
Consistent and Automatic Replica
Regeneration

HAIFENG YU
Intel Research Pittsburgh/Carnegie Mellon University
and
AMIN VAHDAT
University of California San Diego

Reducing management costs and improving the availability of large-scale distributed systems re-
quire automatic replica regeneration, that is, creating new replicas in response to replica failures. A
major challenge to regeneration is maintaining consistency when the replica group changes. Doing
so is particularly difficult across the wide area where failure detection is complicated by network
congestion and node overload.

In this context, this article presents Om, the first read/write peer-to-peer, wide-area storage
system that achieves high availability and manageability through online automatic regeneration
while still preserving consistency guarantees. We achieve these properties through the following
techniques. First, by utilizing the limited view divergence property in today’s Internet and by adopt-
ing the witness model, Om is able to regenerate from any single replica, rather than requiring a
majority quorum, at the cost of a small (10−6 in our experiments) probability of violating consis-
tency during each regeneration. As a result, Om can deliver high availability with a small number
of replicas, while traditional designs would significantly increase the number of replicas. Next,
we distinguish failure-free reconfigurations from failure-induced ones, enabling common reconfig-
urations to proceed with a single round of communication. Finally, we use a lease graph among
the replicas and a two-phase write protocol to optimize for reads, so that reads in Om can be pro-
cessed by any single replica. Experiments on PlanetLab show that consistent regeneration in Om
completes in approximately 20 seconds.

Categories and Subject Descriptors: D.4.5 [Operating Systems]: Reliability—Fault-tolerance;
D.4.7 [Operating Systems]: Organization and Design—Distributed systems

General Terms: Algorithms, Design, Experimentation, Reliability

Additional Key Words and Phrases: Peer-to-peer storage systems, availability, consistency, replica-
tion, regeneration

A preliminary version of this article was presented at the Usenix Symposium on Networked Systems
Design and Implementation (NSDI’04), March 2004.
Authors’ addresses: H. Yu, Intel Research Pittsburgh, Pittsburgh, PA 15214; email: yhf@cs.cmu.edu;
A. Vahdat, University of California, San Diego, La Jolla, CA 92093.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2004 ACM 1553-3077/04/1200-0003 $5.00

ACM Transactions on Storage, Vol. 1, No. 1, December 2004, Pages 3–37.

4 • H. Yu and A. Vahdat

1. INTRODUCTION

Replication has long been used for masking individual node failures and for
load balancing. Traditionally, the set of replicas is fixed, requiring human in-
tervention to repair failed replicas. Such intervention can be on the critical path
for delivering target levels of performance and availability. Further, the cost of
maintenance now dominates the total cost of hardware ownership, making it
increasingly important to reduce such human intervention. It is thus desirable
for the system to automatically regenerate upon replica failures by creating new
replicas on alternate nodes. Doing so not only reduces maintenance cost, but
also improves availability because regeneration time is typically much shorter
than human repair time.

Motivated by these observations, automatic replica regeneration and recon-
figuration (i.e., change of replica group membership) have been extensively
studied in cluster-based Internet services [Fox et al. 1997; Saito et al. 1999].
Similarly, automatic regeneration has become a necessity in emerging large-
scale distributed systems [Adya et al. 2002; Dabek et al. 2001; Kubiatowicz
et al. 2000; Muthitacharoen et al. 2002; Rhea et al. 2003; Rowstron and Druschel
2001b; Saito et al. 2002]. One of the major challenges to automatic regeneration
is maintaining consistency when the composition of the replica group changes.
Doing so is particularly difficult across the wide-area where failure detection is
complicated by network congestion and node overload. For example, two repli-
cas may simultaneously suspect the failure of each other, form two new disjoint
replica groups, and independently accept conflicting updates.

The focus of this work is to enable automatic regeneration for replicated
wide-area services that require some level of consistency guarantees. Previous
work on replica regeneration either assumes read-only data and avoids the
consistency problem (e.g., CFS [Dabek et al. 2001] and PAST [Rowstron and
Druschel 2001b]), or simply enforces consistency in a best-effort manner (e.g.,
Inktomi [Fox et al. 1997]; Porcupine [Saito et al. 1999]; Ivy [Muthitacharoen
et al. 2002]; Pangaea [Saito et al. 2002]). Among those replication systems [Adya
et al. 2002; Castro and Liskov 2000; Kubiatowicz et al. 2000; Rhea et al. 2003;
Schneider 1990] that do provide strong consistency guarantees, Farsite [Adya
et al. 2002] does not implement replica group reconfiguration. Oceanstore
[Kubiatowicz et al. 2000; Rhea et al. 2003] mentions automatic reconfiguration
as a goal, but does not detail its approach, design, or implementation. Proactive
recovery [Castro and Liskov 2000] enables the same replica to leave the replica
group and later rejoin, but still assumes a fixed set of replicas. Finally, repli-
cated state-machine research [Schneider 1990] typically also assumes a static
set of replicas.

In this context, we present Om, a read/write peer-to-peer, wide-area stor-
age system. Om logically builds upon PAST [Rowstron and Druschel 2001b]
and CFS [Dabek et al. 2001], but achieves high availability and manageabil-
ity through online automatic regeneration while still preserving consistency
guarantees. To the best of our knowledge, Om is the first implementation and
evaluation of a wide-area, peer-to-peer replication system that achieves such
functionality.

ACM Transactions on Storage, Vol. 1, No. 1, December 2004.

Consistent and Automatic Replica Regeneration • 5

Om’s design targets large, infrastructure-based hosting services consisting
of hundreds to thousands of sites across the Internet. We envision companies
utilizing hosting infrastructure such as Akamai [Akamai Corporation 1999]
to provide wide-area mutable data access service to users. The data may be
replicated at multiple wide-area sites to improve service availability and per-
formance. We believe that our design is also generally applicable to a broader
range of applications, including: i) a totally-ordered event notification system,
ii) distributed games, iii) parallel grid computing applications sharing data
files, and iv) content distribution networks and utility computing environments
where a federation of sites deliver read/write network services.

We adopt the following novel techniques to achieve our goal of consistent and
automatic replica regeneration.

(1) Traditional designs for regeneration require a majority of replicas to coor-
dinate consistent regeneration. We show that by taking advantage of the
limited view divergence property in today’s Internet and by adopting the
witness model [Yu 2003], Om is able to regenerate from any single replica
at the cost of a small probability of violating consistency. As a result, Om
can deliver high availability with a small number of replicas, while tradi-
tional designs would significantly increase the number of replicas in order
to deliver the same availability. When strict consistency is desired, Om can
also trivially replace the witness model with a simple majority quorum (at
the cost of reduced availability) to provide strict consistency.

(2) We distinguish between failure-free and failure-induced reconfiguration,
enabling common reconfigurations to proceed with a single round of com-
munication while maintaining correctness, even if a failure should occur in
the middle.

(3) We use a lease graph among all replicas and a two-phase write protocol
to avoid executing a consensus protocol for normal writes. Reads in Om
proceed with a single round trip to any single replica, yielding the read
performance of a centralized service, but with better network locality.

Om assumes a crash (stopping) rather than Byzantine failure model. While
this assumption makes our approach inappropriate for a certain class of ser-
vices, we argue that the performance, availability, consistency, and flexible re-
configuration resulting from our approach will make our work appealing for a
range of important applications.

Through WAN measurement and local area emulation, we observe that the
probability of violating consistency in Om is approximately 10−6 out of each
regeneration. This means that on average, inconsistent regeneration occurs
once every 250 years with 5 replicas and a pessimistic 12 hours replica MTTF. At
the same time, the ability to regenerate from any replica enables Om to achieve
high availability using a relatively small number of replicas (e.g., 99.9999%
using 4 replicas with node MTTF of 12 hours, regeneration time of 5 minutes,
and human repair time of 8 hours). Under stress tests for write throughput on
PlanetLab [Peterson et al. 2002], we observe that regeneration in response to
replica failures only causes a 20-second service interruption.

ACM Transactions on Storage, Vol. 1, No. 1, December 2004.

6 • H. Yu and A. Vahdat

Fig. 1. A configuration.

We provide an overview of Om in the next section. The following three sec-
tions then discuss the details of normal case operations, reconfiguration, and
single replica regeneration in Om. Section 6 uses an analytical approach to
study the availability benefits of regeneration and single copy regeneration.
We present unsafety (probability of violating consistency during a regeneration)
and performance evaluation in Section 7. Finally, Section 8 discusses related
work and Section 9 draws our conclusions.

2. SYSTEM ARCHITECTURE OVERVIEW

2.1 Naming and Configurations

Om relies on Distributed Hash Tables (DHTs) [Rowstron and Druschel 2001a;
Stoica et al. 2001] for naming its objects. The current implementation of
Om uses FreePastry (http://www.cs.rice.edu/CS/Systems/Pastry/FreePastry).
Om invokes only two common peer-to-peer APIs [Dabek et al. 2003] from
FreePastry: void route (key → K, msg → M, nodehandle → hint) and
nodehandle[] replicaSet (key → K, int → max rank). We use these APIs
to determine the set of nodes that should hold a particular object. The route()
API sends the request to the key’s current root, which in turn uses replicaSet()
to determine the current replica group. The root then sends back a reply con-
taining this set. Om does not require any change to the FreePastry code.

DHTs do not guarantee the correctness of naming. For example, the same
key may be mapped to different nodes if routing tables are stale. In Om, each
node ultimately determines whether it is a replica of a certain Om object. With
inconsistent routing in DHTs, user requests may be routed to the wrong node.
Instead of returning an incorrect value, the node will tell the user that it does
not have the data.

Om servers are grouped into configurations (Figure 1). Each configuration
contains the set of servers holding copies of a particular object. To optimize for
reads and allow the user to read the object by contacting only one server, we
use replication in Om, rather than, for example, erasure coding. Thus a server
in a configuration holds a full copy of the object. A physical node may belong
to multiple configurations. Conceptually, the total number of configurations
equals the number of objects in Om. However, multiple objects, residing on the
same set of replicas, share the same configuration, which significantly reduces
the number of configurations and overall regeneration activity.

2.2 Two Quorum Systems for Maintaining Consistency

Throughout this article, we use linearizability [Herlihy and Wing 1990] as the
definition for consistency. An access to an Om object is either a read or a write.

ACM Transactions on Storage, Vol. 1, No. 1, December 2004.

Consistent and Automatic Replica Regeneration • 7

Each access has a start time, the wall-clock time when the user submits the
access, and a finish time, the wall-clock time when the user receives the reply.
Such wall-clock time is defined by an imaginary, global wall-clock. Lineariz-
ability requires that: i) each access has a unique serialization point that falls
between its start time and finish time, and ii) the results of all accesses and the
final state of the replicas are the same as if the accesses are applied sequentially
by their serialization points.

To maintain consistency, Om uses two different quorum systems in two dif-
ferent places of the design. The first is a read-one/write-all quorum system
for accessing objects on the replicas. We choose to use this quorum system to
maximize the performance of read operations. In general, however, our design
supports an arbitrary choice of read/write quorum. Each configuration has a
primary replica responsible for serializing all writes and transmitting them to
secondary replicas. The failure of any replica causes regeneration. Thus both
primary and secondary replicas correspond to gold replicas in Pangaea [Saito
et al. 2002]. It is straightforward to add additional bronze replicas (which are not
regenerated) into our design. Distinguishing these two kinds of replicas helps
to decrease the overhead of maintaining the lease graph, liveness monitoring
and performing two-phase writes among the gold replicas.

Reads can be processed by any replica without interacting with other repli-
cas. A write is always forwarded to the primary, which uses a two-phase protocol
to propagate the write to all replicas (including itself). Even though two-phase
protocols in WAN can incur high overhead, we limit this overhead because Om
usually needs a relatively small number of replicas to achieve certain availabil-
ity targets (given its single replica regeneration mechanism).

The second quorum system is used during reconfiguration to ensure that
replicas agree on the membership of the new configuration. In wide-area set-
tings, it is possible for two replicas to simultaneously suspect the failure of each
other, and to initiate regeneration. To maintain consistency, the system must
ensure a unique configuration for the object at any time. Traditional approaches
for guaranteeing unique configuration require each replica to coordinate with a
majority before regeneration, so that no simultaneous conflicting regeneration
can be initiated.

Given the availability cost of requiring a majority (Section 6) to coordinate
regeneration, we adopt the witness model [Yu 2003] that achieves similar func-
tionality as a quorum system. In the witness model, quorum intersection is
not always guaranteed, but is extremely likely. In return, a quorum in the wit-
ness model can be as small as a single node. While our implementation uses
the witness model, our design can trivially replace the witness model with a
traditional quorum system such as majority voting.

2.3 Node Failure/Leave and Reconfiguration

The membership of a configuration changes upon the detection of node failures,
or explicit reconfiguration requests. Failures are detected in Om via timeouts on
messages or heartbeats. By definition, accurate failure detection in an environ-
ment with potential network failure and node overload, such as the Internet,

ACM Transactions on Storage, Vol. 1, No. 1, December 2004.

8 • H. Yu and A. Vahdat

is impossible. Improving failure detection accuracy is beyond the scope of this
article.

There are two types of reconfigurations in Om: failure-free reconfiguration
and failure-induced reconfiguration. Failure-free reconfiguration takes place
when a set of nodes gracefully leave or join the configuration. “Gracefully”
means that there are no node failures or message timeouts during the pro-
cess. On the other hand, Om performs failure-induced reconfiguration when it
(potentially incorrectly) detects a node failure (in either normal operation or
reconfiguration).

Failure-free reconfiguration is lightweight and requires only a single round
of messages from the primary to all replicas, a process even less expensive
than writes. Failure-induced reconfiguration is more expensive because it uses
a consensus protocol to enable the replicas to agree on the membership of the
next configuration. The consensus protocol, in turn, relies on the second quorum
system to ensure that the new configuration is unique among the replicas.

Under a denial of service (DoS) attack, all reconfigurations will become
failure-induced. One concern is that an Om configuration must be sufficiently
over-provisioned to handle the higher cost of failure-induced reconfiguration
under the threat of such attacks. However, the reconfiguration functionality of
Om actually enables it to dynamically shift to a set of more powerful replicas (or
expand the replica group) under DoS attacks, making static over-provisioning
unnecessary.

2.4 Node Join and Reconfiguration

New replicas are always created by the primary in the background. To achieve
this without blocking normal operations, the primary replica creates a snapshot
of the data and transfers the snapshot to the new replicas. During this process,
new reads and writes are still accepted, with the primary logging those writes
that are accepted after creating the snapshot. After the snapshot has been
transferred, the primary will send the logged writes to the new replicas, and
then initiate a failure-free reconfiguration to include them in the configuration.
Since the time needed to transfer the snapshot tends to dominate the total
regeneration time, Om enables online regeneration without blocking accesses.

Each node in the system maintains an incarnation counter in stable storage.
Whenever a node loses its state in memory (due to a crash or reboot), it in-
crements the incarnation number. After the node rejoins the system, it should
discard all messages intended for older incarnations. This is necessary for a
number of reasons: For example, otherwise a primary that crashes and then
recovers immediately will not be able to keep track of the writes in the middle
of the two-phase protocol.

3. NORMAL CASE OPERATIONS

Given the overall architecture described above, we now discuss some of the com-
plex system interactions in Om. Despite the simplicity of the read-one/write-all
approach for accessing objects, failures and reconfigurations may introduce sev-
eral anomalies in a naive design. We now describe two major anomalies and
our solutions.

ACM Transactions on Storage, Vol. 1, No. 1, December 2004.

Consistent and Automatic Replica Regeneration • 9

The first anomaly arises when replicas from old configurations are slow in
detecting failures, and continue servicing stale data after reconfiguration (ini-
tiated by other replicas). We address this scenario by leveraging leases [Gray
and Cheriton 1989]. In traditional client-server architectures, each client holds
a lease from the server. However, since Om can regenerate from any replica,
a replica needs to hold valid leases from all other replicas. Also in Om, lease
validity is always with respect to a particular configuration. It is possible that
node A holds an unexpired lease from B, but the lease is still invalid with re-
spect to a particular configuration. This either means that A’s configuration
is too old and A should initiate reconfiguration, or that the lease from B was
obtained when B was in an old configuration.

Requiring each replica to contact every other replica for a lease can incur
significant communication overhead. Fortunately, it is possible for a replica to
sublease those leases it already holds. As a result, when a replica A requests a
lease from B, B will not only grant A a lease for B, it can also potentially grant
A leases for other replicas (with a shorter lease expiration time, depending on
how long B has been holding those leases).

Following, we abstract the problem by considering replicas to be nodes in a
lease graph. If a node A directly requests a lease from node B, we add an arc
from B to A in the graph. A lease graph must be strongly connected to avoid
stale reads. Furthermore, we would like the layers of recursive subleasing to
be as small as possible because each layer of sublease decreases the effective
duration of the lease. Define the diameter of a lease graph to be the smallest
integer d , such that any node A can reach any other node B via a directed
path of length at most d . In our system, we would like to limit d to 2 to ensure
the effectiveness of subleasing. Overhead of lease renewal is determined by the
number of arcs in the lease graph. It has been proven [Goldberg 1966] that
with n ≥ 4 nodes, the minimal number of arcs to achieve d = 2 is 2(n − 1).
For n ≥ 5, we can show that the only graph reaching this lower bound is a
star-shaped graph. Thus, our lease graphs are all star-shaped, with every node
having two arcs to and from a central node. The central node does not have to
be the primary of the configuration, though it is in our implementation.

A second problem results from a read seeing a write that has not been ap-
plied to all replicas, and the write may be lost in reconfiguration. In other words,
the read observes, a temporary inconsistent state. To avoid this scenario, we
employ a two-phase protocol for writes. In the first prepare round, the pri-
mary propagates the writes to the replicas. Each replica records the write in a
pending queue and sends back an acknowledgment. After receiving all acknowl-
edgments, the primary will start the second commit round by sending commits
to all replicas. Upon receiving a commit, a replica applies the corresponding
write to the data object and sends an acknowledgment to the primary. Finally,
after collecting all the acknowledgments from the replicas, the primary sends
back an acknowledgment to the user. A write becomes “stable” (applied to all
replicas) when the user receives an acknowledgment. The lack of an acknowl-
edgment indicates that the write will ultimately be seen by all or none of the
replicas. A user may choose to resubmit an unacknowledged write, and Om
performs appropriate duplicate detection and elimination.

ACM Transactions on Storage, Vol. 1, No. 1, December 2004.

10 • H. Yu and A. Vahdat

After a failure-induced reconfiguration and before a new primary can seri-
alize any new writes, it first collects all pending writes from the replicas in the
new configuration and processes the writes again using the normal two-phase
protocol. Each replica performs appropriate duplicate detection and elimination
in this process. This design solves the previous problem because if any read sees
a write, then the write must be either applied or in the pending queue on all
replicas.

4. RECONFIGURATION

Each configuration has a monotonically increasing sequence number, increased
with every reconfiguration. For any configuration, and at any point of time, a
replica can only be in a single reconfiguration process (either failure-free or
failure-induced). It is, however, possible that different replicas in the same
configuration are simultaneously in different reconfiguration processes.

Conceptually, a replica that finishes reconfiguration will try to inform other
replicas of the new configuration by sending configuration notices. In failure-
free reconfigurations, only the primary does this, because the other replicas are
passive. In failure-induced reconfigurations, all replicas transmit configuration
notices to aid in completing reconfiguration earlier. In many cases, most replicas
do not even need to enter the consensus protocol—they simply wait for the
configuration notice (within a timeout).

Upon receiving a configuration notice, a replica adopts the new configuration
if its current configuration has a smaller sequence number. When this happens,
the replica will abort any reconfiguration that is based on older configurations,
and avoid unnecessary work. We design our reconfiguration protocols so that
the protocol can be aborted from any point without affecting correctness.

Instead of using dedicated messages for configuration notices, we attach
the current configuration to each lease renewal request. In many cases, the
first thing a replica needs to do after establishing a new configuration is to
obtain leases. Thus, configuration notices incur little additional overhead. In
the following, however, we assume dedicated configuration notices to simplify
discussion.

4.1 Failure-Free Reconfiguration

Only the primary may initiate failure-free reconfiguration. Secondary replicas
are involved only when i) the primary transmits data to them for creating new
replicas; and ii) the primary transmits configuration notices.

The basic mechanism of failure-free reconfiguration is straightforward. After
transferring data to the new replicas in two stages (snapshot followed by logged
writes as discussed earlier), the primary constructs a configuration for the new
desired membership. This new configuration will have a new sequenceNum by in-
crementing the old sequenceNum. The consensusID of the configuration remains
unchanged.

The primary then informs the other replicas of the new configuration and
waits for acknowledgments. If timeout occurs, a failure-induced reconfiguration
will follow.

ACM Transactions on Storage, Vol. 1, No. 1, December 2004.

Consistent and Automatic Replica Regeneration • 11

Fig. 2. Failure-induced reconfiguration.

4.2 Failure-Induced Reconfiguration

In contrast to failure-free reconfigurations, failure-induced reconfigurations
can only shrink the replica group (potentially followed by failure-free reconfig-
urations to expand the replica group as necessary). Doing this simplifies design
because failure-induced reconfigurations do not need to create new replicas and
request them to participate in the consensus protocol. Failure-induced reconfig-
urations can take place during normal operations, failure-free reconfigurations,
or even failure-induced reconfigurations.

A replica initiates failure-induced reconfiguration (Figure 2) upon detect-
ing a failure. The replica first disables the current configuration so that leases
can no longer be granted for the current configuration. This reduces the time
we need to wait for lease expiration later. Next, it will perform another round
of failure detection for all members of the configuration. The result (a subset
of the current replicas) will be used as a proposal for the new configuration.
The replica then invokes a consensus protocol, which returns a decision that
is agreed upon by all replicas entering the protocol. When invoking the con-
sensus protocol, the replica needs to pass a unique ID for this particular in-
vocation of the consensus protocol. Otherwise, since nodes can be arbitrarily
slow, different invocations of the consensus protocol may interfere with one
another.

Before adopting a decision, each replica needs to wait for all leases to expire
with respect to the old configuration. Finally, the primary of the new configu-
ration will collect and reapply any pending writes. When reapplying pending

ACM Transactions on Storage, Vol. 1, No. 1, December 2004.

12 • H. Yu and A. Vahdat

writes, the primary only waits for a certain timeout. If a subsequent failure were
to take place, the replicas will start another failure-induced reconfiguration.

One important optimization to the previous protocol is that after a replica
determines newmember, it checks whether it has the smallest ID in the set. If
it does not, the replica will wait (within a timeout) for a configuration notice.
With this optimization, in most cases, only a single replica enters the consensus
protocol, which can significantly improve the time complexity of the randomized
consensus protocol (see Section 5.3).

4.3 Avoiding Interference Between Failure-Free and Failure-Induced
Reconfigurations

A critical issue in the two reconfiguration protocols is determining the
sequenceNum and consensusID for the new configuration. For sequenceNum, a
naive design would simply increment it for each new configuration. Following,
we construct a scenario to show that this affects correctness. Suppose the orig-
inal configuration has sequence number i and four replicas, A (primary), B, C,
and D. D notifies A that it will exit, and then does so, after receiving an ac-
knowledgment from A. A now initiates a failure-free reconfiguration with the
new configuration consisting of A (primary), B, and C. It sends to B and C the
notice for the new configuration with sequenceNum i+1. B receives and adopts
the new configuration. However, the message to C is delayed. C believes there
are failures and performs a failure-induced reconfiguration. Suppose C decides
that the new configuration should contain only C itself. The new configuration
of C also has a sequence number of i + 1. Now imagine that the configuration
notice from A to C finally arrives. C will have no way to determine whether it
should adopt this configuration, since it has the same sequence number as its
local configuration.

This problem arises from the interference between failure-free and failure-
induced reconfigurations. To address this problem, an important observation is
that in our design, only the primary can initiate failure-free reconfigurations,
and it will do so after the previous reconfiguration finishes. As a result, at
any time, there is at most one failure-free reconfiguration in progress. Thus de-
spite message delay and loss, the sequenceNum of the configurations on different
replicas can differ by one, at most.

Based on such observation, we can simply have failure-induced reconfigu-
rations increase the sequence number by two (Figure 2), instead of one. Doing
so ensures that the new configuration, proposed by failure-induced reconfigu-
rations, always has a larger sequence number than the configuration proposed
by failure-free ones. For our previous example, the new configuration of C will
have a sequence number of i + 2, and C will not adopt the configuration no-
tice from A. When A and B try to obtain leases from C, they will not be able
to obtain valid leases based on their configuration (with sequence number of
i + 1). They will then also start a failure-induced reconfiguration. Their pro-
posal for the new configuration will have a sequence number of i + 3. However,
the consensus protocol ensures that they reach the same decision as C, namely,
the configuration (proposed by C) with sequence number of i + 2. At this point,

ACM Transactions on Storage, Vol. 1, No. 1, December 2004.

Consistent and Automatic Replica Regeneration • 13

A and B will retire themselves from the configuration since they are not in-
cluded in the new configuration. Excluding A and B is a desirable result since
C may have received new writes, and the data on A and B can be stale. It is
possible for A and B to request to rejoin the configuration, in which case C will
perform a failure-free reconfiguration to include A and B as new replicas.

The previous example also reveals the subtlety in choosing consensusID. It
is obvious that in failure-induced reconfigurations, we should choose a new
consensusID. On the other hand, it is also important (but less clear) that we
should continue to use the old consensusID in failure-free reconfigurations.
We can use the old consensusID because it has never been used. Further, if
we were to use a new consensusID and a failure-induced reconfiguration were
to take place in the middle of the process, the replicas would not be running
the same instance of the consensus protocol. In our example, when A and B
fail to obtain valid leases from C, they should enter the same instance of the
consensus protocol that C entered earlier. Only by doing so can they determine
that the new configuration consists of only C.

5. SINGLE REPLICA REGENERATION

Failure-induced reconfigurations depend on a consensus protocol to ensure the
uniqueness of the new configuration and, in turn, data consistency. Consen-
sus [Lynch 1997] is a classic distributed computing problem and we can con-
ceptually use any consensus protocol in Om. However, most consensus protocols
such as Paxos [Lamport 1998] rely on majority quorums and thus cannot toler-
ate more than n/2 failures among n replicas. To reduce the number of replicas
required to carry out regeneration (as a desirable side-effect, this also reduces
the overhead of acquiring leases and of performing writes), we adopt the wit-
ness model [Yu 2003] to achieve probabilistic consensus without requiring a
majority.

5.1 Probabilistic Quorum Intersection Without Majority

The witness model [Yu 2003] is a novel quorum design that allows quorums to
be as small as a single node, while ensuring probabilistic quorum intersection.
In our system, for each new configuration, the primary chooses m× t witnesses
and communicates their identities to all secondary replicas. Witnesses are sim-
ply Om nodes, other than the replicas in the new configuration. Since there are
a large number of such nodes in the system, we only need to choose m × t of
them as witnesses. Notice that witnesses for a given configuration are actually
replicas of other configurations. Witnesses are periodically probed by the pri-
mary and refreshed as necessary upon failure. This refresh is trivial and can
be done in the form of a two-phase write. If failure occurs between the first
and the second phase, a replica will use both old and new witnesses in the
consensus protocol. The primary may utilize a variety of techniques to choose
witnesses, with the goal of choosing witnesses with small failure correlation
and diversity in the set of network paths from the replicas to individual wit-
nesses. For example, the primary may simply use entries from its finger table
under Chord [Stoica et al. 2001].

ACM Transactions on Storage, Vol. 1, No. 1, December 2004.

14 • H. Yu and A. Vahdat

Fig. 3. Two replicas and 3 × 4 witnesses.

For now, we will consider replicas that are not in singleton partitions, where
a single node, LAN, or perhaps a small autonomous system is unable to com-
municate with the rest of the network. Later we will discuss how to determine
singleton partitions. We say that a replica can reach a witness if a reply can be
obtained from the witness within a certain timeout. The witness model utilizes
the following limited view divergence property:

Consider a set S of functioning, randomly-placed witnesses that are not colo-
cated with the replicas (e.g., not in the same LAN). Suppose one replica A can
reach the subset S1 of witnesses, and cannot reach the subset S2 of witnesses
(where S1 ∪ S2 = S). Then the probability that another replica B cannot reach
any witness in S1, and can reach all witnesses in S2, decreases with the increas-
ing size of S.

Intuitively, the property says that two replicas are unlikely to have a com-
pletely different view regarding the reachability of a set of randomly-placed
witnesses. The size of S and the resulting probability are thoroughly studied
in Yu [2003], using the RON [Andersen et al. 2001] and TACT [Yu and Vahdat
2001] traces. Later we will also present additional results based on PlanetLab
measurements.

The validity of limited view divergence can probably be explained by the
rarity [Cohen et al. 2000] of large-scale “hard partitions”, where a significant
fraction of Internet nodes are unable to communicate with the rest of the net-
work. Given that witnesses are randomly placed, if the two replicas have com-
pletely different views on the witnesses, this tends to indicate a “hard parti-
tion”. Further, the more witnesses, the larger-scale the partition would have to
be to result in entirely disjoint views from the perspective of two independent
replicas.

To utilize the limited view divergence property, all replicas logically orga-
nize the witnesses into an m × t matrix. The number of rows, m, determines
the probability of intersection. The number of columns, t, protects against the
failure of individual witnesses, so that each row has at least one functioning
witness with high probability. Each replica tries to coordinate with one witness
from each row. Specifically, a replica uses the first witness, from left to right,
that it can reach for each row (Figure 3). The set of witnesses used by a replica
is its quorum. Now consider two replicas A and B. The desirable outcome is
that A’s quorum intersects with B’s. It can be shown that if the two quorums
do not intersect, with high probability (in terms of t), A and B have completely
different views on the reachability of m witnesses [Yu 2003].

ACM Transactions on Storage, Vol. 1, No. 1, December 2004.

Consistent and Automatic Replica Regeneration • 15

Replicas behind singleton partitions will violate limited view divergence.
However, if the witnesses are not colocated with the replica, then the replica
behind the partition will likely not be able to reach any witness. As a result, it
cannot acquire a quorum and will thus block. This is a desirable outcome as the
replicas on the other side of the partition will reach consensus on a new config-
uration that excludes the node behind the singleton partition. To better detect
singleton partitions, a replica may also check whether all reachable witnesses
are within its own LAN, or an autonomous system.

5.2 Emulating Probabilistic Shared-Memory

We intend to substitute the majority quorum in traditional consensus protocols
with the witness model, so that the consensus protocol can achieve probabilistic
consensus without requiring majority. To do this, however, we need a consensus
protocol with “good” termination properties for the following reason. Noninter-
section in the witness model is ultimately translated into the unsafety (proba-
bility of having multiple decisions) of a consensus protocol. Unsafety, in turn,
means inconsistent regeneration in Om. For protocols with multiple rounds, un-
safety potentially increases with every round. This precludes the application
of protocols such as Paxos [Lamport 1998] that do not have good termination
guarantees.

To address the previous issue, we first use the witness model to emulate
a probabilistic shared-memory, where reads may return stale values with a
small probability. We then apply a shared-memory randomized consensus pro-
tocol [Saks et al. 1991], where the expected number of rounds before termination
is constant and thus helps to bound unsafety.

A straightforward way to emulate a read/write atomic shared-memory is to
use the protocol in Yu [2003]. Such emulation requires one round of commu-
nication between the replicas and the witnesses for each memory write, and
two rounds for each memory read. The second round for read is used to ensure
the atomicity of the memory. The shared-memory randomized consensus proto-
col [Saks et al. 1991] always performs writes and reads in pairs, which enables
us to combine the first round of a read with the corresponding write, resulting
in two rounds for each write/read pair.

Interestingly, we find that the shared-memory consensus protocol actually
requires weaker guarantees from the memory than atomicity. However, to ex-
ploit such an optimization, we need to abandon the standard notion of reads
and writes on shared-memory. Rather, we define an access operation on the
shared-memory to be an update to an array element, followed by a read of the
entire array. The element to be updated is indexed by the replica’s identifier.
The witnesses maintain the array. Upon receiving an access request, a witness
updates the corresponding array element and returns the entire array. Such
processing is performed in isolation from other access requests on the same
witness.

Figure 4 provides the pseudo-code for implementing, where each access only
takes a single round of communication between the replicas and the witnesses.
If we substitute each write/read pair with a single access operation, then the

ACM Transactions on Storage, Vol. 1, No. 1, December 2004.

16 • H. Yu and A. Vahdat

Fig. 4. Emulating shared-memory under the witness model.

message (and time) complexity of the shared-memory emulation is reduced
by half. While the access primitive appears to be a simple wrapper around
reads and writes, it actually violates atomicity and qualitatively changes the
semantics of the shared-memory. Later we will prove that such change does not
impact correctness.

Following, we accurately describe the semantics of the shared-memory as
implemented in Figure 4. Consider an access A1 that writes value v to the pth
element of the array. Another access A2 sees A1, if in the array returned by A2,
the pth element is v. Two accesses, A1 and A2, intersect if A1 sees A2, or A2 sees
A1. A set of accesses intersect if any two accesses in the set intersect. Let Pni be
the probability of non-intersection in the witness model. The semantics of the
shared-memory is abstracted in the following: If we use the protocol in Figure 4
to perform two accesses, A1 and A2, then A1 and A2 intersect with probability
of at least 1 − Pni.

5.3 Application of Shared-Memory Randomized Consensus Protocol

With the shared-memory abstraction, we can now apply a previous shared-
memory consensus protocol [Saks et al. 1991] (Figure 5). For simplicity, we

ACM Transactions on Storage, Vol. 1, No. 1, December 2004.

Consistent and Automatic Replica Regeneration • 17

Fig. 5. Randomized consensus protocol for shared-memory.

assume that the proposals and decisions are all integer values, though they are
actually configurations. In the figure, we have already substituted the read and
write operations in the original protocol with our new access operations.

The intuition behind the shared-memory consensus protocol is subtle and
several textbooks have chapters devoted to these protocols (e.g., Chapter 11.4
of [Chow and Johnson 1998]). Since the protocol itself is not a contribution of
this article, we only focus on its high-level properties. Proof will be provided
in the next section. The protocol proceeds in successive iterations, and each
iteration has two accesses. Each access requires one round of communication
(between the replicas and the witnesses), and needs to coordinate with a quo-
rum. Nonintersection for any access may result in unsafety. Each iteration has a
certain probability of terminating. The number of iterations before termination
is a random variable.

For the following discussion, we will focus on the case where there are only
two distinct proposals. With n replicas, the number of distinct proposals can be
as large as n. More distinct proposals increase the complexity of the protocol. For
example, with θ (n) distinct proposals, the protocol will have O(n) complexity,
instead of O(1) complexity as proven later in Theorem 2. It is possible to opti-
mize the protocol so that the complexity is O(log n), instead of O(n), even with n
distinct proposals. However, such optimization will result in O(log n) complex-
ity for two distinct proposals as well. We choose not to use such optimization,
and also choose to focus our analysis for two distinct proposals because we ex-
pect, in most cases, there will be no more than two distinct proposals. This is
because i) the proposals are proposals for the next configuration, and many
replicas will likely have the same proposal; ii) the total number of replicas in

ACM Transactions on Storage, Vol. 1, No. 1, December 2004.

18 • H. Yu and A. Vahdat

each configuration tends to be small given Om’s single replica regeneration
functionality; and iii) with the optimization in Section 4.2, in many cases only
one replica will enter the consensus protocol.

With two distinct proposals with symbolic names “0” and “1”, we can sim-
plify the statement “myvalue = a random element in prop view indexed by
coinFlip()” to be “myvalue = coinFlip()”, where coinFlip() simply returns
“0” or “1” at random. When coinFlip() is implemented with a local random
number generator, at each iteration, there is at least 1/2n probability that all
replicas choose the same new value for the next iteration, and thus terminate
the protocol. A simple calculation can show that the expected number of itera-
tions before termination is 2n.

To reduce the exponential complexity, many researchers have investigated
shared coins [Aspnes and Waarts 1996; Bracha and Rachman 1991; Saks et al.
1991], which enable the replicas to choose the same new value with a constant
probability. As a result, a shared coin protocol helps the consensus protocol to
terminate in a constant expected number of iterations. However, shared coin
protocols require communication and incur at least O(n2) time complexity.

In our design, we implement coinFlip() using a local random number gen-
erator, initialized using a common seed shared by all replicas. All replicas will
thus generate, the same random sequence. This construct provides a weaker
guarantee than a standard shared coin protocol. Namely, it needs to assume
that the timing of the system (including instruction execution speed and mes-
sage propagation) is not affected by the value of the random seed until the
coin flip result is used by the program. Otherwise, the property on probabilistic
termination will be compromised. However, we argue that this is a reasonable
assumption, since the seed is only used in the random number generator be-
fore the random result is generated. As long as the random number generator
only uses integer addition, integer multiplication and bit-wise operations, the
timing will be independent of the seed value. (Notice that we need to exclude
division operations since they may incur division-by-zero interrupts.) Many
pseudo random number generators satisfy such properties, including the one
used in Java 1.4.

With such design and two distinct proposals, the expected time complexity
of the protocol is below 3.1 iterations (6.2 rounds). If all replicas entering the
protocol have the same proposal (or if only one replica enters the protocol), the
protocol terminates (deterministically) after one iteration. With the optimiza-
tion in Section 4.2, this will be the situation when the new primary does not
crash in the middle of reconfiguration.

We also apply an optimization to the protocol to remove a significant assump-
tion in Yu [2003], where the intersection of access pairs in different rounds are
assumed to be independent. Such assumption may or may not hold in practice,
since a past nonintersection may indicate a higher probability of nonintersec-
tion in the future. To remove this assumption, we simply force the protocol
to terminate after R iterations, where R is a tunable constant. Doing this
slightly increases unsafety, but enables us to bound unsafety, even with cor-
related nonintersections. This also achieves a better termination property (in
fact, deterministic termination).

ACM Transactions on Storage, Vol. 1, No. 1, December 2004.

Consistent and Automatic Replica Regeneration • 19

5.4 Proof

This section will show that our proposed optimization on shared-memory emu-
lation (Section 5.2) does not compromise correctness. We will also analyze the
complexity and unsafety of the consensus protocol.

An iteration of the consensus protocol is correct if i) all accesses on
proposed[i] intersect; and ii) all accesses on check[i] intersect. Similarly, a
round is correct if all accesses in a particular round (either on proposed[i] or
on check[i]) intersect. A replica is correct if it does not crash. We prove the
following lemma, which is adopted from the original lemma for atomic shared-
memory [Saks et al. 1991].

LEMMA 5.1. For any iteration i:

(1) If all replicas that start iteration i have the same myvalue, then all correct
replicas will decide on that value in iteration i.
For any correct iteration i:

(2) All replicas that write agree to check[i] wrote the same value to
proposed[i].

(3) If any replica decides on a value v in iteration i, then each correct replica
that completes iteration i sees at least one agree in check view.

(4) Every replica that sees at least one agree in its check view completes itera-
tion i with the same myvalue.

(5) If any replica decides on a value v, in iteration i, then each correct replica
will decide in some iteration i′ ≤ i + 1.

PROOF.

(1) If all replicas in iteration i have the same myvalue, then all correct replicas
will write agree into check[i], and the array check view on any replica
will contain only agree. As a result, all correct replicas decide at the end of
iteration i.

(2) Prove by contradiction. Suppose both p and q write agree to check[i], but
they wrote different values to proposed[i]. Let Ap denote p’s access to
proposed[i], and Aq denote q’s access to proposed[i]. Since iteration i
is correct, by definition, Ap and Aq intersect. Without loss of generality,
suppose Ap sees Aq . Then p must have seen different values in its prop view,
and it will not write agree to check[i]. Contradiction.

(3) Suppose replica p decides on a value in iteration i. Prove by contradic-
tion. Suppose replica q does not see agree in its check view. Obviously, p
writes agree into check[i][p], otherwise it would not decide. Also, q writes
disagree into check[i][q], otherwise q would have seen one agree (from
itself). Let Ap denote p’s access to check[i], and Aq denote q’s access to
check[i]. Since Ap and Aq must intersect and q does not see agree, Ap
must have seen Aq . However, this means that p sees at least one disagree,
and it will not decide. Contradiction.

(4) Directly follows from Claim 2.

ACM Transactions on Storage, Vol. 1, No. 1, December 2004.

20 • H. Yu and A. Vahdat

(5) From Claim 3, every correct replica sees at least one agree. From Claim
4, all correct replicas complete iteration i with the same myvalue. Fi-
nally, Claim 1 tells us that all replicas will decide in or before iteration
i + 1.

LEMMA 5.2. Suppose all iterations before protocol termination are correct,
then all correct replicas decide on the same value.

PROOF. Prove by contradiction. Suppose p and q decide on different values,
and consider two cases:

(1) p decides in an iteration before q decides. From Lemma 5.1 (Claim 3,
Claim 4, and Claim 1), we know that q will decide on the same value in
the next iteration. Contradiction.

(2) p and q decide in the same iteration. Obviously, both p and q write agree
to check[i]. From Lemma 5.1 (Claim 2), they write the same value to
proposed[i], which means they have the same myvalue in that iteration.
As a result, they decide on the same value. Contradiction.

THEOREM 5.3. Let Piter = n(n − 1)Pni:

(1) Our consensus protocol has expected time complexity of 3 + (R2 + 3R − 2) ×
Piter/2 iterations and unsafety of (R + 1)Piter + 1/2R−1.

(2) When R = 0.47 − 1.44lnPiter, unsafety reaches its global minimum of
2.88Piter − 1.44PiterlnPiter.

(3) When R = 0.47 − 1.44lnPiter and Piter < 0.001, expected time complexity is
smaller than 3.1 iterations (6.2 rounds).

PROOF. The probabilistic analysis in this proof is pessimistic because we
cannot assume independence among various events. We first analyze time com-
plexity. Lemma 5.1, Claim 4, shows that if iteration i is correct, then there is
probability of 0.5 that all replicas finishing iteration i have the same myvalue.
In such case, iteration i becomes a deciding iteration, and the protocol will
terminate in or before iteration i + 1.

Let Pround = n(n − 1)/2 × Pni. Clearly, a round is correct with at least proba-
bility of 1− Pround, since there are at most n(n−1)/2 pairs of accesses that need
to intersect in a correct round. Similarly, an iteration is correct with at least
probability of 1 − 2Pround = 1 − Piter.

Let Bi be the event that iteration i is correct, that is, Bi = 1, if and only if
iteration i is correct. For iteration i, define Ai to be the event that all replicas
have the same myvalue at the end of iteration i as if iteration i were correct. All
Ai ’s are mutually independent by property of the random number generator,
but there may exist dependence among Bi ’s, and also between Bi and Aj (j ≤ i).
Let Ci denote whether iteration i is a deciding iteration. Define xi = P [C1 =
C2 = · · · = Ci = 0]. We have:

x0 = 1
x1 = 1/2 + Piter/2.

ACM Transactions on Storage, Vol. 1, No. 1, December 2004.

Consistent and Automatic Replica Regeneration • 21

For x2, notice that:

x2 = P [C1 = C2 = 0]
= P [A2 = 0 and C1 = 0]

+ P [A2 = 1 and B2 = 0 and C1 = 0]
= P [A2 = 0] × P [C1 = 0] + P [B2 = 0]

× P [A2 = 1|B2 = 0]
× P [C1 = 0|(B2 = 0 and A2 = 1)]

= x1/2 + Piter/2
×P [C1 = 0|(B2 = 0 and A2 = 1)].

Since the value of P [C1 = 0|(B2 = 0 and A2 = 1)] must be within 0 and 1, we
have x1/2 ≤ x2 ≤ x1/2 + Piter/2. Such relation can be extended to all iterations,
and we will have the following:

x0 = 1
x1 = 1/2 + Piter/2

x1/2 ≤ x2 ≤ x1/2 + Piter/2
. . .

xR−1/2 ≤ xR ≤ xR−1/2 + Piter/2.

Some simple calculation can show that 1/2i ≤ xi ≤ 1/2i + Piter. Define yi =
P [C1 = C2 · · · = Ci−1 = 0 and Ci = 1]. We have:

yi = xi−1 − xi

≤ 1/2i−1 + Piter − 1/2i

= 1/2i + Piter.

The expected number of iterations before termination is then:

R∑
i=1

P [Terminate in iteration i] × i

+ R × P [Does not terminate within iteration R]

= R × xR−1 +
R−1∑
i=1

(i + 1) × yi

≤ R × (1/2R−1 + Piter) +
R−1∑
i=1

(i + 1)/2i

+ Piter

R−1∑
i=1

(i + 1)

= R/2R−1 +
R−1∑
i=1

(i + 1)/2i + R2 + 3R − 2
2

× Piter .

ACM Transactions on Storage, Vol. 1, No. 1, December 2004.

22 • H. Yu and A. Vahdat

Next, we will show that R/2R−1 <
∑∞

i=R(i+1)/2i. This is true because for any z:

∞∑
i=R

(i + 1)zi =
(∞∑

i=R

zi+1

)′
(derivative for z)

=
(

z R+1

1 − z

)′

= (R + 1)z R − Rz R+1

(1 − z)2
.

When z = 1/2, we have
∑∞

i=R(i + 1)/2i = (2R + 4)/2R > R/2R−1. From this
result, we have:

R/2R−1 +
R−1∑
i=1

(i + 1)/2i + R2 + 3R − 2
2

× Piter

<

∞∑
i=1

(i + 1)/2i + R2 + 3R − 2
2

× Piter

= 3 + R2 + 3R − 2
2

× Piter.

For unsafety, notice that the probability of all iterations from iteration 1
to iteration R being correct is at least 1 − R × Piter. The protocol does not
terminate within iteration R with probability of at most xR−1 ≤ 1/2R−1 + Piter.
From Lemma 5.2, the total unsafety is bounded from above by:

R × Piter + 1/2R−1 + Piter

= (R + 1) × Piter + 1/2R−1 .

It can easily be shown that the above unsafety reaches its minimal when:

R = lnln4 − lnPiter

ln2
= 0.47 − 1.44lnPiter ,

and the minimal unsafety achieved is 2.88Piter − 1.44PiterlnPiter.

6. AVAILABILITY ANALYSIS OF OM

This section uses analytical approaches to study the availability of Om, and
in particular, the benefits of regeneration and single replica regeneration. We
choose to use an analytical approach because experimental evaluation of avail-
ability for regenerative systems poses fundamental challenges. For example,
at high availability levels, the experiments may require unrealistically long
duration to observe enough failure events. Furthermore, a human subject may
need to be involved throughout the evaluation to repair the system as neces-
sary [Brown et al. 2002].

We consider two types of systems: regenerative systems with automatic regen-
eration functionality, and static replication systems without such functionality.
We consider three types of events: failure, regeneration, and repair. Regener-
ation is the system’s action to heal after replica failures. Repair by a human

ACM Transactions on Storage, Vol. 1, No. 1, December 2004.

Consistent and Automatic Replica Regeneration • 23

being is necessary for static replication systems, or regenerative systems when
they cannot regenerate (for example, because of the loss of majority). We as-
sume that once human repair is invoked, all failures in the system are repaired
when the repair completes. Failure, regeneration, and repair are all modeled
using exponential distributions.

We consider n replicas that fail independently with a failure rate of λ. Let the
regeneration rate be µg , and the repair rate be µp. For regenerative systems, we
assume that the system can regenerate with k or more functioning replicas. The
value of k is determined by the quorum system used during the regeneration
(Section 2.2). For example, if we use a majority quorum system to enforce strict
consistency, then k = �(n + 1)/2	. With the witness model and single replica
regeneration in Om, k = 1.

For regenerative systems, availability analysis must account for both regen-
eration and repair. Here we assume that the system remains available during
regeneration (enabled by background regeneration in Om), but becomes un-
available when human repair is in progress. To deal with two streams of repairs,
we first analyze the mean time to the first human repair (MTTF). To derive such
MTTF, we only consider regeneration and analyze the MTTF of an imaginary
system that can always regenerate. The MTTF of this imaginary system will
be the same as the mean time to the first human repair of the real system. (See
Sahner et al. [1996] for a comprehensive treatment on reliability analysis and
full discussion on such technique.) In the imaginary system, the steady state
availability of each replica is A = µg/(λ + µg). System availability is Aeq =∑n

i=k

(n
k

)
(1− A)n−i Ai. Let 1/λeq be the MTTF of the imaginary system. We have:

λeq = P [k replicas are up] × kλ

System Availability
,

=
(n

k

)
(1 − A)n−k Ak × kλ

Aeq
.

Given that the mean time to human repair is 1/λeq, the availability of real
regenerative system is then µp/(λeq + µp).

The availability of a static replication system can be computed by simply
replacing µg with µp in the previous analysis. We also make the advantageous
assumption for static replication systems that k = 1.

Based on the previous analysis, Figure 6 plots the availability of three repli-
cation systems. We intentionally use a small MTTF for the nodes, because our
regeneration design targets recovery from not only real node failures, but also
long network outages. Based on a diverse set of traces, Dahlin et al. [2003] show
that for network failures lasting more than 30 seconds, the MTTF is 48111
seconds (or roughly 12 hours). The jagged curve for the majority regenerative
system results from the majority requirement for regeneration. For example,
three replicas can tolerate one failure, and having four replicas will not increase
such fault tolerance (since a majority is three). On the other hand, the prob-
ability of having more that one failure out of three replicas is smaller. This is
why the availability under three replicas is actually better than the availability
under four replicas.

ACM Transactions on Storage, Vol. 1, No. 1, December 2004.

24 • H. Yu and A. Vahdat

Fig. 6. The unavailability of three replication systems: static replication with no regeneration,
regeneration from any majority of replicas, and regeneration from any single replica (such as Om).
Node MTTF: 12 hours. Mean time to regenerate: 5 minutes. Mean time for human repair: 8 hours.

The graph shows that regeneration, in general, has significant advantage
over static replication systems. Further notice that the amount of human repair
is also decreased in regenerative systems, resulting in better manageability.
Compared with regenerative systems that require a majority, single replica
regenerative systems (such as Om) need only one half or one third of the replicas
in order to achieve the same availability. Smaller number of replicas not only
means improved write performance, but also reduces regeneration activities.
On the other hand, with the same number of replicas, Om can achieve much
better availability (and incurs less human repair). Such benefit is significant
even with a small number of replicas (such as two or three). Similar observations
are valid for other reasonable values for the parameters.

7. EXPERIMENTAL EVALUATION

This section evaluates the performance and unsafety of Om. Om is written
in Java 1.4, using TCP and nonblocking I/O for communication. All messages
are first serialized using Java serialization, and then sent via TCP. Our design
does not rely on TCP’s reliable and in-order delivery, and we use TCP to simplify
the fragmentation and composition of serialized objects. Because of the use of
serialization, our message size tends to be larger than strictly necessary. The
core of Om uses an event-driven architecture.

7.1 Unsafety Evaluation

Om is able to regenerate from any single replica at the cost of a small probabil-
ity of inconsistent regeneration. We first quantify such unsafety under typical
Internet conditions.

Unsafety is about rare events, and explicitly measuring unsafety experimen-
tally faces many of the same challenges as evaluating service availability [Yu
and Vahdat 2001]. For instance, assuming that each experiment takes 10 sec-
onds to complete, we would need, on average, over four years to observe a single
inconsistency event for an unsafety of 10−7. Given these challenges, we follow
the methodology in Yu and Vahdat [2001] and use a real-time emulation en-
vironment for our evaluation. We instrument Om to add an artificial delay to

ACM Transactions on Storage, Vol. 1, No. 1, December 2004.

Consistent and Automatic Replica Regeneration • 25

each message. Since the emulation is performed on a LAN, the actual propaga-
tion delay is negligible. We determine the distribution of appropriate artificial
delays by performing a large-scale measurement study of PlanetLab sites. For
our emulation, we set the delay of each message sent across the LAN to the
delay of the corresponding message in our WAN measurements.

Our WAN sampling software runs with the same communication pattern
as the consensus protocol except that it does not interpret the messages.
Rather, the replicas repeatedly communicate with all witnesses in parallel via
TCP. The request size is 1KB while the reply is 2KB. We log the time (with a
cap of 6 minutes) needed to receive a reply from individual witnesses. The sam-
pling interval (time between successive samples) for each replica ranges from
1 to 10 seconds in different measurements. Notice that we do not necessarily
wait for the previous probe’s reply before sending the next probe. All of our
measurements use 7 witnesses and 15 replicas on 22 different PlanetLab sites.
To avoid the effects of Internet2 and to focus on the pessimistic behavior of
less well-connected sites, we locate the witnesses at noneducational or foreign
sites: Intel Research Berkeley, Technische Universitat, Berlin, NEC Laborato-
ries; Univ of Technology, Sydney; Copenhagen, ISI; Princeton DSL. Half of the
nodes serving as replicas are also foreign or noneducational sites, while the
other half are U.S. educational sites. For the results presented in this article,
we use an 8-day long trace measured in July 2003. The sampling interval in
this trace is 5 seconds, and the trace contains 150,000 intervals. Each interval
has 7 × 15 = 105 samples, resulting in over 15 million samples.

7.2 Unsafety Results

The key property utilized by the witness model is that Pni (probability of nonin-
tersection) can be quite small, even with a small number of witnesses. Earlier
work [Yu 2003] verifies this assumption using a number of existing network
measurement traces [Andersen et al. 2001; Yu and Vahdat 2001]. In the RON1
trace, 5 witness rows result in 4 × 10−5 Pni, while it takes 6 witness rows to
yield similar Pni under the TACT trace.

Given these earlier results, this section concentrates on the relationship be-
tween Pni and unsafety, namely, how the randomized consensus protocol am-
plifies Pni into unsafety under different parameter settings. This is important
since the protocol has multiple rounds, and nonintersection in any round may
result in unsafety.

Unsafety can be affected by several parameters in our system: the message
timeout value for contacting witnesses, the size of the witness matrix, and
the number of replicas. Since a larger t value in the witness matrix is used
to guard against potential witness failures and witnesses do not fail in our
experiments, we use t = 1 for all our experiments. Witness failures between ac-
cesses may slightly increase Pni, which will be discussed later. Larger timeout
values decrease the possibility that a replica cannot reach a functioning wit-
ness, and thus decreases Pni. On the other hand, it also degrades performance
under true witness failures since the replica cannot return until the timeout
expires.

ACM Transactions on Storage, Vol. 1, No. 1, December 2004.

26 • H. Yu and A. Vahdat

Fig. 7. Pni for different timeout values.

Fig. 8. Unsafety and Pni.

Figure 7 plots Pni for different timeout values. In our finite-duration experi-
ments, we cannot observe probabilities below 10−7. This is why the curves for
5 and 15 second timeout values drop to zero with seven witnesses. The fig-
ure shows that Pni quickly approaches its lowest value with the timeout at
5 seconds. Our results are slightly optimistic since witnesses do not crash in
the measurements. Witness failures before the consensus protocol starts are
masked using a t > 1. Formal analysis is available in Yu [2003]. On the other
hand, witness failures in the middle of the protocol will slightly increase Pni.
However, even with a pessimistic 12-hour MTTF and 6-second protocol execu-
tion time, witness failures will occur during protocol execution with a probabil-
ity of below 0.001. Figure 7 shows that each witness contributes roughly a 0.1
factor in decreasing Pni. Taking witness failures into account will only bring
such factor down to 0.099.

Having determined the timeout value, we now use emulation to measure
unsafety. We first consider the simple case of two replicas. Figure 8 plots both
Pni and unsafety for two different timeout values. Using just 7 witnesses, Om
already achieves an unsafety of 5 × 10−7. With 5 replicas and a pessimistic
replica MTTF of 12 hours, reconfiguration takes place every 2.4 hours. With un-
safety at 5 × 10−7, an inconsistent reconfiguration would take place once every
500 years. In a peer-to-peer system with a large number of nodes, reconfig-
uration can occur much more frequently. For example, for a Pastry ring with

ACM Transactions on Storage, Vol. 1, No. 1, December 2004.

Consistent and Automatic Replica Regeneration • 27

Fig. 9. Unsafety and Pni for more than two replicas. The predicted results are computed based on
Theorem 2. Notice that we intentionally use 6 witnesses with 5 second timeout value, which results
in relatively large unsafety. This allows us to observe more rare events and reduce inaccuracy. Thus,
we focus on the trends in these results rather than the absolute values.

1, 000 nodes and replication degree of 5, each node may be shared by 5 different
configurations. As a result, reconfiguration in the entire system occurs every
8.64 seconds. In this case, inconsistent regeneration will take place once every
half year system-wide. It may be possible to further reduce unsafety with addi-
tional witnesses, though the benefits cannot be quantified with the granularity
of our current measurements.

Figure 8 also shows that unsafety is very close to Pni, implying that the
consensus protocol does not significantly amplify the error. On the other hand,
our analysis (Theorem 2) shows that unsafety can be much larger that Pni.
The discrepancy comes from the fact that, in many cases, nonintersection in a
round does not necessarily result in unsafety. Our analysis further overstates
unsafety because of the pessimistic analysis on termination. Recall that un-
safety can potentially be amplified at each round. Thus the larger the total
number of rounds, the higher the unsafety. Theorem 2 shows that the expected
number of rounds before termination is below 6.2. In our experiments, the aver-
age number of rounds before termination is roughly 4, and this value is rather
insensitive to the number of witnesses and replicas. Also notice that in our em-
ulation, we do not use the optimization of having replicas wait before entering
the protocol (Section 4.2), which will further reduce the complexity to 2 rounds
(Section 7.3.2).

Figure 9 confirms our previous observations beyond two replicas. Pround is
defined as the possibility of those rounds where nonintersection occurs. Clearly,
Pround equals Pni for two replicas, and it increases with the number of replicas.
For these experiments, each replica proposes a distinct value. This makes it
more difficult for the protocol to terminate than the case with just two distinct
proposals (as assumed by Theorem 2). Interestingly, the measured unsafety
is even below Pround with three or more replicas. This does not occur for two
replicas because nonintersection in the first round of the protocol will always
result in unsafety for two replicas. With more than two replicas, even if some
pair of replicas do not intersect, it is possible that a third replica first makes a
decision. Then the two replicas will both adopt the proposal of the third replica,
thus preserving safety. Such effects become increasingly significant with more

ACM Transactions on Storage, Vol. 1, No. 1, December 2004.

28 • H. Yu and A. Vahdat

Fig. 10. Latency for renewing leases based on our lease graph.

replicas, which explains why the gap between measured unsafety and measured
Pround increases with the number of replicas.

7.3 Performance Evaluation

We obtain our performance results by deploying and evaluating Om over Plan-
etLab. In all our performance experiments, we use the seven witnesses used
before in our WAN measurement. With single replica regeneration, Om can
achieve high availability with a small number of replicas. For example, our
analysis (Section 6) shows that Om can achieve 99.9999% availability with
just 4 replicas under reasonable parameter settings. Thus, we focus on small
replication factors in our evaluation.

7.3.1 Normal Case Operations. We first provide basic latency results for
individual read and write operations using 10 PlanetLab nodes as replicas. In
Pastry, node IDs are created using a one-way hash and replicas must be those
nodes with the closest IDs to the object ID. To control the nodes on which data
is replicated, we only start a Pastry ring with the same number of nodes as the
replication degree. We intentionally choose a mixture of US educational sites,
US noneducational sites, and foreign sites. To isolate the performance of Om
from that of Pastry, we inject reads and writes from the replicas, instead of
having client nodes injecting accesses via peer-to-peer routing.

Since a read in Om is processed by a single replica (as long as it holds
all necessary leases), a read involves only a single request/response pair.
However, additional latency is incurred when lease renewal is required. To
separate these effects, we directly study the latency of lease renewal. How-
ever, notice that though not implemented in our prototype, leases can be re-
newed proactively, which will hide most of this latency from the critical path.
Figure 10 plots the time needed to renew leases based on our lease graph. Ob-
viously, the primary incurs smaller latency to renew all of its leases. Secondary
replicas need to contact the primary first to request the appropriate set of
subleases.

Processing writes is more complex because it involves a two-phase protocol
among the replicas. Figure 11 presents the latency for writes of different sizes.
In all three cases, the latency increases linearly with the number of replicas,

ACM Transactions on Storage, Vol. 1, No. 1, December 2004.

Consistent and Automatic Replica Regeneration • 29

Fig. 11. Latency for a write.

Fig. 12. The cost of creating new replicas and invoking a failure-free reconfiguration. All experi-
ments start from a single replica with a data object of a particular size, and then expand to either
3 or 5 replicas.

indicating that the network bandwidth of the primary is the likely bottleneck for
these experiments. For 1MB writes, the latency reaches 10 seconds for 10 repli-
cas. We believe such latency can be improved by constructing an application-
layer multicast tree among the replicas. Because of the reconfiguration capa-
bility of Om, such a tree can be easily established by the primary for each new
configuration, significantly decreasing the complexity of tree construction.

7.3.2 Reconfiguration. We next study the performance of regenera-
tion. For these experiments, we use five PlanetLab nodes as replicas:
bu.edu, cs.duke.edu, hpl.hp.com, cs.arizona.edu, and cs-ipv6.lancs.ac.uk.
Figure 12 shows the cost of failure-free reconfiguration. In all cases, the two
components of “finding replica set” and “sending configuration notices” take
less than one second. This is also the cost of failure-free reconfigurations
when we shrink instead of expand the replica group. The latency of “finding
replica set” is determined by Pastry routing, the only place where Pastry’s per-
formance influences the performance of reconfiguration. The time needed to
transfer the data object begins to dominate the overall cost with 1MB of data.
We believe, therefore, that new replicas should be regenerated in the back-
ground using bandwidth consumption-controlling techniques such as TCP Nice
[Venkataramani et al. 2002]. This will, of course, increase the time to regener-
ate and affect availability. But even with 2-hour regeneration time, based on
our analysis in Section 6 and with the same values for other parameters, we still

ACM Transactions on Storage, Vol. 1, No. 1, December 2004.

30 • H. Yu and A. Vahdat

Fig. 13. The cost of failure-induced reconfigurations as observed by the primary of the new con-
figuration. All experiments start from a five-replica configuration, and then we kill a particular set
of replicas.

only need 8 replicas to achieve 99.9999% availability. Also note that failure-free
reconfigurations do not block accesses, so the system is still available during
the regeneration process.

The cost of failure-induced reconfiguration is higher. Figure 13 plots the cost
of failure-induced reconfiguration as observed by the primary of the new con-
figuration. Using optimizations in Section 4.2, only one replica (the one with
the smallest ID, which is also the primary of the new configuration) enters the
consensus protocol immediately, while other replicas wait for a timeout (10 sec-
onds in our case). As a result of this optimization, in all three cases the consen-
sus protocol terminates after one iteration (two rounds) and incurs an overhead
of roughly 1.5 seconds. The new primary then notifies the other replicas of the
resulting configuration. As a result, the total reconfiguration delay observed on
all the other replicas is approximately the same as the primary, except that af-
ter probing members (7.5 seconds), they wait for the decision. In Figure 13, the
time needed to determine the live members of the old configuration dominates
the total overhead. This step involves probing the old members and waiting for
replies within a timeout (7.5 seconds in our case). A smaller timeout would de-
crease the delay, but would also increase the possibility of false failure detection
and unnecessary replica removal.

Waiting for lease expiration, interestingly, does not cause any delay in our ex-
periments (and thus is not shown in Figure 13). Since we disable lease renewal
at the very beginning of the protocol and our lease duration is 15 seconds, by
the time the protocol completes the probing phase and the consensus protocol,
all leases have already expired. In these experiments, we do not inject writes.
Thus, the time for applying pending writes only includes the time for the new
primary to collect pending writes from the replicas and then to realize that the
set is empty. The presence of pending writes will increase the cost of this step,
as explored in our later experiments. Finally, when the new configuration con-
tains only one replica (last experiment in Figure 13), applying pending writes
and sending out configuration notices involve only local processing.

7.3.3 End-to-End Performance. Our final set of experiments study the end-
to-end effects of reconfiguration on users. For this purpose, we deploy a 42-node
Pastry ring on 42 PlanetLab sites, and then measure the write throughput and
latency for a particular object during reconfiguration.

ACM Transactions on Storage, Vol. 1, No. 1, December 2004.

Consistent and Automatic Replica Regeneration • 31

Fig. 14. Measured write throughput under regeneration.

For these experiments, we configure the system to maintain a replication
degree of four. To isolate the throughput of our system from the potential bot-
tleneck on a particular network path, we directly inject writes on the primary.
Both the writes and the data object are of 80KB size. In the two-phase protocol
for writes, the primary sends a total of 240KB data to disseminate each write
to the three secondary replicas. For each write, the primary also incurs roughly
9KB of control message overhead.

The experiment records the total number of writes returned for every 5 sec-
ond interval, and then reports the average as the system throughput. Our test
program also records the latency experienced by each write. Writes are rejected
when the system is performing a failure-induced reconfiguration.

For our experiment, we first replicate the data object at cs.caltech.edu,
cs.ucla.edu, inria.fr, and csres.utexas.edu (primary). Notice that this
replica set is determined by Pastry. Next, we manually kill the process running
on inria.fr, causing a failure-induced reconfiguration to shrink the configura-
tion to three replicas. Next, to maintain a replication factor of 4, Om expands
the configuration to include lbl.gov.

Figure 14 plots the measured throughout of the system over time. The abso-
lute throughput in Figure 14 is largely determined by the available bandwidth
among the replica sites. The jagged curve is partly caused by the short win-
dow (5 seconds) we use to compute throughput. We use a small window so
that we can capture relatively short reconfiguration activity. We manually re-
move inria.fr at t = 62. In the configuration with the inria.fr site, that
site’s bandwidth is clearly the bottleneck. This explains why after regenera-
tion (when the inria.fr site is replaced by lbl.gov), the system throughput
roughly doubles. Furthermore, the throughput in the first configuration is less
stable than the second because the available bandwidth is more variable from
inria.fr.

The throughput between t = 60 and t = 85 in Figure 14 shows the effects of
regeneration. Because of the failure at t = 62, the system is not able to properly
process writes accepted shortly after this point. The system begins regeneration
when the failure is detected at t = 69. The failure-induced reconfiguration
shrinking the configuration takes 13 seconds, of which 3.7 is consumed by the
application of pending writes. The failure-free reconfiguration that expands the

ACM Transactions on Storage, Vol. 1, No. 1, December 2004.

32 • H. Yu and A. Vahdat

Fig. 15. Measured latency of writes. For each write submitted at time t1 and returning at time t2,
we plot a point (t2, t2 − t1) in the graph.

configuration to include lbl.gov takes 1.3 seconds. After the reconfiguration,
the throughput gradually increases to its maximum level as the two-phase
pipeline for writes fills.

To better understand these results, we plot per-write latency in Figure 15. For
the first configuration, the variation in latency confirms our previous argument
that the network path to the inria.fr site is unstable. The gap between t = 62
and t = 82 is caused by system regeneration when the system cannot process
writes (from t = 62 to t = 69), or rejects writes (from t = 69 to t = 82). At
t = 80, those seven writes submitted between t = 62 and t = 69 return with
relatively high latency. These writes have been applied as pending writes in the
new configuration. Notice that even though the system only starts accepting
writes again at t = 82, the throughput at t = 80 is already nonzero because
those pending writes are applied and count toward throughput.

We also perform additional experiments showing similar results when re-
generating three replicas instead of one replica. Overall, we believe that re-
generating in 20 seconds can be highly effective for a broad array of services.
This overhead can be further reduced by combining the failure detection phase
(7 seconds) with the “ProbeMember” phase in failure-induced reconfiguration,
potentially reducing the overhead to 13 seconds.

8. RELATED WORK

RAMBO [Gilbert et al. 2003; Lynch and Shvartsman 2002] explicitly aims to
support reconfigurable quorums, and thus shares the same basic goal as Om.
In RAMBO, configuration not only refers to a particular set of replicas, but
also includes specific quorum definitions used in accessing the replicas. In our
system, the default scheme for data accessing is read-one/write-all. RAMBO
also uses a consensus protocol (Paxos [Lamport 1998]) to uniquely determine
the next configuration. Relative to RAMBO, our design has the following fea-
tures. First, RAMBO only performs failure-induced reconfigurations. Second,
RAMBO requires a majority of replicas to reconfigure. On the other hand, Om
can reconfigure from any single replica at the cost of a small probability of vi-
olating consistency. Next, RAMBO does not have a primary to serialize writes,
rather a client directly contacts a quorum. Because of this, RAMBO only allows

ACM Transactions on Storage, Vol. 1, No. 1, December 2004.

Consistent and Automatic Replica Regeneration • 33

primitive write operations, that is, writes that simply write a new value. In our
system, a write can be an arbitrary update transaction that reads and then
modifies the data based on some computation. Finally, in RAMBO, both reads
and writes proceed in two phases. The first phase uses read quorums to obtain
the latest version number (and value, in the case of reads), while the second
phase uses a write quorum to confirm the value. Thus, reads in RAMBO are
much more expensive than ours. Om avoids this overhead for reads by using a
two-phase protocol for write propagation.

A unique feature of RAMBO is that it allows accesses even during recon-
figuration. However, to achieve this, RAMBO requires reads or writes to ac-
quire appropriate quorums from all previous configurations that have not been
garbage-collected. To garbage-collect a configuration, a replica needs to acquire
both a read and a write quorum of that configuration. This means that whenever
a read quorum of replicas fails, the configuration can never be garbage-collected.
Since both reads and writes in RAMBO need to acquire a write quorum, this
further implies that RAMBO completely blocks whenever it loses a read quo-
rum. Om uses lease graphs to avoid acquiring quorums for garbage-collection. If
Om uses the same read/write quorums as in RAMBO, Om will regenerate (and
thus temporarily block accesses) only if RAMBO blocks. Under such design,
however, Om would require at least a read quorum of replicas to regenerate.
But this is still strictly better than RAMBO where regeneration requires both
a read and a write quorum.

Related to replica group management, there has been extensive study on
group communication [Amir et al. 1992; Birman and Joseph 1987; Kaashoek
and Tanenbaum 1991; Mishra et al. 1993; Prisco et al. 1999; Renesse et al.
1993; Ricciardi and Birman 1991] in asynchronous systems. A comprehensive
survey [Chockler et al. 2001] is available. Group communication does not sup-
port read operations, and thus does not need leases or a two-phase write pro-
tocol. On the other hand, Om does not deliver membership views and does not
require view synchrony. The membership in the configuration can not be consid-
ered as a view, since we do not impose virtual synchrony relationship between
the configurations and writes. This helps to explain the relationship between
Om (which fundamentally reduces replica group reconfiguration to consensus)
and the impossibility result in Schiper and Sandoz [1994], which proves that
primary-partition group communication cannot be reduced to consensus. We
avoid this impossibility in a similar fashion as in Babaoglu et al. [1994] and
Bartoli and Babaoglu [1997], where even though multiple primary views can
be delivered, the application will be able to perform action in only one of them.

Om’s reconfiguration protocol can also be used in group communication. We
here compare our reconfiguration component with previous group communica-
tion systems. Depending on their behavior under partitions, group communica-
tion services can be classified into partitionable group communication services
and primary-partition group communication services. One exception to such
classification is Amoeba [Kaashoek and Tanenbaum 1991], which allows the
user to choose between a partitionable service and a primary-partition ser-
vice. Partitionable group communication services [Amir et al. 1992; Kaashoek
and Tanenbaum 1991; Renesse et al. 1993] allow simultaneous progress in the

ACM Transactions on Storage, Vol. 1, No. 1, December 2004.

34 • H. Yu and A. Vahdat

face of network partitions or false failure detection, potentially introducing
inconsistency. On the other hand, primary-partition group communication ser-
vices [Birman and Joseph 1987; Kaashoek and Tanenbaum 1991; Mishra et al.
1993; Prisco et al. 1999; Ricciardi and Birman 1991] allow progress only in a
single partition, but require a majority of nonfaulty nodes to proceed. In com-
parison, Om can regenerate even with a single nonfaulty node, while allowing
a small probability of violating consistency.

While many early group communication systems (e.g., ISIS [Birman and
Joseph 1987], Amoeba [Kaashoek and Tanenbaum 1991], and Consul [Mishra
et al. 1993]) claim to allow network partitions, they only allude to using major-
ity quorums to guarantee the uniqueness of the next configuration in case of
failures. However, such a step in fact requires a consensus protocol such as
Paxos, and is nontrivial. Recent group communication systems [Prisco et al.
1999] all use variants of three-phase commit [Keidar and Dolev 1995; Skeen
1982] (similar to Paxos) for reconfiguration. None of these systems distinguishes
between failure-free and failure-induced reconfigurations.

The group membership design in Ricciardi and Birman [1991] uses ideas
similar to failure-free reconfiguration (called update) and failure-induced recon-
figuration (called reconfiguration). However, updates in Ricciardi and Birman
[1991] involve two phases, rather than a single phase as in our failure-free
reconfiguration. In fact, their updates are similar to Om writes. Furthermore,
the reconfiguration process in Ricciardi and Birman [1991] involves reapply-
ing pending “updates”. Our design avoids this overhead by using appropriate
manipulation manipulation on the sequence numbers proposed by failure-free
and failure-induced reconfigurations.

In standard replicated state machine techniques [Schneider 1990], all writes
go through a consensus protocol, and all reads contact a read quorum of replicas.
With a fixed set of replicas, a read quorum here usually cannot be a single
replica. Otherwise the failure of any replica will disable the write quorum. In
comparison, with regeneration functionality and the lease graph, Om is able
to use a small read quorum (i.e., a single replica). Om also uses a simpler
two-phase write protocol in place of a consensus protocol for normal writes.
Consensus is only used for reconfiguration.

Similar to the witness model, voting with witnesses [Paris 1986] allows the
system to compose a quorum with nodes other than the replicas themselves.
However, voting with witnesses still uses the simple majority quorum technique
and thus always requires a majority to proceed. The same is true for Disk
Paxos [Gafni and Lamport 2000], where a majority of disks is needed.

9. CONCLUSIONS

Motivated by the need for consistent replica regeneration, this article presents
Om, the first read/write peer-to-peer, wide-area storage system that achieves
high availability and manageability through online automatic regeneration
while still preserving consistency guarantees. We achieve these properties
through the following three novel techniques: i) single replica regeneration
that enables Om to achieve high availability with a small number of replicas;

ACM Transactions on Storage, Vol. 1, No. 1, December 2004.

Consistent and Automatic Replica Regeneration • 35

ii) failure-free reconfigurations allowing common-case reconfigurations to pro-
ceed within a single round of communication; and iii) a lease graph and two-
phase write protocol to avoid expensive consensus for normal writes, and also
to allow reads to be processed by any replica. Experiments on PlanetLab show
that consistent regeneration in Om completes in approximately 20 seconds,
with the potential for further improvement to 13 seconds.

REFERENCES

ADYA, A., BOLOSKY, W. J., CASTRO, M., CERMAK, G., CHAIKEN, R., DOUCEUR, J. R., HOWELL, J., LORCH, J. R.,
THEIMER, M., AND WATTENHOFER, R. P. 2002. FARSITE: Federated, available, and reliable storage
for an incompletely trusted environment. In Proceedings of the 5th Symposium on Operating
Systems Design and Implementation.

AKAMAI CORPORATION. 1999. http://www.akamai.com.
AMIR, Y., DOLEV, D., KRAMER, S., AND MALKI, D. 1992. Transis: A communication subsystem for high

availability. In Proceedings of the 22nd International Symposium on Fault Tolerant Computing.
76–84.

ANDERSEN, D., BALAKRISHNAN, H., KAASHOEK, F., AND MORRIS, R. 2001. Resilient overlay networks.
In Proceedings of the 18th Symposium on Operating Systems Principles (SOSP).

ASPNES, J. AND WAARTS, O. 1996. Randomized consensus in expected O(n log2n) operations per
processor. SIAM J. Comput. 25, 5 (Oct.), 1024–1044.

BABAOGLU, O., BARTOLI, A., AND DINI, G. 1994. Replicated file management in large-scale dis-
tributed systems. In Workshop on Distributed Algorithms. 1–16.

BARTOLI, A. AND BABAOGLU, O. 1997. Selecting a “primary partition” in partitionable asynchronous
distributed systems. In Symposium on Reliable Distributed Systems. 138–145.

BIRMAN, K. AND JOSEPH, T. 1987. Reliable communication in the presence of failures. ACM Trans.
Comput. Syst. 5, 47–76.

BRACHA, G. AND RACHMAN, O. 1991. Randomized consensus in expected O(n2logn) operations. In
Proceedings of the 5th International Workshop on Distributed Algorithms.

BROWN, A., CHUNG, L., AND PATTERSON, D. 2002. Including the human factor in dependability bench-
marks. In DSN Workshop on Dependability Benchmarking.

CASTRO, M. AND LISKOV, B. 2000. Proactive recovery in a Byzantine-fault-tolerant system. In Pro-
ceedings of the 4th Symposium on Operating Systems Design and Implementation (OSDI).

CHOCKLER, G. V., KEIDAR, I., AND VITENBERG, R. 2001. Group communication specifications: A com-
prehensive study. ACM Comput. Surv. 33, 1–43.

CHOW, R. AND JOHNSON, T. 1998. Distributed Operating Systems & Algorithms. Addison Wesley
Longman, Inc.

COHEN, R., EREZ, K., BEN AVRAHAM, D., AND HAVLIN, S. 2000. Resilience of the Internet to random
breakdowns. Phys. Rev. Letters 85, 21 (Nov.).

DABEK, F., KAASHOEK, M. F., KARGER, D., MORRIS, R., AND STOICA, I. 2001. Wide-area cooperative
storage with CFS. In Proceedings of the 18th ACM Symposium on Operating Systems Principles.

DABEK, F., ZHAO, B., DRUSCHEL, P., KUBIATOWICZ, J., AND STOICA, I. 2003. Towards a common API
for structured peer-to-peer overlays. In Proceedings of the 2nd International Workshop on Peer-
to-Peer Systems.

DAHLIN, M., CHANDRA, B., GAO, L., AND NAYATE, A. 2003. End-to-end WAN service availability.
ACM/IEEE Trans. Network. 11, 2 (April).

FOX, A., GRIBBLE, S., CHAWATHE, Y., AND BREWER, E. 1997. Cluster-based scalable network services.
In Proceedings of the 16th ACM Symposium on Operating Systems Principles. Saint-Malo, France.

FREEPASTRY. http://www.cs.rice.edu/CS/Systems/Pastry/FreePastry.
GAFNI, E. AND LAMPORT, L. 2000. Disk paxos. In Proceedings of the International Symposium on

Distributed Computing. 330–344.
GILBERT, S., LYNCH, N., AND SHVARTSMAN, A. 2003. RAMBO II: Rapidly reconfigurable atomic mem-

ory for dynamic networks. In Proceedings of the International Conference on Dependable Systems
and Networks (DSN).

GOLDBERG, M. K. 1966. The diameter of a strongly connected graph (Russian). Doklady 170, 4.

ACM Transactions on Storage, Vol. 1, No. 1, December 2004.

36 • H. Yu and A. Vahdat

GRAY, C. AND CHERITON, D. 1989. Leases: An efficient fault-tolerant mechanism for distributed file
cache consistency. In Proceedings of the 12th ACM Symposium on Operating Systems Principles.
202–210.

HERLIHY, M. AND WING, J. 1990. Linearizability: A correctness condition for concurrent objects.
ACM Trans. Program. Lang. Syst. 12, 3 (July).

KAASHOEK, M. F. AND TANENBAUM, A. S. 1991. Group communication in the Amoeba distributed
operating system. In Proceedings of the 10th International Conference on Distributed Computing
Systems. 222–230.

KEIDAR, I. AND DOLEV, D. 1995. Increasing the resilience of atomic commit, at no additional cost.
In Proceedings of the ACM Symposium of Principles of Database Systems.

KUBIATOWICZ, J., BINDEL, D., CHEN, Y., EATON, P., GEELS, D., GUMMADI, R., RHEA, S., WEATHERSPOON,
H., WEIMER, W., WELLS, C., AND ZHAO, B. 2000. OceanStore: An architecture for global-scale
persistent storage. In Proceedings of ACM ASPLOS.

LAMPORT, L. 1998. The part-time parliament. ACM Trans. Comput. Syst. 16, 133–169.
LYNCH, N. 1997. Distributed algorithms. Morgan Kaufmann Publishers.
LYNCH, N. AND SHVARTSMAN, A. 2002. RAMBO: A reconfigurable atomic memory service for dy-

namic networks. In Proceedings of the 16th International Symposium on Distributed Computing
(DISC).

MISHRA, S., PETERSON, L., AND SCHLICHTING, R. 1993. Consul: A communication substrate for fault-
tolerant distributed programs. Distrib. Syst. Engineer. 1, 87–103.

MUTHITACHAROEN, A., MORRIS, R., GIL, T., AND CHEN, B. 2002. Ivy: A read/write peer-to-peer file
system. In Proceedings of the 5th Symposium on Operating Systems Design and Implementation.

PARIS, J.-F. 1986. Voting with Witnesses: A consistency scheme for replicated files. In Proceedings
of the 6th International Conference on Distributed Computer Systems. 606–612.

PETERSON, L., ANDERSON, T., CULLER, D., AND ROSCOE, T. 2002. A blueprint for introducing disruptive
technology into the internet . In Proceedings of the ACM HotNets-I Workshop.

PRISCO, R. D., FEKETE, A., LYNCH, N., AND SHVARTSMAN, A. 1999. A dynamic primary configuration
group communication service. In Proceedings of the 13th International Symposium on Distributed
Computing (DISC).

RENESSE, R., BIRMAN, K., COOPER, R., GLADE, B., AND STEPHENSON, P. 1993. The Horus System. In
Reliable Distributed Computing with the Isis Toolkit, K. P. Birman and R. van Renesse, Eds.
133–147.

RHEA, S., EATON, P., GEELS, D., WEATHERSPOON, H., ZHAO, B., AND KUBIATOWICZ, J. 2003. Pond: the
OceanStore prototype. In Proceedings of the 2nd USENIX Conference on File and Storage Tech-
nologies.

RICCIARDI, A. AND BIRMAN, K. 1991. Using process groups to implement failure detection in asyn-
chronous environments. In Proceedings of the 10th ACM Symposium of Principles of Distributed
Computing. 341–352.

ROWSTRON, A. AND DRUSCHEL, P. 2001a. Pastry: scalable, distributed object location and routing for
large-scale peer-to-peer systems. In Proceedings of the 18th IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware 2001).

ROWSTRON, A. AND DRUSCHEL, P. 2001b. Storage management and caching in PAST, a large-scale,
persistent peer-to-peer storage utility. In Proceedings of the 18th ACM Symposium on Operating
Systems Principles. 188–201.

SAHNER, R. A., TRIVEDI, K. S., AND PULIAFITO, A. 1996. Performance and Reliability Analysis of
Computer Systems. Kluwer Academic Publishers.

SAITO, Y., BERSHAD, B., AND LEVY, H. 1999. Manageability, availability and performance in Por-
cupine: A highly scalable internet mail service. In Proceedings of the 17th ACM Symposium on
Operating Systems Principles.

SAITO, Y., KARAMANOLIS, C., KARLSSON, M., AND MAHALINGAM, M. 2002. Taming aggressive replica-
tion in the Pangaea wide-area file system. In Proceedings of the 5th Symposium on Operating
Systems Design and Implementation.

SAKS, M., SHAVIT, N., AND WOLL, H. 1991. Optimal time randomized consensus—Making resilient
algorithms fast in practice. In Proceedings of the 2nd Symposium on Discrete Algorithms.
351–362.

ACM Transactions on Storage, Vol. 1, No. 1, December 2004.

Consistent and Automatic Replica Regeneration • 37

SCHIPER, A. AND SANDOZ, A. 1994. Primary partition “virtually-synchronous communication”
harder than consensus. In Proceedings of the 8th International Workshop on Distributed
Algorithms (WDAG-8). 39–52.

SCHNEIDER, F. B. 1990. Implementing fault-tolerant services using the state machine approach:
A tutorial. ACM Comput. Surv., 299–319.

SKEEN, D. 1982. A quorum-based commit protocol. In Proceedings of the Berkeley Workshop on
Distributed Data Management and Computer Network.

STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, F., AND BALAKRISHNAN, H. 2001. Chord: A scalable
peer-to-peer lookup service for internet applications. In Proceedings of the ACM SIGCOMM
2001. 149–160.

VENKATARAMANI, A., KOKKU, R., AND DAHLIN, M. 2002. TCP nice: A mechanism for background
transfers. In Proceedings of the Symposium on Operating Systems Design and Implementation
(OSDI).

YU, H. 2003. Overcoming the majority barrier in large-scale systems. In Proceedings of the 17th
International Symposium on Distributed Computing (DISC).

YU, H. AND VAHDAT, A. 2001. The costs and limits of availability for replicated services. In
Proceedings of the 18th ACM Symposium on Operating Systems Principles (SOSP).

Received September 2004; revised September 2004; accepted September 2004

ACM Transactions on Storage, Vol. 1, No. 1, December 2004.

