of sys-
tem consistency for this application is the percentage of
reservations aborted as a result of conflicts. This aspect
can be captured using numerical error in the following
manner. A conitF is used for each flight and the value
of the conit is defined to be the number of available seats
on that flight. Assuming single seat reservations (though
our model is more general) and that reservations are ran-
domly distributed among all available seats, the proba-
bility P that a reservation conflicts with another remote
(unseen) reservation is1 � F (Dactual)=F (Dobserved).
Since relative numerical errorNE of the conit equals
1�F (Dobserved)=F (Dactual), we can useNE to express
the conflict rate:P = 1 � 1=(1 � NE). Thus, the sys-
tem can limit the rate of reservation conflicts by bounding
relative numerical error. The above formula has been ver-
ified through experiments[28]. Non-random reservation
behavior will result in a higher conflict rate, but the appli-
cation may still limit conflict rates by defining multiple
conits over, for example, first class and coach seats.

Distributed Games/Virtual Reality/Teleimmersion
[10, 12] Most of the consistency issue for these ap-
plications concerns the positions and orientations of
objects in the virtual world. Since both position and
orientation are pure numerical data, the semantics can be
easily captured by numerical error. Furthermore, using
different consistency levels for each conit/access can
allow differentiatedfocusandnimbus[5] to represent the
degree of interest objects have in each other.

Traffic Monitoring and Road Reservation Advances
in mobile technology have made “road reservation”
possible. Here a mobile device is equipped to each
vehicle and base stations help to collect/distributed traffic
information to allow drivers to choose the “best” route.
Road reservation helps to avoid the situation where many
drivers choose the same “best” route and suddenly the
route becomes over-crowded. Consistency here is the
accuracy of the traffic/reservation information. We can
define each section of the road to be a conit, its value
being the number of vehicles in that section. To be more
precise, different weights can be assigned to different
vehicles to take into account the vehicle size, etc.

Abstract Data TypesAbstract data types naturally fit into
our consistency model. For example, consider a set (or
hashtable) with methodsadd() , remove() , size()
andcontains() . We can define a conit whose value
is the number of elements in the set. The accuracy of
the return value ofsize() can then be reflected in the
numerical error of the conit. Similarly, the probability of
contain() returning a correct value is determined by
the numerical error.



4.2. Relationship to other consistency models

To further demonstrate the generality of our conit-based
consistency model, in the following, we will discuss how
some previous relaxed consistency models can be expressed
as special instances of our model.

Conflict Matrix [4, 7, 25] The use of a conflict matrix is a
well-studied technique for relaxing the consistency of ab-
stract data types. Each entry in the conflict matrix deter-
mines whether two methods on the same object can pro-
ceed in parallel. Our consistency model can achieve the
same functionality using the following conit definition.
Each method is considered a write. Theith row of the
conflict matrix (associated with methodMi) is assigned
a conitFi, 1 � i � n. For a methodMj corresponding
to the jth column of the conflict matrix,Mj affectsFi

iff the matrix entry(i; j) is a “conflict” entry. For each
conit affected,Mj carries a unit numerical weight. Each
methodMi depends on conitFi and requires zero numer-
ical error. In this way, all pairs of non-conflicting method
invocations can be processed in parallel, while conflicting
invocations have to be processed in a manner equivalent
to 1SR. A correctness proof is omitted for brevity. Note
that if we enforce finite, instead of zero/infinity, numeri-
cal error for a matrix entry, we can provide the semantics
of “bounded conflict” that cannot be obtained from a con-
flict matrix. For example, agetBalance() method on
a bank account is allowed to miss no more than $50 de-
posited bydeposit() operations.

Three-level Consistency in Lazy Replication[18] Ladin
et.al. propose three different consistency levels in lazy
replication. Acausal transactionis causally ordered to
all other causal transactions, aforced transactionis totally
ordered across all replicas with respect to all other forced
transactions, andimmediate transactionsare totally or-
dered across all replicas with respect to all transactions.
These consistency levels can be expressed using the fol-
lowing conflict matrix regarding the three types of trans-
actions, and thus can be easily captured by our model.
Sample conit specifications are included in the following
table.

Transaction Causal Forced Immediate
type (affectF3) (affectF2 (affectF1,

andF3) F2 andF3)
Causal No conflict No conflict Conflict
(dep-onF1)
Forced No conflict Conflict Conflict
(dep-onF2)
Immediate Conflict Conflict Conflict
(dep-onF3)

Cluster Consistency[20] Cluster consistency is a two-
level consistency model proposed for mobile environ-
ments. In this model, data copies are partitioned intoclus-
ters, where consistency constraints within a cluster must
be preserved while inter-cluster consistency may be vio-
lated. Two kinds of operations are allowed: strict opera-
tions and weak operations. The consistency requirements
of these operations can again be expressed as a conflict
matrix, and thus can be captured by our model. To en-
force “m-consistency”[20] for some entries in the matrix,
we can allow non-zero numerical/order error for the conit
corresponding to that row.

N-ignorant System[15] In an N-ignorant system, a trans-
action can run in parallel with at mostN other transac-
tions. To emulate the behavior of an N-ignorant system,
we define a conit whose value is the number of transac-
tions applied to the database. A system bounding numer-
ical error withinN will behave the same as an N-ignorant
system.

Timed Consistency/Delta Consistency[23, 24] These
models address the lack of timing in traditional con-
sistency models such as sequential consistency. They
require the effect of a write to be observed everywhere
within time �. These timed models can be readily
expressed using the staleness metric on conits.

Quasi-copy Caching and its Generalization[3, 9] Quasi-
copy caching proposes four coherency conditions: de-
lay condition, frequency condition, arithmetic condition
and version condition. Delay condition imposes an up-
per bound on propagation delay for a data item, which is
a special case of staleness on conits. Frequency condi-
tion requires the copies of a data item to be synchronized
everyt seconds. We believe in most cases, frequency con-
dition can be more efficiently achieved by bounding stale-
ness. Arithmetic condition bounds the difference between
copies of numerical data items, which can be captured by
the numerical error on conits. The last condition, version
condition, bounds the version difference among copies. It
can be achieved by using a conit whose value is the num-
ber of updates applied to a data item and by bounding the
absolute numerical error of the conit.

5. Implementation of the continuous consis-
tency model and scalability issues

We have designed application-independent protocols to
enforce conit consistency. Because of the simplicity of
conit consistency metrics, the protocols can be highly op-
timized. We only give an overview here, detailed dis-
cussion of the protocols and their implementation can be
found in [28, 29]. The absolute/relative numerical error



bounding algorithms[29] for pure numerical data items are
adopted for bounding numerical error of conits. Order er-
ror can be bounded with a write commitment algorithm,
that is, an algorithm that allows replicas to agree on a write
order[11, 13, 19]. Staleness bounds can be enforced through
a straightforward write pulling algorithm.

All our protocols for bounding the three metrics are scal-
able relative to the number of conits. Such scalability is
crucial for our model because the number of conits can
be very large (on the order of the number of data items
in the database), depending on application semantics. In
numerical error bounding protocols, we avoid maintaining
constant-size bookkeeping information for each conit. In-
stead, such information is dynamically created when neces-
sary and deleted when no longer in use. In the write com-
mitment algorithms, scalability can be achieved by ignoring
order relaxations enabled by multiple conits. In the extreme,
if we simply use a conventional write commitment algo-
rithm to generate a total order on all writes, the overhead
incurred will be independent of the total number of conits.
Our staleness bounding algorithm, by nature, is insensitive
to the number of conits.

Finally, a system prototype and wide-area evaluation of
three sample applications (replicated bulletin board, airline
reservation and QoS load distribution for web servers)[28]
demonstrates the practicality of our approach.

6. Related work

In [29], we propose algorithms to enforce numerical er-
ror for pure numerical data records, even though the al-
gorithms are also applicable to enforcing numerical error
bounds for conit consistency. The prototype implementa-
tion and performance data of our consistency model are pre-
sented in [28]. However, in [28] we focus on how consis-
tency can be traded for performance and no formal defini-
tion of conit, conit consistency or conit theory is provided.
This paper concentrates on formal aspects of our consis-
tency model and discusses how generality and practicality
can be simultaneously achieved.

Most of the previous relaxed consistency models were
not designed for the dual goals of generality and prac-
ticality. Agrawal et.al.[2] propose semantics-based con-
sistency criteria usingguarded actions, which are primi-
tive reads/writes associated with arbitrary consistency as-
sertions. Wong et.al.[26] apply similar ideas to abstract
data types. In their model, a history is consistent if the
assertions are satisfied when the system executes the asso-
ciated read/write. In the similarity model[16, 17], appli-
cations define certain database states to be indistinguish-
able for concurrency control purposes. These three mod-
els can capture a broad range of application semantics.
However, they place a significant burden on the applica-

tion to match the model to their requirements. Further,
they do not provide any practical, efficient protocols to en-
force the requested consistency level in the general case.
On the other hand, quasi-copy caching[3, 9], N-ignorant
systems[15], delta consistency[23], timed consistency[24],
cluster consistency[20] and models based on a conflict ma-
trix for abstract data types[4, 7, 25] have developed effi-
cient application-independent protocols to enforce the re-
laxed consistency model. However, because they use a uni-
form consistency model for all applications, generality is
sacrificed in favor of the consistency requirements of a spe-
cific class of applications. In Section 4.2, we showed that all
these models can be expressed using our conit-based consis-
tency model.

Pu et.al.[22] propose the concept of epsilon-
serializability (ESR) to relax serializability and algorithms
[8, 21] have been developed to enforce ESR. Relative to
ESR, our conit-based model allows a broader range of
application semantics to be expressed through flexible conit
definitions. Another fundamental difference is that while
we focus on trading consistency for reduced wide-area
communication among replicas, ESR aims to increase the
concurrency at a single site. The lifetime-based mutual
consistency detection mechanism[14] can provide several
discrete mutual consistency levels for different objects.
Their mechanism is targeted to a different problem from
ours, that is, to determine mutual consistency of objects in a
system where client caches may retrieve individual objects
from servers. Because replicas directly propagate writes in
our system model, mutual consistency among data items in
our model is always ensured.

7. Conclusions

In this paper, we propose a conit-based continuous con-
sistency model to address the inherent overheads associated
with large-scale replication in the Internet. Our model si-
multaneously achieve generality and practicality. These two
goals usually conflict because generality requires applica-
tion semantics to be exported, which typically precludes
natural API and efficient, application-independent consis-
tency protocols. Generality in our model is achieved by
using user-defined conits to map the physical world to a
logical world. We study the generality of our model by dis-
cussing how representative wide-area applications can ex-
port application-specific consistency semantics and how a
number of existing relaxed consistency models can be ex-
pressed using our model. Practicality in our model is pro-
vided by i) using simple conit consistency metrics to allow
application-independent consistency protocols and ii) using
weight specification to simplify semantics expression. A
number of efficient, application-independent protocols en-
forcing the consistency model and the prototype implemen-



tation verify its practicality.
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