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Abstract
This paper considers several closely-related problems in synchronous dynamic networks with
oblivious adversaries, and proves novel Ω(d + poly(m)) lower bounds on their time complexity
(in rounds). Here d is the dynamic diameter of the dynamic network and m is the total number
of nodes. Before this work, the only known lower bounds on these problems under oblivious
adversaries were the trivial Ω(d) lower bounds. Our novel lower bounds are hence the first non-
trivial lower bounds and also the first lower bounds with a poly(m) term. Our proof relies on a
novel reduction from a certain two-party communication complexity problem. Our central proof
technique is unique in the sense that we consider the communication complexity with a special
leaker. The leaker helps Alice and Bob in the two-party problem, by disclosing to Alice and Bob
certain “non-critical” information about the problem instance that they are solving.
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1 Introduction

Dynamic networks [22] is a flourishing topic in recent years. We consider a synchronous
setting where the m (fixed) nodes in the network proceed in synchronous rounds. Each
node has a unique id of size O(logm), and the messages are of size O(logm) as well. The
nodes never fail. The topology of the dynamic network can change from round to round, as
determined by an adversary, subject to the only constraint that the topology in each round
must be a connected and undirected graph. The time complexity of a protocol is the number
of rounds needed for all nodes to generate the final output, over the worst-case adversary,
worst-case initial values, and average coin flips of the protocol. We consider a number of
fundamental distributed computing problems within such a context:
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29:2 Some Lower Bounds in Dynamic Networks with Oblivious Adversaries

Consensus: Each node has a binary input. The nodes aim to achieve a consensus (with
the standard agreement, validity, and termination requirements) and output the final
decision.
LeaderElect: Each node should output the leader’s id.
ConfirmedFlood: A certain node ν aims to propagate a token of size O(logm) to
all other nodes, and wants to further confirm that all nodes have received the token.1
Formally, node ν’s output is correct only if by the time that ν outputs, the token has
already been received by all the nodes. (The value of the output is not important.) The
remaining nodes can output any time.
Aggregation: Each node has a value of O(logm) bits, and the nodes aim to compute a
certain aggregation function over all these values. We consider two specific aggregation
functions, Sum and Max.

Let d be the (dynamic) diameter (see definition later) of the dynamic network. (Note that
since the topology is controlled by an adversary, the protocol never knows d beforehand.)
Given an optimal protocol for solving any of the above problems, let tc(d,m) denote the
protocol’s time complexity, when it runs over networks with d diameter and m nodes. It
is easy to see that tc(d,m) crucially depends on d, since we trivially have tc(d,m) = Ω(d).
Given such, this paper focus on the following central question:

Ignoring polylog(m) terms, is tc(d,m) independent of the network size m?

Answering this fundamental question will reveal whether the complexity of all these basic
problems is due to the diameter or due to both the diameter and the network size.

Existing results. If the network were static, then building a spanning tree would solve all
these problems in either O(d) or O(d logm) rounds, implying a yes answer to the above
question. In dynamic networks, the picture is more complex. In a dynamic network model
without congestion (i.e., message size unlimited), Kuhn et al. [20] have proposed elegant upper
bound protocols with O(d) complexity for all these problems. Hence the answer is yes as well.
For dynamic networks with congestion (i.e., message size limited to O(logm)), Yu et al. [25]
recently have proved that tc(d,m) = O(d logm) for Consensus and LeaderElect, if the
nodes know a good estimate on m.2 Hence the answer is yes in such cases. On the other hand,
if nodes’ estimate on m is poor,3 then Yu et al. [25] prove a lower bound of Ω(d+ poly(m))
for Consensus and LeaderElect, implying a no answer. For ConfirmedFlood and
Aggregation, they have also proved tc(d,m) = Ω(d+ poly(m)), even if the nodes know m.
This implies a no answer for those two problems.

All the lower bound proofs in [25], however, critically relies on a powerful adaptive
adversary: In each round, the adaptive adversary sees all the coin flip outcomes so far
of the protocol P and manipulates the topology based on those. In particular, in each
round the adversary sees whether each node will be sending (and can then manipulate the
topology accordingly), before the nodes actually send their messages. Their proof breaks

1 Such confirmation does not have to come from explicit acknowledgements, and can be via implicit
means, such as counting the number of rounds.

2 More precisely, if the nodes know m′ such that |m
′−m
m | ≤ 1

3 − c for some positive constant c. Obviously,
this covers the case where the nodes know m itself.

3 More precisely, if the nodes only knows m′ such that |m
′−m
m | reaches 1

3 or above. Obviously, this covers
the case where the nodes do not have any knowledge about m.
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under oblivious adversaries, which do not see P’s coin flip outcomes and have to decide the
topologies in all the rounds before P starts.4

In summary, our central question of whether tc(d,m) is largely independent of the network
size m has been answered in: i) static networks, ii) dynamic networks without congestion
under both adaptive and oblivious adversaries, and iii) dynamic networks with congestion
under adaptive adversaries.

Our results. This work gives the last piece of the puzzle for answering our central ques-
tion. Specifically, we show that in dynamic networks with congestion and under oblivious
adversaries, for Consensus and LeaderElect, the answer to the question is no when
the nodes’ estimate on m is poor. (If the nodes’ estimate on m is good, results from [25]
already implied a yes answer.) Specifically, we prove a novel Ω(d+ poly(m)) lower bound
on Consensus under oblivious adversaries, when the nodes’ estimate on m is poor. This
is the first non-trivial lower bound and also the first lower bound with a poly(m) term, for
Consensus under oblivious adversaries. The best lower bound before this work was the
trivial Ω(d) lower bound. Our Consensus lower bound directly carries over to LeaderElect
since Consensus reduces to LeaderElect [25].

Our approach will also lead to a Ω(d+ poly(m)) lower bound under oblivious adversaries
for ConfirmedFlood, which in turn reduces to Sum and Max [25]. Such a lower bound
similarly gives a no answer for ConfirmedFlood and Aggregation. But since the lower
bound proof for ConfirmedFlood is similar to and in fact easier than our Consensus
proof, for clarity, we will not separately discuss it in this paper.

Different adversaries. In dynamic networks, different kinds of adversaries often require
different algorithmic techniques and also yield different results. Hence it is common for
researchers to study them separately. For example, lower bounds for information dissemination
were proved separately, under adaptive adversaries [13] and then later under oblivious
adversaries [1]. Dynamic MIS was investigated separately under adaptive adversaries [17]
and later under oblivious adversaries [8]. Broadcasting was first studied under adaptive
adversaries [18], and later under oblivious adversaries [14].

Our approach. Our novel Consensus lower bound under oblivious adversaries is obtained
via a reduction from a two-party communication complexity (CC) problem called Gap
Disjointness with Cycle Promise or Gdc. Our reduction partly builds upon the reduction in
[25] for adaptive adversaries, but has two major differences. In fact, these two novel aspects
also make our central proof technique rather unique, when compared with other works that
use reductions from CC problems [9, 12, 21].

The first novel aspect is that we reduce from Gdc with a special leaker that we design.
The leaker is an oracle in the Gdc problem, and is separate from the two parties Alice and
Bob . It helps Alice and Bob, by disclosing to them certain “non-critical” information in the
following way. For a CC problem Π, let Πn(X,Y ) be the answer to Π for length-n inputs X
and Y . Let xi and yi denote the i-th character of X and Y , respectively. A pair (a, b) is
defined to be a leakable pair if for all n, X, Y , and i ∈ [0, n], Πn(x1x2 . . . xn, y1y2 . . . yn) =
Πn+1(x1x2...xiaxi+1xi+2...xn, y1y2...yibyi+1yi+2...yn). Intuitively, inserting or removing a
leakable pair does not impact the answer to Π. For each index i where (xi, yi) is leakable,

4 Note however that all upper bounds, from [20] and [25], will directly carry over to oblivious adversaries.
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independently with probability 1
2 , our leaker leaks the index i, by letting both Alice and Bob

know for free the value of i and the value of the pair (xi, yi), before Alice and Bob start
running their protocol.

Our reduction from Gdc (with our leaker) to Consensus still does not allow us to
directly use an oblivious adversary. Instead, as the second novel aspect, we will use a special
kind of adaptive adversaries which we call sanitized adaptive adversaries. These adversaries
are still adaptive, but their adaptive decisions have been “sanitized” by taking XOR with
independent coin flips. We then show that a sanitized adaptive adversary is no more powerful
than an oblivious adversary, in terms of incurring the cost of a protocol.

2 Related Work

This section discusses related works beyond those already covered in the previous section.

Related work on Consensus and LeaderElect. Given the importance of Consensus
and LeaderElect in dynamic networks, there is a large body of related efforts and we can
only cover the most relevant ones. In dynamic networks without congestion, Kuhn et al. [20]
show that the simultaneous consensus problem has a lower bound of Ω(d+ poly(m)) round.
In this problem, the nodes need to output their consensus decisions simultaneously. Their
knowledge-based proof exploits the need for simultaneous actions, and does not apply to our
setting. Some other researchers (e.g., [3, 4]) have studied Consensus and LeaderElect
in a dynamic network model where the set of nodes can change and where the topology is
an expander. Their techniques (e.g., using random walks) critically reply on the expander
property of the topology, and hence do not apply to our setting. Augustine et al. [2]
have proved an upper bound of O(d logm) for LeaderElect in dynamic networks while
assuming d is known to all nodes. This does not contradict with our lower bound, since
we do not assume the knowledge of d. Certain Consensus and LeaderElect protocols
(e.g., [15]) assume that the network’s topology eventually stops changing, which is different
from our setting where the change does not stop. Consensus and LeaderElect have
also been studied in directed dynamic networks (e.g., [11, 23]), which are quite different
from our undirected version. In particular, lower bounds there are mostly obtained by
exploiting the lack of guaranteed bidirectional communication in directed graphs. Our
Aggregation problem considers the two aggregation functions Sum and Max. Cornejo
et al. [10] considers a different aggregation problem where the goal is to collect distributed
tokens (without combining them) to a small number of nodes. Some other research (e.g., [6])
on Aggregation assumes that the topology is each round is a (perfect) matching, which is
different from our setting where the topology must be connected.

Related work on reductions from CC. Reducing from two-party CC problems to obtain
lower bounds for distributed computing problem has been a popular approach in recent years.
For example, Kuhn et al. [21] and Das Sarma et al.[12] have obtained lower bounds on the
hear-from problem and the spanning tree verification problem, respectively, by reducing from
Disjointness. In particular, Kuhn et al.’s results suggest that the hear-from problem has
a lower bound of Ω(d +

√
m/ logm) in directed static networks. Chen et al.’s work [9] on

computing Sum in static networks with node failures has used a reduction from the Gdc1,q
n

problem. Our reduction in this paper is unique, in the sense that none of these previous
reductions use the two key novel techniques in this work, namely CC with our leaker and
sanitized adaptive adversaries.
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Related work on CC. To the best of our knowledge, we are the first to exploit the CC with
a leaker in reductions to distributed computing problems such as Consensus. Our leaker
serves to allow oblivious adversaries. Quite interestingly, for completely different purposes,
the notions of leakable pairs and a leaker have been extensively (but implicitly) used in
proofs for obtaining direct sum results on the information complexity (IC) (e.g., [5, 7, 24])
of various communication problems: First, leakable pairs have been used to construct a
collapsing input, for the purpose of ensuring that the answer to the problem Π is entirely
determined by (xi, yi) at some index i. Second, an (implicit) leaker has often been used (e.g.,
in [7, 24]) to enable Alice and Bob to draw (X,Y) from a non-product distribution.

Because of the fundamentally different purposes of leaking, our leaker differs from those
(implicit) leakers used in works on IC, in various specific aspects. For example in our work,
all leakable pairs are subject to leaking, while in the works on IC, there is some index i that
is never subject to leaking. Also, when our leaker leaks index j, it discloses both xj and yj
to both Alice and Bob. In comparison, in works on IC, the (implicit) leaking is usually done
differently: For example, Alice and Bob may use public coins to draw xj and Bob may use
his private coins to draw yj . Doing so (implicitly) discloses xj to both Alice and Bob and
(implicitly) discloses yj only to Bob.

A key technical step in our work is to prove a lower bound on the CC of Gdcg,qn with our
leaker. For simpler problems such as Disjointness (which is effectively Gdc1,2

n ), we believe
that such a lower bound could alternatively be obtained by studying its IC with our leaker.
But the gap promise and the cycle promise in Gdcg,qn make IC arguments rather tricky.
Hence we will (in Section 8) obtain our intended lower bound by doing a direct reduction
from the CC of Gdcg,qn′ without the leaker to the CC of Gdcg,qn with the leaker.

3 Model and Definitions

Conventions. All protocols in this paper refer to Monte Carlo randomized algorithms. We
always consider public coin protocols, which makes our lower bounds stronger. All log is
base 2, while ln is base e. Upper case fonts (e.g., X) denote strings, vectors, sets, etc. Lower
case fonts (e.g., x) denote scalar values. In particular, if X is a string, then xi means the
i-th element in X. Bold fonts (e.g., X and x) refer to random variables. Blackboard bold
fonts (e.g., D) denote distributions. We write x ∼ D if x follows the distribution D. Script
fonts (e.g., P and Q) denote either protocols or adversaries.

Dynamic networks. We consider a synchronous dynamic network with m fixed nodes, each
with a unique id of Θ(logm) bits. A protocol in such a network proceeds in synchronous
rounds, and starts executing on all nodes in round 1. (Clearly such simultaneous start makes
our lower bound stronger.) In each round, each node υ first does some local computation,
and then chooses to either send a single message of O(logm) size or receive. All nodes who
are υ’s neighbors in that round and are receiving in that round will receive υ’s message at
the end of the round. A node with multiple neighbors may receive multiple messages.

The topology of the network may change arbitrarily from round to round, as determined
by some adversary, except that the topology in each round must be a connected undirected
graph. (This is the same as the 1-interval model [19].) A node does not know the topology
in a round. It does not know its neighbors either, unless it receives messages from them
in that round. Section 1 already defined oblivious adversaries and adaptive adversaries. In
particular in each round, an adaptive adversary sees all P’s coin flip outcomes up to and
including the current round, and manipulates the topology accordingly, before P uses the
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29:6 Some Lower Bounds in Dynamic Networks with Oblivious Adversaries

current round’s coin flip outcomes.
We use the standard definition for the (dynamic) diameter [22] of a dynamic network:

Intuitively, the diameter of a dynamic network is the minimum number of rounds needed for
every node to influence all other nodes. Formally, we say that (ω, r)→ (υ, r + 1) if either ω
is υ’s neighbor in round r or ω = υ. The diameter d of a dynamic network is the smallest d
such that (ω, r) (υ, r + d) for all ω, υ, and r, where “ ” is the transitive closure of “→”.
Since the topology is controlled by an adversary, a protocol never knows d beforehand.

Communication complexity. In a two-party communication complexity (CC) problem Πn,
Alice and Bob each hold input strings X and Y respectively, where each string has n
characters. A character here is q-ary (i.e., an integer in [0, q − 1]) for some given integer
q ≥ 2. For any given i, we sometimes call (xi, yi) as a pair. Alice and Bob aim to compute
the value of the binary function Πn(X,Y ). Given a protocol P for solving Π (without a
leaker), we define cc(P, X, Y,CP) to be the communication incurred (in terms of number
of bits) by P, under the input (X,Y ) and P’s coin flip outcomes CP. Note that CP is a
random variable while cc() is a deterministic function. We similarly define err(P, X, Y,CP),
which is 1 if P’s output is wrong, and 0 otherwise. We define the communication complexity
of P to be cc(P) = maxX maxY ECP

[cc(P, X, Y,CP)], and the error of P to be err(P) =
maxX maxY ECP

[err(P, X, Y,CP)]. We define the δ-error (0 < δ < 1
2 ) communication com-

plexity of Πn to be Rδ(Πn) = min cc(P), with the minimum taken over all P where err(P) ≤ δ.
For convenience, we define Rδ(Π0) = 0 and Rδ(Πa) = Rδ(Πbac) for non-integer a.

We define similar concepts for CC with our leaker. Section 1 already defined leakable
pairs and how our leaker works. Given P for solving Π with our leaker, cc(P, X, Y,CP,CL) is
the communication incurred by P, under the input (X,Y ), P’s coin flip outcomes CP, and
the leaker’s coin flip outcomes CL. Here (X,Y ) and CL uniquely determine which indices
get leaked. We define cc(P) = maxX maxY ECL

ECP
[cc(P, X, Y,CP,CL)]. We similarly define

err(P, X, Y,CP,CL) and err(P). Finally, we define the δ-error (0 < δ < 1
2 ) communication

complexity of Πn with our leaker, denoted as Lδ(Πn), to be Lδ(Πn) = min cc(P), with the
minimum taken over all P such that P solves Πn with our leaker and err(P) ≤ δ. Note that
we always have Lδ(Πn) ≤ Rδ(Πn).

4 Preliminaries on Gap Disjointness with Cycle Promise

The section defines the two-party Gdc problem and describes some basic properties of Gdc.

I Definition 1 (Gap Disjointness with Cycle Promise). In Gap Disjointness with Cycle Promise,
denoted as Gdcg,qn , Alice and Bob have input strings X and Y , respectively. X and Y

each have n characters, and each character is an integer in [0, q − 1]. Alice and Bob aim to
compute Gdcg,qn (X,Y ), defined to be 1 if (X,Y ) contains no (0, 0) pair, and 0 otherwise.
The problem comes with the following two promises:

Gap promise: (X,Y ) contains either no (0, 0) pair or at least g such pairs.
Cycle promise [9]: For each index i, xi and yi satisfy exactly one of the following four
conditions: i) xi = yi = 0, ii) xi = yi = q − 1, iii) xi = yi + 1, or iv) xi = yi − 1.

One can easily verify that the cycle promise is trivially satisfied when q = 2. It is also
easy to see Gdc1,2

n degenerates to the classic Disjointness problem. The gap promise and
the cycle promise start to impose material restrictions when g ≥ 2 and q ≥ 3, respectively.
For example for g = 2 and q = 4, X = 02103 and Y = 03003 satisfy both the two promises,
where (X,Y ) contains 2 pairs of (0, 0), at indices 1 and 4. For Gdc, all (0, 0) pairs are
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non-leakable, while all other pairs are leakable. For example for X = 02103 and Y = 03003,
those 3 pairs at index 2, 3, and 5 are leakable. The following result (proven in the full version
[16] of this paper) on the CC of Gdc is a simple adaption from the result in [9]:

I Theorem 2. For any δ where 0 < δ < 0.5, there exist constants c1 > 0 and c2 > 0 such
that for all n, g, and q, Rδ(Gdcg,qn ) ≥ c1n

gq2 − c2 log n
g .

The proof of Theorem 2 also showed that Rδ(Gdcg,qn ) ≥ Rδ(Gdc1,q
n/g). It is important to

note that Lδ(Gdcg,qn ) ≥ Lδ(Gdc1,q
n/g) does not hold in general (see [16] for more discussion).

Hence when later proving the lower bound on Lδ(Gdcg,qn ), we will have to work with the
gap promise directly, instead of obtaining the lower bound via Lδ(Gdc1,q

n/g).

5 Review of Existing Proof under Adaptive Adversaries

This section gives an overview of the recent Consensus lower bound proof [25] under adaptive
adversaries. That proof is quite lengthy and involved, hence we will stay at the high-level,
while focusing on aspects that are more relevant to this paper.

Overview. Consider any oracle Consensus protocol P with 1
10 error. Let tc(d,m) be P’s

time complexity, when running over dynamic network controlled by adaptive adversaries and
with d diameter and m nodes. The proof in [25] is mainly for proving tc(8,m) = Ω(poly(m)).
The proof trivially extends to tc(d,m) for all d ≥ 8. Combining with the trivial Ω(d) lower
bound will lead to the final lower bound of Ω(d+ poly(m)).

To prove tc(8,m) = Ω(poly(m)), [25] uses a reduction from Gdcg,qn to Consensus. To
solve Gdcg,qn (X,Y ), Alice knowing X and Bob knowing Y simulate the Consensus protocol
P in the following way: In the simulation, the input (X,Y ) is mapped to a dynamic network.
Roughly speaking, if Gdcg,qn (X,Y ) = 1, the resulting dynamic network will have a diameter
of 8. Hence P should decide within r1 = tc(8,m) rounds on expectation. If Gdcg,qn (X,Y ) = 0,
then the resulting dynamic network will have a diameter of roughly q

2 . It is then shown [25]
that P must take r2 = Ω(q) rounds to decide in dynamic networks with such a diameter. The
value of q is chosen, as a function of tc(8,m), such that r2 > 10r1. Alice and Bob determine
the answer to Gdc based on when P decides: If P decides within 10r1 rounds, they claim
that Gdcg,qn (X,Y ) = 1. Otherwise they claim Gdcg,qn (X,Y ) = 0.

To solve Gdc using the above simulation, Alice and Bob need to simulate P for 10r1 =
10tc(8,m) rounds. In each round, to enable the simulation to continue, Alice and Bob will need
to incur O(logm) bits of communication. Hence altogether, they incur 10tc(8,m) ·O(logm)
bits for solving Gdcg,qn . The lower bound on the CC of Gdcg,qn then immediately translates
to a lower bound on tc(8,m).

Crux of the proof. When solving Gdc, Alice only knows X and not Y . This means that
Alice does not actually have the full knowledge of the dynamic network, which is a function
of (X,Y ). Hence the proof’s central difficulty is to design the dynamic network in such a way
that Alice can nevertheless still properly simulate P over that dynamic network. The proof
in [25] overcomes this key difficulty by i) leveraging the cycle promise in Gdc, and ii) using
an adaptive adversary — in particularly, using an adaptive adversary is highlighted [25] as a
key technique. We give a concise review below.

Given (X,Y ), the dynamic network constructed in [25] has one chain for each index
i ∈ [1, n]. Each chain has 3 node in a line (Figure 1). Consider as an example the i-th chain
where xi = 0. Since xi = 0, yi must be either 0 or 1 (by the cycle promise). The set of edges
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ti ti+1 ti+2 

(a) ν is sending in round ti + 1

ti ti+1 ti+2 

(b) ν is receiving in round ti + 1

Figure 1 The adaptive decisions of the adversary in [25].

on this chain will be different depending on whether yi is 0 or 1 — this serves to make the
diameter of the dynamic network different when Gdc = 1 and when Gdc = 0, as discussed
earlier. The difficulty for Alice, is that she does not know yi, and hence does not know the
exact set of edges on this chain. This prevents her from properly simulating those nodes that
she need to simulate for this chain. Similar difficulty applies to Bob.

To overcome this difficulty, if a pair (xi, yi) is not (0, 0), the adversary in [25] will make
an adaptive decision for manipulating the edges on the i-th chain,5 to help enable Alice (and
also Bob) to simulate. The cycle promise already tells us that for given xi (e.g., 0), there are
two possibilities for yi (e.g., 0 and 1). The adaptive decisions of the adversary will have the
following end effects: Under the topology resulted from such adaptive decisions, the behavior
of those nodes that Alice needs to simulate will depend only on xi and no longer depend on
yi. A similar property holds for Bob.

The details on why those adaptive decisions can achieve such end effects are complex, and
are related to the fundamental fact that a node does not know its neighbors in a round until
it receives messages from them. At the same time, those details are entirely orthogonal to
this work. Hence due to space limitations, we refer interested readers to [25] for such details.
Here we will only describe the specifics of all the adaptive decisions made by the adversary,
which is needed for our later discussion: Consider any i where (xi, yi) is not (0, 0). At the
beginning of round ti + 1 where ti is some function of xi and yi, the adversary examines
the coin flip outcomes of P and determines whether the middle node ν on the i-th chain is
sending or receiving in round ti + 1 (see Figure 1). If ν is sending, the adversary removes a
certain edge e that is incidental to ν, immediately in round ti + 1. Otherwise the adversary
will remove the edge e in round ti + 2. Except these adaptive decisions, the adversary does
not make any other adaptive decisions. In particular, the adversary does not need to make
adaptive decisions for chains corresponding to (0, 0).

6 Roadmap for Lower Bound Proof under Oblivious Adversaries

This section provides the intuition behind, and the roadmap for, our novel proof of Consensus
lower bound under oblivious adversaries. To facilitate discussion, we define a few simple
concepts. Consider the i-th chain in the previous section where (xi, yi) is not (0, 0), and the
middle node ν on the chain. We define binary random variable z = 0 if ν is sending in round
ti + 1, and define z = 1 otherwise. We use A′ to denote the adaptive adversary described
in the previous section. We define λA′ to be the adaptive decision made by A′, where A′

removes the edge e in round ti + 1 +λA′ . With these concepts, A′ essentially sets its decision

5 In the actual proof, the adversary only needs to make adaptive decisions for a subset (usually a constant
fraction) of such chains. But it is much easier to understand if we simply let the adversary make an
adaptive decision on all of them. Doing so has no impact on the asymptotic results.
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λA′ to be λA′ = z.

Making guesses. A′ is adaptive since λA′ depends on z, and z in turn is a function of P’s
coin flips. An oblivious adversary A cannot have its decision λA depend on z. At the highest
level, our idea of allowing A in the reduction is simple: We let A make a blind guess on
whether ν is sending. Specifically, imagine that A itself flips a fair coin c, and then directly
set its decision to be λA = c. Same as A′, A still removes the edge e in round ti + 1 + λA,
except that now λA = c. Some quick clarifications will help to avoid confusion here. First,
such a guess c may be either correct (i.e., c = z) or wrong (i.e., c = z̄). A itself cannot tell
whether the guess is correct, since A (being oblivious) does not know z. Alice and Bob,
however, can tell if the guess is correct, because they are simulating both the protocol P and
the adversary A, and hence know both z and c. But they cannot interfere with the guess
even if they know it is wrong.

Now if the guess is correct, then the decision of A will be exactly the same as A′, and
everything will work out as before. But if the guess is wrong, then A can no longer enable
Alice to simulate without knowing Y . More specifically, if the guess is wrong, then for the
i-th chain, the behavior of those nodes that Alice needs to simulate will depend on the value
of yi, and Alice does not know yi. To overcome this main obstacle, our key idea is to add
a special leaker entity in the two-party CC problem, which should be viewed as an oracle
that is separate from Alice and Bob. If the guess is wrong for the i-th chain, the leaker will
disclose for free to Alice and Bob the pair (xi, yi). The knowledge of yi then immediately
enables Alice to infer the exact behavior of the nodes that she needs to simulate. Similar
arguments apply to Bob.

Roadmap. There are two non-trivial technical issues remaining in the above approach: i)
when to make guesses, and ii) how the leaker impacts the CC of Gdc. Overcoming them will
be the main tasks of Section 7 and 8, respectively. Section 9 will present our final Consensus
lower bound, whose lengthy and somewhat tedious proof is deferred to the full version [16]
of this paper.

7 Sanitized Adaptive Adversaries

The difficulty. It turns out that it does not quite work for Alice and Bob to approach the
leaker for help when they feel needed. Consider the following example Gdc2,4

6 instance with
X = 000000 and Y = 111100. As explained in Section 5, the dynamic network corresponding
to this instance has six chains. For all i, we say that the i-th chain is an “|ab chain” if xi = a

and yi = b. The first four chains in the dynamic network are thus all |01 chains, while the
remaining two are |00 chains. The adaptive adversary A′ in [25] (see Section 5) will make
adaptive decisions for all |01 chains, but does not need to do so for |00 chains. Applying the
idea from Section 6, the oblivious adversary A should thus make guesses for those four |01
chains. Note that A needs to be simulated by Alice and Bob. The difficulty is that Alice
does not know for which chains a guess should be made, since she does not know which
chains are |01 chains. In fact if she knew, she would have already solved Gdc in this instance.
Similar arguments apply to Bob.

A naive fix is to simply make a guess for each of the six chains. Imagine now that the
guess turns out to be wrong for the last chain, which is a |00 chain. Alice and Bob will then
ask the leaker to disclose (x6, y6). Such disclosure unfortunately directly reveals the answer
to the Gdc instance. This in turn, reduces the CC of Gdc to 0, rendering the reduction
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meaningless. (Refusing to disclose (x6, y6) obviously does not work either, since the refusal
itself reveals the answer.)

Our idea. To overcome this, we do not let Alice and Bob decide for which chains the
adversary A should make a guess. Instead, we directly let our leaker decide which indices
should be leaked: For every i where (xi, yi) 6= (0, 0), the leaker leaks the pair (xi, yi) with
half probability, to both Alice and Bob. In the earlier example, the leaker will leak each of
the indices 1 through 4 independently with half probability.

For any given i, define binary random variable s = 1 iff the leaker leaks index i. If
s = 1, then Alice and Bob will “fabricate” a wrong guess for the adversary A that they
are simulating, so that the guess of A is wrong (and hence index i needs to be leaked).
Specifically, Alice and Bob examine the coin flip outcomes of the protocol P to determine
the value of z, and then set the guess c of A to be c = z̄. (Recall that z indicates whether
the middle node is sending in round ti + 1.) In such a case, the decision λA of A will be
λA = c = z̄. On the other hand, if s = 0 (meaning that index i is not leaked), then Alice and
Bob let A behave exactly the same as the adaptive adversary A′ in Section 5. In particular,
if A′ makes an adaptive decision λA′ = z for this chain, then the decision λA of A will also
be λA = z (i.e., as if A guessed correctly). Combining the two cases gives λA = z⊕ s.

Obviously A here is no longer oblivious (since λA now depends on z), which seems to
defeat the whole purpose. Fortunately, this adaptive adversary A is special in the sense
that all the adaptivity (i.e., z) has been “sanitized” by taking XOR with the independent
coin of s. Intuitively, this prevents A from effectively adapting. The following discussion
will formalize and prove that such an A is no more powerful than an oblivious adversary, in
terms of incurring the cost of a protocol.

Formal framework and results. Without loss of generality, we assume that an adversary
makes binary decisions that fully describe the behavior of the adversary. An adversary is
deterministic if its decisions are fixed given the protocol’s coin flip outcomes, otherwise it is
randomized. Consider any deterministic adaptive adversary A′. A decision λA′ made by A′

is called adaptive if λA′ can be different under different coin flip outcomes of the protocol. A
randomized adaptive adversary A is called a sanitized version of A′, if A behaves the same as
A′ except that A sanitizes all adaptive decisions made by A′ and also an arbitrary (possibly
empty) subset of the non-adaptive decisions made by A′. Here A sanitizes a decision λA′

made by A′ by setting its own decision λA to be λA = λA′ ⊕ s, where s is a separate fair
coin and is independent of all other coins. We also call the above A as a sanitized adaptive
adversary. In our discussion above, λA′ = z, while λA = z ⊕ s = λA′ ⊕ s. The following
simple theorem, proven in the full version [16] of this paper, confirms that A is no more
powerful than an oblivious adversary:

I Theorem 3. Let cost(P,A, CP, CA) be any deterministic function (which the adversary
aims to maximize) of the protocol P, the adversary A, the coin flip outcomes CP of P, and the
coin flip outcomes CA (if any) that may also influence the behavior of A. For any protocol P,
any deterministic adaptive adversary A′, and its sanitized version A, there exists a determ-
inistic oblivious adversary B such that ECP

[cost(P,B,CP,−)] ≥ ECP,CA
[cost(P,A,CP,CA)].

Furthermore, for every CP in the support of CP, there exists CA in the support of CA, such
that B’s decisions are exactly the same as the decisions made by A under CP and CA.

Summary of this section. Recall that A′ denotes the adaptive adversary used in [25] and
reviewed in Section 5. Based on the discussion in this section, our reduction from Gdc
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(with a leaker) to Consensus will use a sanitized adaptive adversary A for the dynamic
network. A behaves exactly the same as A′ except: For each i-th chain where A′ makes
an adaptive decision λA′ for that chain, A sets its own decision λA for that chain to be
λA = λA′ ⊕ s. Here s denotes whether index i is leaked by the leaker. Theorem 3 confirms
that the consensus protocol P’s end guarantees, even though P was designed to work against
oblivious adversaries instead of adaptive adversaries, will continue to hold under A.

8 Communication Complexity with The Leaker

To get our final Consensus lower bound , the next key step is to prove a lower bound on
the CC of Gdc with the leaker. At first thought, one may think that having the leaker will
not affect the CC of Gdc much, since i) the leakable pairs have no impact on the answer to
the problem and are hence “dummy” parts, and ii) the leaker only leaks about half of such
“dummy” parts. As a perhaps surprising example, Lemma 1 in the full version [16] of this
paper shows that having the leaker reduces the CC of Gdc16

√
n ln 1

δ ,2
n from Ω(

√
n) to 0. This

implies that the impact of the leaker is more subtle than expected. In particular, without a
careful investigation, it is not even clear whether the CC of Gdc with our leaker is large
enough to translate to our intended Ω(d+ poly(m)) lower bound on Consensus.

This section will thus do a careful investigation and eventually establish a formal connec-
tion between the CC with the leaker (Lδ) and the CC without the leaker (Rδ):

I Theorem 4. For any constant δ ∈ (0, 1
2 ), there exist constants c1 > 0 and c2 > 0 such

that for all n, g, q, and n′ = c2
√
n/(q1.5 log q), Lδ(Gdcg,qn ) ≥ c1Rδ(Gdcg,qn′ ).

Later we will see that the lower bound on Gdc with our leaker as obtained in the above
theorem (combined with Theorem 2) is sufficient for us to get a final Ω(d+ poly(m)) lower
bound on Consensus. The theorem actually also holds for many other problems beyond
Gdc, though we do not present the general form here due to space limitations.

8.1 Our Approach and Key Ideas
While we will only need to prove Theorem 4 for Gdc, we will consider general two-party
problem Π, since the specifics of Gdc are not needed here. We will prove Theorem 4 via a
reduction: We will construct a protocol Q for solving Πn′ without the leaker, by using an
oracle protocol P for solving Πn with the leaker, where n′ is some value that is smaller than
n. Such a reduction will then lead to Rδ′(Πn′) = O(Lδ(Πn)).

We will call each kind of leakable pairs as a leakable pattern. For example, Gdc1,2
n has

leakable patterns of (1, 1), (0, 1), and (1, 0). Note that leakable patterns are determined by
the problem Π and not by an instance of the problem. We use k ∈ [0, q2] to denote the total
number of leakable patterns for Π whose inputs are q-ary strings. For Gdcg,qn , k = 2q − 1.

Simulating the leaker via padded pairs. The central difficulty in the reduction is that
Alice and Bob running Q need to simulate the leaker, in order to invoke the oracle protocol
P. (Note that P here is the two-party protocol, and has nothing to do with the Consensus
protocol.) This is difficult because each party only knows her/his own input. Our first step
to overcome this difficulty is to pad known characters to the inputs and then leak only those
padded characters, as explained next.

Let (X ′, Y ′) be the given input to Q. Assume for simplicity that (2, 1) is the only leakable
pattern in Π, and consider the problem instance in Figure 2 where X ′ = 02 and Y ′ = 01.
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leaked pair

from X’ and Y’
this pair was appended

0  1  1

0  2  2

these pairs originated

X = 0  2  2

0  1  1Y = 

0  2  2

0  1  1

2  0  2

1  0  1

2  0  2

1  0  1

2  2  0

1  1  0

2  2  0

1  1  0

2  0  2

1  0  1

2  2  0

1  1  0
0  2  2

0  1  1

by Alice and Bob

after leaking by the leaker after leaking by the leaker after leaking by the leaker

how
Alice
and

simulate
the
leaker

how the
leaker
behaves over
a distribution
of 3 inputs

permute and then leak the padded pair

Bob

Figure 2 How padding and permutation enable Alice and Bob to simulate the leaker. In this
example X ′ = 02, Y ′ = 01, X = 022, and Y = 011. Here to help understanding, we assume that the
leaker leaks exactly half of all the leakable pairs.

Alice and Bob will append/pad a certain number of occurrences of each leakable pattern
to (X ′, Y ′). Let (X,Y ) denote the resulting strings after the padding. In the example in
Figure 2, Alice and Bob append 1 occurrence of (2, 1) to (X ′, Y ′) — or more specifically,
Alice appends 2 to X ′ and Bob appends 1 to Y ′. Doing so gives X = 022 and Y = 011. Note
that doing so does not involve any communication, since the leakable patterns are publicly
known. Imagine that Alice and Bob now invoke P using (X,Y ), where X = 022 and Y = 011.
Note that the two-party protocol P assumes the help from our leaker. Alice and Bob can
easily simulate the leaking of (x3, y3), since (x3, y3) is the padded pair and they both know
that the pair is exactly (2, 1). However, (x2, y2) is also a leakable pair. Alice and Bob still
cannot simulate the leaking of this pair, since this pair originated from (X ′, Y ′) and they do
not know the value of this pair.

To overcome this, Alice and Bob use public coins to generate a random permutation,
and then use the permutation to permute X and Y , respectively (Figure 2). This step
does not involve communication. For certain problems Π (e.g., for Gdc), one can easily
verify that such permutation will not affect the answer to Π. Such permutation produces an
interesting effect, as illustrated in Figure 2. The upper part of Figure 2 plots the 6 possible
outcomes after the permutation, for our earlier example of X = 022 and Y = 011. Before
the permutation, the last pair in (X,Y ) is a padded pair. Imagine that Alice and Bob leak
this pair. Now after the permutation, this leaked pair will occupy different indices in the 6
outcomes of the permutation.

The bottom part of Figure 2 illustrates the (real) leaker’s behavior over certain inputs.
To help understanding, assume here for simplicity that the leaker leaks exactly half of all the
leakable pairs. Now consider 3 different inputs (022, 011), (202, 101), and (220, 110). One
can see that the behavior of the leaker over these 3 inputs (see Figure 2) exactly matches
the result of permutation as done by Alice and Bob. Hence when Alice and Bob feed the
result of the permutation into P while leaking the padded pair, it is as if P were invoked
over the previous 3 inputs (each chosen with 1/3 probability) together with the real leaker.
This means that P’s correctness and CC guarantees should continue to hold, when Alice and
Bob invoke P while leaking only the padded pair.
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How many pairs to leak. Imagine that (X ′, Y ′) contain o pairs of (2, 1), and Alice and
Bob pad p pairs of (2, 1) to (X ′, Y ′). The result of the padding, (X,Y ), will contain o+ p

pairs of (2, 1). Let f be the number of (2, 1) pairs in (X,Y ) that should be leaked, which
obviously follows a binomial distribution with a mean of o+p2 . Ideally, Alice and Bob should
draw f from the above binomial distribution, and then simulate the leaking of f pairs of
(2, 1). (They can do so as long as f ≤ p — with proper p, we easily throw Pr[f > p] into the
error.) The difficulty, however, is that Alice and Bob do not know o, and hence cannot draw
f with the correct mean of o+p2 .

To overcome this, Alice and Bob will estimate the value of o by sampling: For each
sample, they use public coin to choose a uniformly random i ∈ [1, n′], and then send each
other the values of x′i and y′i. They will spend total Rδ′ (Πn′ )

2 bits for doing this, so that such
sampling is effectively “free” and does not impact the asymptotic quality of the reduction.
Alice and Bob will nevertheless still not obtain the exact value of o. This means that the
distribution they use to draw f will be different from the distribution that the (real) leaker
uses. Our formal proof will carefully take into account such discrepancy.

Protocol 1: Our δ′-error protocol Q for solving Πn′ without our leaker. Q invokes
the δ-error oracle two-party protocol P that solves Πn with our leaker. The above
only shows Alice’s part of Q. Bob’s part of Q can be obtained similarly.

Input :X ′, n, n′, δ, δ′, where δ < δ′

1 s← Rδ′ (Πn′ )
4 log q ; foreach j = 1, . . . , k do vj ← 0 ;

2 repeat s times do
3 draw a uniformly random integer i ∈ [1, n′] using public coins;
4 send x′i to Bob and receive y′i from Bob ;
5 foreach j = 1, . . . , k do if (x′i, y′i) equals the j-th leakable pattern then vj ← vj + n′

s
;

6 end
/*** Here hj is the number of times that the j-th leakable pattern is padded to (X ′, Y ′).
***/

7 h← 2n′ + 500
(δ′−δ)2 (k2 + kn′2

2s ln 24k
δ′−δ );

8 foreach j = 1, . . . , k − 1 do hj ← h ;
9 hk ← n− n′ − (k − 1)h; if hk < h then generate an arbitrary output and exit;

10 foreach j = 1, . . . , k do
11 draw an integer bj from the binomial distribution B(hj+vj

2 ) using public coins ;
// B(µ) is the distribution for the number of heads obtained when flipping 2µ fair coins.

12 if bj > hj then bj ← hj ;
13 let (a, b) be the j-th leakable pattern ;
14 append hj copies of a to X ′, and flag the first bj indices of these hj indices as “to be

leaked”;
15 end
16 generate a uniformly random permutation M using public coins;
17 X←M(X ′) /* the flags in X ′ will be treated as part of X ′ and be permuted as well. */;
18 invoke P (together with the other party) using X as input, while leaking all those indices

that are flagged, until either P outputs or P has incurred ( 6
δ′−δ )cc(P) bits of

communication ;
/* when leaking index i, both x′i and y′i will be given to P — this can be done since a leaked
index here must correspond to a padded pair at Line 14 */;

19 if P has incurred ( 6
δ′−δ )cc(P) bits of communication then exit with an arbitrary output ;

20 else output P’s output and exit ;
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8.2 Formal Reduction and Final Guarantees
Pseudo-code. Protocol 1 presents the protocol Q for solving Πn′ without our leaker, as run
by Alice. Q internally invokes the oracle two-party protocol P, where P solves Πn with our
leaker. At Line 1–6, Alice and Bob first exchange sampled indices to estimate the occurrences
of each leakable pattern. Next Line 7–9 calculate the amount of padding needed. Line 10–15
do the actual padding, and then for each leakable pattern, flag a certain number of padded
pairs as “to be leaked”. At Line 16–20, Alice and Bob do a random permutation to obtain
(X,Y), and then invoke P on (X,Y) while leaking all those flagged pairs.

Final properties of Q. The full version [16] of this paper will prove that Q solves Π without
our leaker, with an error of δ + 11

12 (δ′ − δ), while incurring Rδ′ (Πn′ )
2 + 5.5cc(P) bits of

communication. This will eventually lead to the proof of Theorem 4 (see the full version [16]
of this paper).

9 Consensus Lower Bound under Oblivious Adversaries

Following is our final theorem on Consensus under oblivious adversaries:

I Theorem 5. If the nodes only know a poor estimate m′ for m such that |m
′−m
m | reaches 1

3 or
above, then a 1

10 -error Consensus protocol for dynamic networks with oblivious adversaries
must have a time complexity of Ω(d+m

1
12 ) rounds.

Our proof under oblivious adversaries partly builds upon the previous proof under adaptive
adversaries [25], as reviewed in Section 5. The key difference is that we reduce from Gdc
with our leaker to Consensus. The complete proof is lengthy and tedious as it needs to build
upon the lengthy proof in [25]. Since Section 7 and 8 already discussed the key differences
between our proof and [25], we leave the full proof to the full version [16] of this paper, and
only provide an overview here on how to put the pieces from Section 7 and 8 together.

Consider any oracle Consensus protocol P with 1
10 error. Let tc(d,m) denote P’s time

complexity when running over dynamic networks controlled by oblivious adversaries and with
d diameter and m nodes. As explained in Section 5, the crux will be to prove tc(8,m) ≥ m 1

12 .
To do so, we consider Gdcg,qn with n = m−4

3 , q = 20tc(8,m) + 20, and g = 15q ln q. To solve
Gdcg,qn (X,Y ), Alice and Bob simulate P in the following way: In the simulation, the input
(X,Y ) is mapped to a sanitized adaptive adversary A that determines the topology of the
dynamic network. Roughly speaking, if Gdcg,qn (X,Y ) = 1, the resulting dynamic network
will have a diameter of 8. Even though A is an adaptive adversary, by Theorem 3 in Section 7,
P’s time complexity should remain tc(d,m) under A. Hence P should decide within tc(8,m)
rounds on expectation. If Gdcg,qn (X,Y ) = 0, then the resulting dynamic network will have a
diameter of Θ(q). For P to decide in this dynamic network, we prove that it takes at least
roughly q

2 rounds. Note that q
2 > 10tc(8,m) — in other words, it takes longer for P to decide

if Gdcg,qn (X,Y ) = 0. Alice and Bob do not know the other party’s input, and hence does
not have full knowledge of the dynamic network. But techniques from [25], together with
the help from our leaker, enable them to still properly simulate P’s execution. Finally, if P
decides within 10tc(8,m) rounds, Alice and Bob claim that Gdcg,qn (X,Y ) = 1. Otherwise
they claim Gdcg,qn (X,Y ) = 0. Our proof will show that to solve Gdcg,qn with our leaker,
using the above simulation, Alice and Bob incur Θ(tc(8,m) · logn) bits of communication.
We thus have Θ(tc(8,m) logn) ≥ Lδ(Gdcg,qn ). Together with the lower bound on Lδ(Gdcg,qn )
from Theorem 4 in Section 8 (and Theorem 2 in Section 4), this will lead to a lower bound
on tc(8,m).
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