
Near-Optimal Communication-Time Tradeoff
in Fault-Tolerant Computation of Aggregate Functions

Yuda Zhao
National University of

Singapore
Republic of Singapore

yuda@comp.nus.edu.sg

Haifeng Yu
National University of

Singapore
Republic of Singapore

haifeng@comp.nus.edu.sg

Binbin Chen
Advanced Digital Sciences

Center
Republic of Singapore

binbin.chen@adsc.com.sg

ABSTRACT

This paper considers the problem of computing general commuta-

tive and associative aggregate functions (such as SUM) over dis-
tributed inputs held by nodes in a distributed system, while tolerat-
ing failures. Specifically, there are N nodes in the system, and the
topology among them is modeled as a general undirected graph.
Whenever a node sends a message, the message is received by all
of its neighbors in the graph. Each node has an input, and the goal
is for a special root node (e.g., the base station in wireless sensor
networks or the gateway node in wireless ad hoc networks) to learn
a certain commutative and associate aggregate of all these inputs.
All nodes in the system except the root node may experience crash
failures, with the total number of edges incidental to failed nodes
being upper bounded by f . The timing model is synchronous where
protocols proceed in rounds. Within such a context, we focus on the
following question:

Under any given constraint on time complexity, what is the

lowest communication complexity, in terms of the number

of bits sent (i.e., locally broadcast) by each node, needed

for computing general commutative and associate aggregate

functions?

This work, for the first time, reduces the gap between the upper
bound and the lower bound for the above question from polyno-

mial to polylog. To achieve this reduction, we present significant
improvements over both the existing upper bounds and the existing
lower bounds on the problem.

Categories and Subject Descriptors

F.1.3 [Computation by Abstract Devices]: Complexity Measures
and Classes; F.2.2 [Analysis of Algorithms and Problem Com-

plexity]: Nonnumerical Algorithms and Problems
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Communication complexity, time complexity, communication-time
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1. INTRODUCTION

The problem of fault-tolerant aggregation. In recent years, there
has been a line of research (e.g., [1, 4–6, 8, 9, 13, 14, 16, 17]) on
computing aggregates over distributed inputs held by nodes in a
distributed system. This paper focuses on the following specif-
ic fault-tolerant version of the problem (formally defined in Sec-
tion 2): There are N nodes in the system, and the topology among
them is modeled as a general undirected graph. Whenever a node
sends a message, the message is received by all of its neighbors in
the graph. (In other words, each “send” is a local broadcast.) Each
node has a non-negative integer input that is no larger than some
polynomial of N . The goal is for a special root node to compute a
certain aggregate function over all these inputs. For example, the
root can be the base station in wireless sensor networks or the gate-
way node in wireless ad hoc networks. We will focus on the SUM

function first, and then trivially generalize to arbitrary commutative

and associative aggregate functions (or CAAFs in short — see def-
inition in Section 2). All nodes in the system except the root may
experience crash failures. For convenience, we say that an edge
fails, iff at least one of its end points experiences a crash failure.
We use f to denote an upper bound on the total number of edge
failures. We consider a synchronous timing model where protocols
proceed in rounds.

We consider randomized protocols for computing SUM (or gen-
eral CAAFs) that always generate a correct result. A sum result is
correct [1] iff it falls between the sum of the inputs of all nodes and
the sum of the inputs of all nodes that are still alive and are not par-
titioned from the root at the end of the protocol’s execution.1 We
similarly define result correctness for general CAAFs. The time

complexity (TC) of a protocol is defined to be the number (denoted
as b) of flooding rounds needed for the protocol to terminate. Here
each flooding round consists of d rounds where d is the diameter of
the network. The communication complexity (CC) of a protocol is
the maximum number of bits that a node needs to send (i.e., locally
broadcast) in the entire execution of the protocol. Here the maxi-
mum is taken across all nodes in the system. Given such a context,
this paper focuses on the following question:

Under any given constraint on TC, what is the lowest CC

needed for computing SUM (or general CAAFs)?

Existing lower/upper bounds. The only known non-trivial lower
bound so far on the CC of SUM protocols, in the fault-tolerant set-
ting, was from our own previous work [4]. Specifically, there we

1For example, if a node fails or gets partitioned from the root (due
to the failure of other nodes) right before the SUM protocol start-
s, incorporating the node’s input into the final sum would not be
possible.
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Figure 1: Summary of results on the SUM problem. Here b is the time complexity, and f is an upper bound on the total number of

edges incident to failed nodes. Since the communication complexity depends on three parameters b, f , and N , the two-dimensional

curves here are for illustration purposes only. Note that O(( f
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b
log2 N + log2 N).

proved that the CC is lower bounded by Ω( f

b2 log b
).2 This lower

bound indicates that the CC might be able to decrease polynomially
with the TC (i.e., with b). There have been only a few upper bound-
s on the problem. Well-known tree-aggregation protocols [12] for
computing SUM cannot tolerate failures. A brute-force SUM proto-
col, which has every node flood its id together with its value to the
whole network, can tolerate arbitrary number of failures, while in-
curring O(1) TC and O(N logN) CC. In comparison, under such
TC, the current lower bound of Ω( f

b2 log b
) on CC is only Ω(f).

There is also a folklore SUM protocol that tolerates failures by re-
peatedly invoking the naive tree-aggregation protocol until it expe-
riences a failure-free run. This incurs O(f) TC and O(f logN)
CC. Under such TC, the current lower bound of Ω( f

b2 log b
) on CC

is Ω( 1

f log f
). To summarize, the two fault-tolerant SUM protocols

here both have fixed TC, and preclude the possibility of trading off
TC with CC. Furthermore, even under that fixed TC, their CC is
still a polynomial factor away from the lower bound (Figure 1).

Researchers have also studied the SUM problem when bounded
errors are allowed in the final answer (e.g., [1, 4, 5, 8, 13, 14]), in
either fault-tolerant or failure-free setting. Those results and their
approaches are less related to this work. Nevertheless even there,
in the fault-tolerant setting, a polynomial gap exists between the
upper bound and lower bound as long as b ≥ 2 [4].

For protocols that can compute general CAAFs, obviously ex-
isting lower bounds on SUM protocols directly carry over, since
those protocols need to at least be able to compute SUM. It hap-
pens that the two existing (zero-error) SUM upper bound protocols
work, without modification, for general CAAFs as well. We are not
aware of any better lower/upper bounds on zero-error protocols for
general CAAFs.

There have also been research efforts (e.g., [6,9,16,17]) on com-
puting aggregate functions (such as SELECTION) that are not CAAF-
s. But none of these efforts consider failures. Finally, some re-
searchers (e.g., [10]) have studied the token dissemination problem
in dynamic networks. In comparison, this paper considers i) the
aggregation problem where the “tokens” can be aggregated, and ii)
node failures in static networks. With these differences, their tech-
niques/results have limited relevance to our setting.

Our results. This work reduces the gap between the upper and
lower bound for the above SUM problem from polynomial to poly-

log, over the entire time complexity spectrum. Improvements over
both the existing upper bound and lower bound turn out to be nec-
essary to achieve this significant reduction. Specifically, we present
a novel upper bound of O( f

b
log2 N + log2 N) as well as a novel

2The model in [4] slightly differs from the model in this paper. But
the results there can still be trivially adapted to this paper. Such
trivial adaptation will be rigorously described in the full version of
this paper [18].

lower bound of Ω( f

b log b
+ logN

log b
), for the CC of SUM protocol-

s whose TC is within b flooding rounds (Figure 1)3. Note that our
upper bound is at most log2 N log b factor away from our improved
lower bound.

Our upper bound protocol also, for the first time, allows a tun-
able tradeoff between CC and TC where the CC can decrease poly-
nomially with the TC. Using the standard doubling trick, the full
version of this paper [18] further shows that the protocol can be
easily extended to settings with unknown f , while only increasing
the CC by a logN factor. Doing so will achieve a property sim-
ilar to early termination — namely, the overhead of the protocol
will automatically vary depending on the actual number of failures
occurred during its execution.

Finally, same as some existing SUM protocols, our SUM proto-
col and its guarantees trivially generalizes to arbitrary CAAFs as
well. This gives an O( f

b
log2 N + log2 N) upper bound on gener-

al CAAFs. By our lower bound, within polylog factors, this upper
bound is the best that one can hope for.

Our main techniques. Our upper bound is non-trivial and involves
the synthesis of two novel building blocks:

• We first propose a novel deterministic aggregation protocol
AGG, parameterized by t ≥ 0, with TC of O(1) flooding
rounds and CC of O((t + 1) logN) bits. If the actual num-
ber of edge failures is no more than t, AGG always generates
a correct result. Note that setting t = f directly gives us
O(1) TC and O(f logN) CC, which is already much bet-
ter than the two existing SUM protocols mentioned earlier.
The key technique in AGG is to take speculative actions to
save time, instead of waiting for failures to be detected and
then falling back to a second plan. We further carefully de-
sign a distributed mechanism to determine which speculative
actions’ effects should be retained or discarded, while using
only local information.

• If the number of edge failures exceeds t, AGG may unknow-

ingly generates a wrong result. We hence design a novel
deterministic distributed verification protocol VERI, which
aims to tell whether AGG’s result is correct. VERI is also pa-
rameterized by t and incurs O(1) TC and O((t + 1) logN)
CC. The key technique in VERI is that we allow it to have
one-sided error. Specifically, we allow VERI to sometimes

3We have actually proved an upper bound of

O(( f
b
logN + logN) ·min(b, f, logN)). But for clarity,

this paper uses the simpler form of O( f
b
log2 N + log2 N) in most

places. The main novelty in our lower bound is the f

b log b
term.

The logN

log b
term comes, in a relatively straightforward way, from

applying the results in [7] to the output domain size of Ω(N).



N number of nodes in the system b SUM protocol’s TC, in terms of flooding rounds

n size of two-party problems d diameter of the topology G
f upper bound on the number of edge failures c diameter of the topology never exceeds cd due to failures

t parameter in AGG and VERI l a node’s level in the aggregation tree

Table 1: Key notations.

err when AGG does not err. VERI also employs a similar dis-
tributed mechanism to the one in AGG to avoid the need for
global information in its execution.

Our upper bound protocol is eventually obtained by executing mul-
tiple pairs of AGG and VERI in a proper way.

Our new lower bound builds upon our previous lower bound [4],
which was obtained via information cost arguments. To obtain this
new result, we first introduce a new two-party problem EQUALI-
TYCP, and then leverage a strong result on the Sperner capacity of
general directed graphs [3] (instead of relying on information cost
arguments). The possibility of leveraging the Sperner capacity of
the cyclic q-gon [2] was hinted in a single footnote, but without
any further details or any final result, in our previous paper [4].
This paper not only presents the specific lower bound obtained via
that approach, but also slightly strengthens that approach — The
approach in this paper yields a slightly better constant (specifically
in Lemma 11) than the originally hinted approach.

2. MODEL AND DEFINITIONS

Commutative and associative aggregate functions. A binary op-
erator ⋄ is commutative and associative if for all operands o1, o2,
and o3, we have o1⋄o2 = o2⋄o1 and (o1⋄o2)⋄o3 = o1⋄(o2⋄o3). A
function F is called a commutative and associative aggregate func-

tion, or CAAF in short, if i) there exists a commutative and associa-
tive binary operator ⋄ such that F(o1, o2, ..., oN ) = o1⋄o2⋄...⋄oN ,
and ii) the domain size of oi1 ⋄ oi2 ⋄ ... ⋄ oik is at most polynomial
with respect to N , for all 1 ≤ k ≤ N where i1 through ik are
arbitrary distinct indices. The second requirement stems from the
“aggregate” nature of the function — “aggregating” oi1 through
oik should generate a concise output. CAAF covers a wide range
of common aggregate functions such as SUM and COUNT. Many
other aggregate functions such as AVERAGE, MEDIAN, and SE-
LECTION are related to CAAFs. For example, it is known [16] that
MEDIAN and SELECTION can be solved using COUNT by doing a
binary search over the output domain.

Our novel upper bound applies to all CAAFs. But for the sake
of clarity, the rest of the paper will prove the upper bound only for
SUM. This allows us to conveniently use natural phrases such as
“the sum of these 4 inputs”. None of our arguments there rely on
the specifics of the addition operator. Hence generalizing to other
CAAFs is entirely trivial – one only needs to replace the addition
operator with ⋄.

Network model. There are N nodes in the system, where N is
known by the protocol. (See Table 1 for notation summary.) Each
node has a unique id of logN bits (log in this paper is always base
2). Node i has an integer input oi, whose domain size is polynomi-
al of N . The goal is for a special root node, whose id is known by
all nodes, to learn the sum of all these inputs. The topology among
the N nodes is modeled as an undirected graph G. A node knows
neither G nor its neighbors in G. We impose no restriction on G
except that it needs to be connected. We consider a synchronous
timing model where protocols proceed in rounds. In each round,
each node first receives all the messages sent by its neighbors in
G in the previous round. Next it does some local computation and
then may choose to send (i.e., locally broadcast) a single message,

which will be received by all its neighbors in G in the next round.
To make our results as strong as possible, we assume that all n-
odes start execution at round 1 for our lower bound. For our upper
bound, we assume that the root initiates the protocol at round 1.
Upon receiving the first message, a non-root node gets "activated"
and joins the execution.

Failure model. All nodes in the system, except the root, may ex-
perience crash failures. A node that is disconnected from the root
(i.e., has no path to the root) due to the failures of other nodes is
also considered as failed. We consider only oblivious failure adver-
saries that adversarially decide beforehand (i.e., before the protocol
flips any coins) which nodes fail at what time. For convenience, we
say that an edge fails, iff at least one of its end points experiences a
crash failure. We use f to denote an upper bound on the total num-
ber of edge failures, ranging from 1 to Θ(N).4 We assume that f
is known to the protocol.5

Let s2 be the set of the inputs of all nodes, and s1 be the set
of the inputs of all nodes that have not failed by the end of the
protocol’s execution. Following [1, 4], we say that a sum result
is correct if it is in the interval of [

∑
o∈s1

o,
∑

o∈s2
o]. We nat-

urally generalize such result correctness definition to any CAAF:
Here the result is correct if it is between mins1⊆s⊆s2(⋄o∈so) and
maxs1⊆s⊆s2(⋄o∈so).

6 We only consider randomized protocols for
computing SUM (or general CAAFs) that always generate a correct
result.

Time complexity and communication complexity. Most of the
definitions here directly follow from [4]. To make our results as
strong as possible, our upper bound only uses private coins, while
our lower bound allows public coins.

With respect to a topology G, the time complexity (TC) of a SUM

protocol describes the number of rounds needed for it to terminate,
under the worst-case inputs of nodes in G, the worst-case failure
adversary (parameterized by f ), and the worst-case coin flips. The
shape of G has a large impact on TC. Hence similar to [4], we will
always describe TC in terms of flooding rounds. Here each flooding
round consists of d rounds, where d is G’s diameter and is assumed
to be known to the protocol. We use b to denote the TC in terms of
flooding rounds (i.e., the total number of rounds would be bd).

At any given point of time between round 1 and round bd, let
H be the same as G except that all the failed nodes and their in-
cidental edges have been deleted. H’s diameter may be larger or
smaller than G. For a flooding round to remain meaningful in such
a context, we assume that the failures do not substantially increase
the network’s diameter. Specifically, we assume that the diameter
of H is no larger than c · d, where c is some constant known to the
protocol. As part of our future work, we are currently working on

4Certain graphs may have more than Θ(N) edges. But we focus
on f between 1 and Θ(N) which applies to all graphs.
5The full version of this paper [18] explains how to remove this
assumption using a simple doubling trick.
6Alternatively, one could define a result to be correct iff the result
equals ⋄o∈so for some s where s1 ⊆ s ⊆ s2. All our theorems and
proofs hold, without any modification, under such an alternative
definition.



Algorithm 1 Our upper bound protocol. Here b, c, and f are input parameters with b ≥ 21c.

1: x = ⌊ b−2c
19c

⌋; the root uses private coins to select logN integers, with replacement, from the range of [1, x];
let the selected integers be y1, y2, ..., ylogN , in non-decreasing order;

2: for all integer i ∈ [1, logN ] where (i = 1 or yi 6= yi−1) do

3: at the beginning of flooding round ((yi − 1)× 19c+ 1), root initiates a pair of AGG and VERI executions, both with t = ⌊ 2f

x
⌋;

// this pair of executions will end by flooding round (yi × 19c);
4: if (AGG does not abort and VERI outputs true) then output AGG’s result and terminate;
5: end for

6: at the beginning of the last 2c flooding rounds, root initiates the brute-force SUM protocol, outputs its result, and terminates;

a new lower bound proof that aims to show the necessity of this
requirement, which is however beyond the scope of this paper.

With respect to G, we define a node i’s communication com-

plexity (denoted as ai) when running a SUM protocol to be the to-
tal number of bits it sends (i.e., locally broadcasts) when running
the protocol, under the worst-case inputs of nodes in G, the worst-
case failure adversary (parameterized by f ), and the average-case
coin flips. A SUM protocol’s communication complexity (CC) is
the maximum ai across all i’s. Note that here we define CC over
the bottleneck node instead of over the average node, which is ap-
propriate in our distributed setting with a general topology and con-
sistent with prior work [16].

Let aG be the smallest CC under the topology G with at most
f edge failures, across all SUM protocols whose TC is at most b
flooding rounds. We define FT0(SUMN , f, b) to be the maximum
aG across all G where G is connected and has exactly N nodes.
Here "FT" stands for "fault-tolerant" and the subscript "0" stands
for "zero-error".

Communication complexity of two-party problems. In Section 7,
we will need to reason about the communication complexity of cer-
tain two-party problems. In those problems, Alice and Bob have
inputs X and Y respectively, and they aim to compute a certain
function Π(X,Y ). We only require Alice to learn the final result.
We use n to denote the size of these two-party problems (with N
being reserved to denote the number of nodes in G). Unless other-
wise noted, by a protocol for solving Π, we mean a public coin Las
Vegas protocol. We define the communication complexity (CC) of
Π (denoted as R0(Π)) to be smallest expected (with expectation
taken over the coin flips) number of bits sent by Alice and Bob
combined, across all protocols for solving Π.

3. SUMMARY OF RESULTS
The following two theorems summarize our main results:

THEOREM 1. For any b ≥ 21c and 1 ≤ f ≤ N , we have:

FT0(SUMN , f, b) = O((
f

b
logN + logN) ·min(b, f, logN))

= O(
f

b
log2 N + log2 N).

THEOREM 2. For any b ≥ 1 and 1 ≤ f ≤ N , we have:

FT0(SUMN , f, b) = Ω(
f

b log b
+

logN

log b
).

The rest of the paper proves the two theorems above. Here we
give an overview of the structure of our upper bound protocol (Al-
gorithm 1) that is used to prove Theorem 1. Given total b flooding
rounds as a constraint on TC, we divide the first b − 2c flood-
ing rounds into x = Θ(b) intervals, with each interval having
19c = Θ(1) flooding rounds. Thanks to the small TC of AGG

and VERI, running AGG followed by VERI will take at most one

interval. If the edge failures were evenly distributed across all the
intervals, then each interval would have at most f

x
edge failures. In

such a case, running AGG parameterized with t = f

x
in any single

interval would already produce a correct result, while incurring a
desirable CC of O(( f

b
+1) logN). Here recall that t is the number

of edge failures that AGG intends to tolerate, and the CC of AGG is
O((t+ 1) logN).

Since the edge failures are not always evenly distributed, we
need a more complex design. Specifically, the root uses private
coins to select logN intervals uniformly randomly. In each select-
ed interval, the root initiates a pair of AGG and VERI executions,
both with t = ⌊ 2f

x
⌋. One can easily see that with probability at

least 1

2
, a random interval has no more than t edge failures. Hence

with probability at least 1 − 1

N
, the number of edge failures in

some selected interval is small enough for AGG to tolerate. But if
there have been more than t edge failures in an interval, then AGG

may unknowingly produce a wrong result. A difficulty here is that
we cannot easily determine the number of edge failures that have
occurred in a given interval, since it involves counting while toler-
ating potential additional failures during counting. Hence instead
of checking the number of edge failures in a given interval, our
protocol invokes VERI after AGG, and then checks the condition at
Line 4 of Algorithm 1. If the condition is met, the protocol outputs
AGG’s result and terminates. By Theorem 5 and 7 later, such a re-
sult must be correct. Furthermore by Theorem 4 and 7 later, if the
number of edge failures in an interval is no more than t, then the
condition at Line 4 is guaranteed to be met.

Having given an intuitive overview on the protocol’s correctness,
we move on to look at its CC. Since there can be at most x inter-
vals in total and f intervals with failures, AGG and VERI will be
executed at most min(x, f + 1, logN) times. The CC incurred by
each AGG and VERI invocation is O((t + 1) logN) bits, result-
ing in total O(( f

b
logN +logN) ·min(b, f, logN)) bits in all the

intervals. Next, the probability of reaching Line 6 is at most 1

N
.

As explained in Section 1, the CC of the brute-force SUM proto-
col is O(N logN). Hence the CC incurred at Line 6, over average
coin-flips, is O(logN).

Next in Section 4 and 5, we focus on AGG and VERI, and prove
their properties. Section 6 then provides the full proof for Theo-
rem 1. Theorem 2 will be discussed in Section 7.

4. THE AGG PROTOCOL

Overview. Algorithm 2 at the end of this paper provides the pseudo-
code for AGG. AGG has an input parameter t (t ≥ 0), which is the
number of edge failures that it intends to tolerate. When running
AGG, a node will flood7 a special symbol to abort AGG once it has
sent (11t+ 14)(logN + 5) bits. Such a mechanism will never be

7Throughout this paper, a node floods a certain message by first
sending the message to its neighbors, and then the other nodes sim-
ply forward that message upon first receiving it.



triggered (as we prove later) if the actual number of edge failures
is no larger than t. If the actual number of edge failures exceeds
t, aborting before the CC gets too large enables AGG to properly
bound its CC.

AGG first constructs a spanning tree and does a standard tree-
based aggregation, where each non-root node sends its partial sum

upstream (i.e., towards the root) along the tree. The partial sum of
a node (either non-root or root) is the sum of the node’s own input
and all the partial sums received from its children. A key impact
of failures is that they may block and prevent certain partial sum-
s from propagating upstream. If a partial sum from a node B is
blocked, a natural solution is to have B flood its partial sum, since
flooding has the maximum resilience against failures. If the flood-
ing does reach the root, the root can then incorporate B’s partial
sum to the final result. A second thought, however, shows that even
with flooding, B’s partial sum may still fail to reach the root if B’s
entire neighborhood fails immediately after B initiates the flood-
ing. When this happens, the system needs to fall back and flood
the partial sums of B’s children, or B’s descendants if B’s children
have also failed.

The key challenge here is that we need to do this within O(1)
flooding rounds. We cannot afford to wait to see whether B’s par-
tial sums get successfully flooded, and then fall back to flooding
some other partial sums if things did not go well. To save time,
we will have to do floodings speculatively, before knowing which
floodings will be needed. This in turn leads to a second challenge:
There will be overlap (or duplicates) in the partial sums received by
the root (e.g., partial sums from both B and some of B’s descen-
dants). We need a careful mechanism to avoid double counting,
which is non-trivial, especially without global knowledge about the
tree topology.

The following sections present the details of AGG. At a high-
level, AGG has 3 sequential phases: i) spanning tree construc-
tion and tree-aggregation (Section 4.1), ii) identifying potential-
ly blocked partial sums and (speculatively) flooding them (Sec-
tion 4.2), and iii) using a distributed mechanism based on witnesses

to avoid double counting (Section 4.3). To facilitate understanding,
the discussion here will be intuitive — we leave the formal proofs
to the full version of this paper [18].

4.1 Tree Construction/Aggregation and Some
Key Concepts

This section first describes the tree construction/aggregation phase
in AGG, which is largely standard. Next we formalize a number of
new concepts that are key for our later design.

Tree construction and aggregation. To construct the tree, the root
first sends a tree_construct message, together with a hop count. A
node B waits for the first tree_construct message it receives. Note
that this message easily enables B to figure out the current round,
and synchronize its round counter with the root. Let A denote the
sender of that message. B sends an ack message indicating to A
that B is A’s child, and then sends a tree_construct message itself to
continue constructing the tree. B’s failing before sending ack will
be equivalent to B not being present in the network. The failure
of B after sending ack will be dealt with later in AGG. From now
on in this paper, the notions of “parent”, “child”, “ancestor”, and
“descendant” will always be with respect to this tree.

Next AGG does standard tree-aggregation. Consider a given n-
ode B, and let l be its level (i.e., its distance from the root). Node
B acts in the (cd− l+1)th round during tree-aggregation, by sum-
ming up its own input with all the partial sums received from its
children so far, and then sending the new partial sum to B’s parent.
Note that B does not necessarily wait for a message from each of

root (also local root)

visible
critical
failurefragments

invisible
critical
failure

local root

Figure 2: Example aggregation tree and fragments.

its children, since some may have failed. Each partial sum thus is
the sum of inputs from a subset of the nodes, and we also say that
the partial sum includes those inputs.

Some key concepts. We say that a node B at level l experiences a
critical failure if it fails after sending ack during tree construction
and before taking its action in the (cd − l + 1)th round during
tree-aggregation. Such a critical failure can be easily detected by
B’s parent A (if A is alive) during that round, when A does not
receive the scheduled message from B. We want critical failure to
become global knowledge when possible. To do so, A will flood a
message claiming that B experiences a critical failure. We say that
a flooding is successful if the flooded message eventually reaches
the root. One can easily see that a successful flooding must reach all
live nodes within cd rounds. We say that a critical failure is visible

if it is eventually seen by the root. Otherwise it is invisible. To help
understanding, the next will first assume that all critical failures are
visible, and then remove that assumption in Section 4.4.

Imagine that we remove all those edges connecting visible crit-
ical failures with their corresponding parents. Doing so partitions
the aggregation tree into many smaller trees which we call frag-

ments (Figure 2). A node’s local ancestors (descendants) are all its
ancestors (descendants) within the node’s fragment. Each fragment
also has its own local root. A fragment has a clean property: The
partial sum of a node never includes inputs from nodes outside of
its fragment, since those inputs have been blocked by the visible
critical failures. Hence we can restrict most of our discussions to
within a fragment.

A node A’s partial sum is a representative of a node B iff i) A is
either B itself or A is B’s local ancestor, and ii) the tree path from
A to B (excluding A and B) contains no invisible critical failures.
Intuitively, B’s representative must include B’s input. A represen-

tative set is a set of partial sums with the following property: For
any node B, if B is alive at (has failed by) the end of the VERI

execution that immediately follows AGG, then a representative set
contains exactly one (at most one) representative of B. Intuitively,
if we obtain a representative set and sum up all the partial sums
there, we get a correct sum result.

4.2 Identify and Flood Potentially Blocked
Partial Sums

With the above notion of representative set, our goal in the re-
mainder of AGG is for the root to obtain a representative set. If
there were no critical failures at all, then the root’s partial sum by
itself is already a representative set. With critical failures, a rep-
resentative set will contain not only the root’s partial sum but al-
so those blocked partial sums. Consider the example in Figure 3.
Here, the root’s partial sum, A’s partial sum, and F ’s partial sum
form a representative set. Imagine that we have A and F flood their
partial sums, so that the root can get those and add those to the fi-
nal result. However, A, B, and C all fail right before A intends
to flood. Hence A’s partial sum is lost and we now need D and E
to flood their partial sums, which will form a second representative
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Figure 3: Why speculative flooding is needed.

set together with the root’s and F ’s partial sum. Ideally, D and E
should do so after they know that A’s flooding has failed. Unfor-
tunately, it can take one flooding round before such determination
can be made, since A’s flooding could traverse a long non-tree path
before reaching E (Figure 3). Similarly, if E’s flooding also fail-
s, then E’s local descendants (if any) may need to wait one more
flooding round before taking action.

This example shows that to have small TC, nodes need to flood
speculatively, before knowing that the flooding is needed. AGG

uses the following elegant design to decide which node initiates
flooding at what time: The root always floods its partial sum in
the first round of the partial sum flooding phase. A non-root node
B at level l floods its partial sum in the (l + 1)th round of the
phase, iff in that round it does not receive any flooding message
(containing any partial sums) from its parent A. Here A may or
may not be the initiator of the corresponding flooding. This design
has two important features. First, the design never does excessive
floodings: If A has not failed by the (l+1)th round, B must receive
some message from A and will not initiate its own flooding. This
implies that the total number of floodings is linear with the number
of edge failures. Second, the full version of this paper [18] proves
that the design always floods a superset of those partial sums that
need to be flooded. Namely, if B did not flood its own partial sum,
then B must have forwarded a “better” partial sum that includes all
those inputs included by B’s partial sum.

4.3 Avoid Double Counting While Using Only
Limited Information

The root potentially receives many flooded partial sums, and it
needs to pick a representative set to avoid double counting. The
partial sums seen by the root can be classified into three mutually-
exclusive categories: The partial sum of a node B is dominated if
the root also sees A’s partial sum where A is B’s local ancestor. A
non-dominated partial sum of a node B is compulsory if either B
or at least one of B’s local descendants is still alive at the end of
the VERI execution that immediately follows AGG, otherwise the
non-dominated partial sum is called optional. The full version of
this paper [18] proves that the union of all compulsory partial sums
and any subset of optional partial sums forms a representative set.

Without knowledge of the global tree topology for labeling each
partial sum, AGG maintains distributed topology information to do
so. Specifically, when initially constructing the tree, AGG lets each
node learn the ids of its nearest 2t ancestors. Interestingly, such
limited information is already sufficient for AGG to select a repre-
sentative set, in the following way via witnesses.

Having witnesses label partial sums. A node B’s witness is either
B itself or some local descendant of B whose distance to B is at
most t. Let the local root of B’s fragment be X and consider B’s
witness C. First, if C sees X among its 2t ancestors, then its 2t
ancestors must contain all of B’s local ancestors. Note that par-
tial sums seen by the root must be seen by all live nodes as well.

Hence if C sees a partial sum from some local ancestor of B’s, C
knows that B’s partial sum is dominated and will thus flood its de-
termination 〈dominated, B〉 to inform the root. Otherwise C floods
its determination 〈compulsory‖optional, B〉. When B has multiple
witnesses, such determination may be flooded multiple times. This
does not increase CC since all the determinations are identical, and
a node only needs to participate in one such flooding.

Second, if C does not see X among its 2t ancestors, then there
must be at least 2t − t = t nodes on the tree path from B to X
(excluding B and X). If the number of edge failures is no more
than t, then there must be at least one live node on that tree path
between B and X . That live node must have successfully flooded
a partial sum of either itself or one of its local ancestors. This
implies that B’s partial sum must be dominated. C will thus flood
the determination 〈dominated, B〉. If the number of edge failures
exceeds t, such determination might be wrong, which will be dealt
with later by VERI.

Finally, it is possible for all of B’s witnesses to fail (or for their
floodings to fail to reach the root). In such a case, B’s farthest local
descendant must be no more than t hops away from B, since oth-
erwise the number of edge failures will be more than t. (Again, the
case where the number of edge failures exceeds t will be dealt with
by VERI.) This implies that B and its local descendants must have
all failed, since they are all B’s witnesses. Hence if the root does
not receive any determination on B’s partial sum, the root knows
that the partial sum cannot be compulsory, and must be either dom-
inated or optional.

Take all three cases into account, to form a representative set,
the root simply includes in the set a partial sum from a node B iff
〈compulsory‖optional, B〉 has been received.

4.4 Complexity and Correctness of AGG

We have been assuming no invisible critical failures. The full
version of this paper [18] proves that all the local ancestors of an
invisible critical failure must have failed by the end of the tree-
aggregation phase. Leveraging such observation, there we show
that invisible critical failures does not affect any of our arguments
earlier.

The following two theorems prove the complexity and correct-
ness guarantees of AGG:

THEOREM 3. The time complexity and communication complex-

ity of AGG are no more than 11c flooding rounds and O((t +
1) logN) bits, respectively.

Proof: The pseudo-code in Algorithm 2 obviously shows that AGG

terminates within 7cd + 4 rounds, which are at most 11c flooding
rounds. For communication complexity, recall that in AGG, a node
will flood a special symbol to abort AGG once it has sent (11t +
14)(logN + 5) bits. 2

THEOREM 4. If there are at most t edge failures during the ex-

ecution of AGG, then AGG never aborts and always outputs a cor-

rect result.

Proof: See the full version of this paper [18]. 2

5. THE VERI PROTOCOL
We again focus on intuitions here, and leave the formal proofs to

the full version of this paper [18].

Overview. Algorithm 3 at the end of this paper provides the pseudo-
code for VERI. VERI aims to determine whether AGG’s output is
correct. The natural approach is for VERI to determine whether



scenario AGG VERI

1. no more than t edge failures (implying no LFC) output correct result output true

2. more than t edge failures and no LFC output correct result or abort no guarantee

3. more than t edge failures and exists LFC no guarantee output false

Table 2: Guarantees of AGG and VERI under different scenarios.

there have been more than t edge failures. This turns out to be diffi-
cult since it involves counting while tolerating potential additional
failures during counting. Instead, our approach is to i) identify a
weaker requirement that is nevertheless sufficient for AGG not to
err, and ii) allow VERI to sometimes err when AGG does not err.
Such a weaker requirement on VERI eventually makes an efficient
design possible.

Specifically, with respect to a pair of AGG and VERI execution
(both with parameter t), a long failure chain (LFC) is a chain of t
nodes A1, A2, ..., At within the same fragment such that i) Ai is
the parent of Ai+1 (1 ≤ i ≤ t − 1), ii) all of them have failed
by the end of the AGG execution, and iii) At has at least one local
descendant that is alive at the end of the VERI execution. Here the
notions of fragment, parent, and etc are all defined based on the
AGG execution. A1 and At are called the head and tail of the LFC,
respectively. Note that having no more than t edge failures implies
no LFC, while the reverse is not true. The following theorem claims
that regardless of the number of edge failures, AGG will not err as
long as there is no LFC.

THEOREM 5. If there is no LFC, then AGG either outputs a

correct result or aborts.

Proof: See the full version of this paper [18]. 2
The theorem implies that VERI may safely err in the 2nd scenario

in Table 2, where there are more than t edge failures but no LFC.
Table 2 also summarizes the guarantees of AGG and VERI in all
other possible scenarios.

5.1 Design of The VERI Protocol
By the above discussion, we design VERI by focusing on de-

tecting LFCs. Similar to AGG, in VERI once a node has sent
(5t+7)(3 logN +10) bits, it will flood a special symbol to cause
VERI to output false.

Strawman design assuming no additional failures. To help un-
derstanding, we first describe a strawman design while assuming
that there are no additional failures occurring during VERI’s exe-
cution. A simple way to detect LFCs is for each node to ping its
parent and children on the (aggregation) tree, and to flood the in-
formation about detected failures to all other nodes. Those failed

parents and failed children are potentially tails and heads of LFC-
s. Without knowing the global tree topology, we will leverage the
same witnesses as in Section 4.3 to determine whether they are in-
deed tails and heads of LFCs. Consider a failed parent B and a
witness C of B’s. Recall that B’s witness is either B itself or some
local descendant of B whose distance to B is at most t. C finds,
among its 2t ancestors, B’s nearest ancestor A such that A is either
a failed child or a fragment boundary. One can easily see that B is
the tail of an LFC iff A is at least t − 1 hops away from B. Thus
C can precisely determine whether B is the tail of an LFC, and can
flood such determination to inform the root.

Failures of the witnesses. We now move on to the actual VERI

design, by explaining how different kinds of failures during VER-
I’s execution are addressed. We first consider the failures of the
witnesses: In the earlier example, it is possible for all of B’s wit-
nesses to fail, so that no node can make a proper determination. We

overcome this key challenge precisely by allowing VERI to err, as
explained below.

First, we need AGG to maintain some additional information:
During AGG’s aggregation phase, we have each node learn the
maximum level among its local descendants. This can be easily
done by having nodes propagate upstream, along with the partial
sum, the maximum level it has seen among its local descendants.
Now in VERI, imagine that we can infer the distance x from B to
B’s farthest local descendants.8 If the root does not receive any de-
termination on whether B is the tail of some LFC (implying that all
of B’s witnesses have failed), the root applies the following rule:
If x ≤ t, it claims that B is not the tail of an LFC. Otherwise it
claims that B is the tail of an LFC, and outputs false.

To see when the above rule gives a correct/wrong determination,
we separately consider two cases. First, x ≤ t implies that all of
B’s local descendants are B’s witnesses. They must have all failed
since all witnesses have failed. In turn, by definition B must not
be the tail of an LFC. Second, x > t implies that B has at least
t witnesses and all of them have failed. We still cannot determine
whether there exists an LFC. But since VERI is allowed to make
one-sided error when there are more than t edge failures (i.e., the
2nd and 3rd scenario in Table 2), VERI can simply output false in
such a case.

When to detect failures. We move on to consider additional fail-
ures during the detection of failed parents/children. Those fail-
ures may prevent the floodings of information about failed par-
ents/children from reaching the root. This is similar to flooded par-
tial sums getting lost in Section 4.2 and Figure 3. To deal with this,
VERI uses the following design similar to the one in AGG: The
root floods a single bit. If a node at level l does not receive this bit
or any message (claiming the detection of failed parents) from its
own parent within l + 1 rounds, it floods a message claiming that
its own parent is a failed parent. If B is the tail of an LFC, such de-
sign guarantees (see the full version of this paper [18] for a proof)
to inform the root that either B or some of B’s local descendant is
a failed parent.

Detection of failed children is similarly done by propagating a
single bit upstream along all the tree edges. Finally, VERI always
detects failed parents first and then detects failed children. This is
necessary for correctness, if additional failures may occur during
VERI. We leave the details on how this ordering is leveraged in our
proofs to the full version of this paper [18].

5.2 Complexity and Correctness of VERI

THEOREM 6. The time complexity and communication complex-

ity of VERI are no more than 8c flooding rounds and O((t+1) logN)
bits, respectively.

Proof: The pseudo-code in Algorithm 3 clearly shows that VER-
I always terminates within 5cd + 3 rounds, which are at most 8c

8Since B may have failed early on, we may not be able to actually
get x. Nevertheless, one can achieve a similar functionality by us-
ing the maximum level information from B’s descendants. See the
full version of this paper [18] for details.



flooding rounds. For communication complexity, recall that in VER-
I, a node will flood a special symbol to terminate VERI once it has
sent over (5t+ 7)(10 + 3 logN) bits. 2

THEOREM 7. Consider a pair of AGG and VERI execution,

both parameterized by t. If there exists an LFC, then VERI must

output false. If there are at most t edge failures, then VERI must

output true.

Proof: See the full version of this paper [18].2

6. PROOF FOR THEOREM 1

THEOREM 1 (RESTATED). For any b ≥ 21c and 1 ≤ f ≤
N , we have:

FT0(SUMN , f, b) = O((
f

b
logN + logN) ·min(b, f, logN))

= O(
f

b
log2 N + log2 N).

Proof: We prove the theorem by constructing an upper bound pro-
tocol as in Algorithm 1. The following proves the time complexity,
communication complexity, and correctness of Algorithm 1.

For TC, Theorem 3 and 6 tell us that a pair of AGG and VERI

executions take no more than 19c flooding rounds, and hence Line
3 of Algorithm 1 can complete in time. At Line 6, the root will flood
a single bit to all nodes to initiate a brute-force protocol, taking c
flooding rounds. Upon receiving this bit, a node floods its id and
its input to all other nodes. Within c flooding rounds, the root is
guaranteed to receive all flooded messages initiated by nodes that
are still alive at the end of the protocol. The root then adds up the
input for each id, and outputs the sum. Hence Line 6 takes at most
2c flooding rounds. Putting it all together, the time complexity of
Algorithm 1 is no more than b flooding rounds.

For CC, by Theorem 4 and 7, if there are no more than t = ⌊ 2f

x
⌋

edge failures within an interval, then AGG will not abort and VERI

will output true. This will then allow Algorithm 1 to terminate
immediately after that interval at Line 4. Thus AGG and VERI

will be executed at most min(x, f + 1, logN) times at Line 3 of
Algorithm 1, since there are (i) total at most x intervals, (ii) at most
f edge failures and hence at most f +1 intervals with failures, and
(iii) at most logN intervals selected. By Theorem 3 and 6, the CC
of AGG and VERI are both O((t + 1) logN). Hence the total CC
incurred at Line 3 is O((t+ 1) ·min(b, f, logN) · logN).

Next consider the CC incurred at Line 6. Since there are at most
f edge failures in all the x intervals, with probability at least 1

2
, a u-

niformly random interval contains no more than ⌊ 2f

x
⌋ edge failures.

Hence with probability at least 1

2
, by Theorem 4 and 7, AGG will

not abort and VERI will output true, causing Algorithm 1 to ter-
minate in that interval. The probability of reaching Line 6 is thus at
most 1/2logN = 1/N . The brute-force protocol at Line 6 itself has
a CC of O(N logN), implying that the CC (over average-case coin
flips) incurred at Line 6 is at most O( 1

N
·N logN) = O(logN).

Putting everything together, the CC of Algorithm 1 is:

O((t+ 1) ·min(b, f, logN) · logN) +O(logN)

= O((
f

b
logN + logN) ·min(b, f, logN))

= O(
f

b
log2 N + log2 N).

Finally, we prove that Algorithm 1 always produces a correct
sum result. If it outputs a sum at Line 6 from the brute-force pro-
tocol, the result is trivially correct. If it outputs the result generated

by AGG, then we know that AGG did not abort and VERI outputted
true. By Theorem 7, we know that there must have been no LFC.
In turn by Theorem 5, we know that the result generated by AGG

(if it did not abort) must be correct. 2

7. A NEW Ω( f

b log b
+ logN

log b
) LOWER BOUND

ON THE CC OF SUM(THEOREM 2)

Review of previous lower bound. Our previous work [4] obtained
a lower bound on SUM’s CC by reducing a two-party communica-
tion complexity problem UNIONSIZECP to SUM. In
UNIONSIZECPn,q , Alice has a string X of length n as her input.
Each character in the string is an integer in [0, q − 1] where q ≥ 2.
Bob similarly has a string Y as his input. X and Y satisfy the cycle

promise,9 in the sense that for all 1 ≤ i ≤ n, either Yi = Xi or
Yi = (Xi + 1) mod q. Here Xi and Yi are the ith character of X
and Y respectively. Alice and Bob aim to determine the quantity
|{i|Xi 6= 0 or Yi 6= 0}|. Our previous work [4] proved a lower
bound of Ω( n

q2
)− O(log n) on the CC of UNIONSIZECPn,q , and

then obtained a lower bound on SUM via a reduction from UNION-
SIZECP. Trivially adapting that lower bound to the model in this
paper gives us a lower bound of Ω( f

b2 log b
) in this paper’s setting.

Our new lower bound. This section presents a new lower bound
of Ω( f

b log b
+ logN

log b
) for SUM, and this factor-b improvement is nec-

essary to bring down the gap between the upper and lower bound to
polylog. The key to achieving this improvement is a stronger lower
bound of Ω(n

q
) − O(log n) on UNIONSIZECP. This lower bound

on UNIONSIZECP is almost tight, given the existing O(n
q
log n+

log q) upper bound [4].
To obtain this lower bound on UNIONSIZECP, we introduce a

new two-party problem called EQUALITYCPn,q , which is the same
as UNIONSIZECPn,q except that in EQUALITYCPn,q , Alice and
Bob aim to determine whether X equals Y . We are interested
in EQUALITYCPn,q because its rectangular properties are easier
to study. The following theorem establishes a reduction from E-
QUALITYCP to UNIONSIZECP, based on the following observa-
tion: Knowing the result of UNIONSIZECP, Alice and Bob can
infer whether there exists j such that Xj = q − 1 and Yj = 0.
If there exists such j, then X 6= Y and we are done. Otherwise
for 1 ≤ i ≤ n, we must have Yi = Xi or Yi = Xi + 1 (note
that there is no longer “mod q”). This implies that X = Y iff∑n

i=1
Xi =

∑n

i=1
Yi.

THEOREM 8. R0(EQUALITYCPn,q) ≤ R0(UNIONSIZECPn,q)
+O(log q) +O(log n).

Proof: To solve EQUALITYCP, Alice and Bob first invoke the o-
racle UNIONSIZECP protocol on their inputs X and Y . Bob next
sends Alice

∑n

i=1
Yi, using log n + log q bits, and the occurrence

count (denoted as z) of the character 0 in Y , using log n bits. Al-
ice finally outputs that X equals Y iff

∑n

i=1
Xi =

∑n

i=1
Yi and

UNIONSIZECP(X,Y ) equals n− z.
To show the correctness of the above protocol, note that if X =

Y , then the two conditions trivially hold. We next prove the reverse
direction. Since UNIONSIZECP(X,Y ) = n − z, for all i where
Yi = 0, we have Xi = 0. In turn, there does not exist i such that
Xi = q−1 and Yi = 0. With this additional property, together with
the cycle promise, we know that for 1 ≤ i ≤ n, either Yi = Xi

or Yi = Xi + 1 (note that there is no longer “mod q”). Hence
X must equal to Y since otherwise

∑n

i=1
Yi would be larger than∑n

i=1
Xi. 2

9The cycle promise described here is called the “alternative form”
of the cycle promise in [4].



Next we apply an existing strong result on the Sperner capacity
of directed graphs [3] to obtain a lower bound on the CC of E-
QUALITYCP. That result was originally stated in the context of a
directed coding graph, and the following instantiates it in our spe-
cific context:

THEOREM 9. (Adapted from Theorem 3.2 in [3].) Let S be a

subset of {0, 1, 2, ..., q − 1}n with the following property: For all

V,W ∈ S where V 6= W , there i) exists i such that Vi 6= Wi

and Vi 6= (Wi + 1) mod q, and ii) exists j such that Wj 6= Vj

and Wj 6= (Vj + 1) mod q. Then |S| ≤ (rank(M))n for any

q × q matrix M, where Mi,i = 1 for all i, Mi,j = 0 for all (j −
i) mod q ∈ {2, 3, ..., q − 1}, and all other entries in M (i.e., M1,2,

M2,3, ..., Mq−1,q , and Mq,1) can be arbitrary real numbers.

THEOREM 10.

R0(EQUALITYCPn,q) = Ω(
n

q
− log n− log log q).

Proof: Our definition of R0 allows public coins and only requires

Alice to know the result. We define R
pri
0 to be the same as R0

except that only private coins are allowed and both Alice and Bob
are required to know the result. Using arguments based on rectan-

gles [11], Lemma 11 next proves that R
pri
0 (EQUALITYCPn,q) ≥

n
q−1

. The theorem follows since i) only one bit is needed for Al-
ice to inform Bob the result, and ii) a public coin protocol using
k bits here can always be simulated via private coins while using
O(k + log log(qn · qn)) = O(k + log n+ log log q) bits [15]. 2

LEMMA 11. R
pri
0 (EQUALITYCPn,q) ≥

n
q−1

.

Proof sketch: It is well known [11]10 that for any (partial) function

h : X × Y → {0, 1}, R
pri
0 (h) ≥ N(h) ≥ logC1(h). Here N(h)

is the non-deterministic communication complexity, and C1(h) is
the smallest number of monochromatic rectangles needed to cover
(possibly with intersections) all the 1-entries in the matrix corre-
sponding to h. The matrix Z corresponding to EQUALITYCPn,q

is a qn × qn matrix. All 1-entries in Z are on the main diago-
nal. The remainder of Z consists of 0-entries and undefined entries
that correspond to input pairs not satisfying the cycle promise. In
any given covering of all the 1-entries using monochromatic rect-
angles, consider any two 1-entries ZV,V (i.e., the entry for X = V
and Y = V ) and ZW,W in any rectangle used in the covering. For
the rectangle to be monochromatic, ZW,V and ZV,W must not be 0-
entries and hence must be undefined entries. This means that there
i) exists i such that Vi 6= Wi and Vi 6= (Wi + 1) mod q, and ii)
exists j such that Wj 6= Vj and Wj 6= (Vj + 1) mod q.

Applying Theorem 9 tells us that the number of 1-entries in such
a monochromatic rectangle is upper bounded by (rank(M))n for
any q×q matrix M satisfying the properties specified in Theorem 9.
We want to find such an M with a small rank, by properly choosing
the values of M1,2, M2,3, ..., Mq−1,q , and Mq,1. We set all of them
to be −1. We claim that the rank of such an M is exactly q− 1. To
see why, note that adding up all the q rows gives us an all-zero row,
and hence rank(M) ≤ q − 1. It is also easy to verify that the first
q − 1 rows are linearly independent. Hence rank(M) = q − 1,
implying that the number of 1-entries in a monochromatic rectan-
gle of Z is upper bounded by (q − 1)n. Finally, because the total

number of 1-entries in Z is qn, we have R
pri
0 (EQUALITYCPn,q) ≥

log(qn/(q − 1)n) = n log(1 + 1

q−1
) ≥ n

q−1
. 2

10The result was originally stated for functions, though it trivially
applies to partial functions as well.

THEOREM 12. R0(UNIONSIZECPn,q) = Ω(n
q
)−O(log n).

Proof: The equation trivially holds for n ≤ q. For n > q, combin-
ing Theorem 8 and 10 directly yields the result. 2

The Ω( f

b log b
) term in Theorem 2 then follows naturally from

Theorem 12 and the known reduction [4] from UNIONSIZECP to
SUM. The extra Ω( logN

log b
) term in Theorem 2 comes from the Ω(N)

domain size of the sum result. By results in [7], sending Ω(logN)
bits of information to the root within b flooding rounds (and hence
within b rounds under the worst-case topology) requires sending
Ω( logN

log b
) actual bits. We defer the full proof of Theorem 2 to the

full version of this paper [18].
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Algorithm 2 The AGG Protocol. Following are some additional comments on the pseudo-code. By default, the sender of a message always
attaches its id on the message (not shown in the pseudo-code), allowing the receiver to infer the sender. A “ ” field in a received message
means that we do not care about the value of that field. The pseudo-code allows a node to send multiple messages in a single round. In actual
implementation, all these messages should be combined into one, and can thus be sent in one round. The pseudo-code invokes the flood

primitive in several places, whose (trivial) implementation is not included in the pseudo-code. For a node to flood a message, the node sends
the message to its neighbors. Any node receiving a flooded message simply forwards that message upon first receiving that message. The
initiating node is called the source of the flooding. Note that if a node receives a second flooded message (potentially initiated by a different
source) with the same content, the node will not forward it again. Finally, each node in AGG keeps track of the total number of bits it has
sent. Once the number reaches (11t+ 14)(logN + 5), a node will flood a special symbol to cause all nodes to abort AGG. This mechanism
is not shown in the pseudo-code, for clarity.

1: /* Tree Construction Phase (total 2cd+ 1 rounds) */

2: if (I am the root) then

3: level = 0; parent = null; children = ∅; ancestor[i] = null for all i ∈ [1, 2t];
4: send 〈tree_construct, level, ancestor〉 in round 1 of this phase;
5: else

6: wait to receive the first message (with arbitrary tie breaking if multiple messages received in the same round) in the form of
〈tree_construct, sender_level, sender_ancestor〉 from any node u;
// the node is now activated, and knows that the current round is round sender_level + 2 of this phase;
// the node can then determine the starting round of all the remaining phases in AGG and VERI;

7: let r = sender_level + 2 be the current round of this phase;
8: level = sender_level + 1; parent = u; children = ∅;
9: ancestor[1] = parent; ancestor[i] = sender_ancestor[i− 1] for all i ∈ [2, 2t];

10: send 〈ack, parent〉 in round r of this phase;
11: send 〈tree_construct, level, ancestor〉 in round r + 1 of this phase;
12: end if

13: upon receiving message in the form of 〈ack, my_id〉 from any node v: children = children
⋃
{v};

14: /* Aggregation Phase (total 2cd+ 1 rounds) */

15: psum = my_input; max_level = level; // psum is for “partial sum”
16: for all v ∈ children do

17: if (in round cd− level + 1 of this phase, receive message 〈aggregation, sender_psum, sender_max_level〉 from node v) then

18: psum = psum+ sender_psum; max_level = max(max_level, sender_max_level);
19: else

20: flood 〈critical_failure, v〉 in round cd− level + 1 of this phase;
21: end if

22: end for

23: send 〈aggregation, psum, max_level〉 in round cd− level + 1 of this phase;

24: /* Speculative Flooding Phase (total 2cd+ 1 rounds) */

25: if (I am the root) then flood 〈flooded_psum, my_id, psum〉 in round 1 of this phase;
26: if (I am not the root and no message from parent is received in round level + 1 of this phase) then

27: flood 〈flooded_psum, my_id, psum〉 in round level + 1 of this phase;
28: end if

29: /* Partial Sum Selection Phase (total cd+ 1 rounds) */

30: ancestor[0] = my_id;
31: for all message received in the form of 〈flooded_psum, source_id, 〉 do

32: let i ∈ [0, 2t] be the smallest i such that ancestor[i] = source_id; let i = ∞ if such i does not exist;
33: let j ∈ [0, 2t] be the smallest j such that ancestor[j] is the root or 〈critical_failure, ancestor[j]〉 has been received;

let j = ∞ if such j does not exist;
34: dom = I have received a message 〈flooded_psum, ancestor[k], 〉 with k ∈ [i+ 1, j]; // dom is for “dominated”
35: if (i ≤ t) and (i ≤ j) then // I am a witness
36: if (j = ∞) then flood 〈dominated, source_id〉 in round 1 of this phase;
37: if (j 6= ∞ and dom) then flood 〈dominated, source_id〉 in round 1 of this phase;
38: if (j 6= ∞ and (!dom)) then flood 〈compulsory‖optional, source_id〉 in round 1 of this phase;
39: end if

40: end for

41: /* Output Phase (only executed by the root) */

42: sum = 0;
43: for all received message in the form of 〈flooded_psum, source_id, source_psum〉 do

44: if (〈compulsory‖optional, source_id〉 has been received) then sum = sum+ source_psum;
// messages 〈dominated, source_id〉 are not actually needed, and we sent those only for clarity

45: end for

46: output sum;



Algorithm 3 The VERI Protocol. The initial values of the variables parent, children, ancestor, level, and max_level are all from the
previous AGG execution. All the comments in the caption of Algorithm 2 apply to Algorithm 3 as well, except the following: In VERI, once
a node has sent (5t+ 7)(10 + 3 logN) bits, it will flood a special symbol to terminate VERI and cause the root to output false.

1: /* Failed Parent Detection Phase (total 2cd+ 1 rounds) */

2: if (I am the root) then

3: flood 〈detect_failed_parent〉 in round 1 of this phase;
4: else

5: if (no message from parent is received in round level + 1 of this phase) then

6: flood 〈failed_parent, parent, max_level − level + 1〉 in round level + 1 of this phase;
7: end if

8: end if

9: /* Failed Child Detection Phase (total 2cd+ 1 rounds) */

10: if (children = ∅) then // I am a leaf
11: flood 〈detect_failed_child〉 in round cd− level + 1 of this phase;
12: else

13: for all node v ∈ children do

14: if (no message from node v is received in round cd− level + 1 of this phase) then

15: flood 〈failed_child, v〉 in round cd− level + 1 of this phase;
16: end if

17: end for

18: end if

19: /* LFC Detection Phase (total cd+ 1 rounds) */

20: for all received messages in the form of 〈failed_parent, v, 〉 do

21: let i ∈ [0, 2t] be the smallest i such that ancestor[i] = v; let i = ∞ if such i does not exist;
22: let j ∈ [0, 2t] be the smallest j such that ancestor[j] is either the root or 〈critical_failure, ancestor[j]〉 was previously received in

AGG; let j = ∞ if such j does not exist;
23: if (i ≤ t and i ≤ j) then // I am a witness
24: let k ∈ [i, 2t] be the smallest k such that i) 〈failed_child, ancestor[k]〉 has been received, or ii) ancestor[k] is the root, or

iii) 〈critical_failure, ancestor[k]〉 was previously received in AGG; let k = ∞ if such k does not exist;
25: if (k − i+ 1 ≥ t) then

26: flood 〈LFC_tail, v〉 in round 1 of this phase;
27: else

28: flood 〈not_LFC_tail, v〉 in round 1 of this phase;
29: end if

30: end if

31: end for

32: /* Output Phase (only executed by the root) */

33: if (I have received message 〈LFC_tail, v〉 for any node v) then output false; // LFC exists
34: for all received message in the form of 〈failed_parent, v, x〉 where x ≥ t do

35: if (〈not_LFC_tail, v〉 has not been received) then output false; // LFC may exist — VERI may have one-sided error here
36: end for

37: output true; // no LFC


