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ABSTRACT
We consider standard T -interval dynamic networks, under the syn-
chronous timing model and the broadcast CONGEST model. In a

T -interval dynamic network, the set of nodes is always fixed and

there are no node failures. The edges in the network are always

undirected, but the set of edges in the topology may change arbi-

trarily from round to round, as determined by some adversary and

subject to the following constraint: For everyT consecutive rounds,

the topologies in those rounds must contain a common connected

spanning subgraph. Let Hr to be the maximum (in terms of number

of edges) such subgraph for round r through r +T − 1. We define

the backbone diameter d of a T -interval dynamic network to be the

maximum diameter of all such Hr ’s, for r ≥ 1. We use n to denote

the number of nodes in the network.

Within such a context, we consider a range of fundamental dis-

tributed computing problems including Count/Max/Median/Sum/

LeaderElect/Consensus/ConfirmedFlood. Existing algorithms

for these problems all have time complexity of Ω(n) rounds, even
forT = ∞ and even when d is as small asO (1). This paper presents
a novelO (d3 log2 n) deterministic algorithm for computing Count,

for T -interval dynamic networks with T ≥ c · d2 log2 n. Here c is
a (sufficiently large) constant independent of d , n, and T . To our

knowledge, our algorithm is the very first such algorithm whose

complexity does not contain a Θ(n) term. For d = O (na ) with
constant a < 1

3
, our deterministic algorithm has o(n) complexity,

which is better than all (both randomized and deterministic) ex-

isting Count algorithms in this setting. For d = O (polylog(n)),
our algorithm is exponentially faster. Following the framework

of our Count algorithm, this paper further develops novel al-

gorithms for solving Max/Median/Sum/LeaderElect/ Consen-

sus/ConfirmedFlood, while incurring either O (d3 log2 n) or

O (d3 log3 n) complexity. Again, for all these problems, our algo-

rithms are the first ones whose time complexity does not contain a

Θ(n) term.

1 INTRODUCTION
Our setting. We consider various fundamental distributed com-

puting problems in standard T -interval dynamic networks [1, 2, 6,
11, 13, 17], under the synchronous timing model. The network has

a fixed set of n nodes, which proceed in lock-step rounds, starting
from round 1. Each node has a unique id of O (logn) size. The algo-
rithm knows neither n nor any upper bound on n.1 In a T -interval
dynamic network (T ≥ 1), the edges are always undirected, but the

set of edges in the topology may change arbitrarily from round

∗
The authors of this paper are alphabetically ordered.

1
As in [1, 2, 11, 13], we have assumed that each node has a unique id of sizeO (logn).
This means the largest id among the n nodes maps to a loose polynomial upper bound

on n. However, finding the largest id among the n nodes is at least as hard as the

LeaderElect problem (formally defined later), and hence is non-trivial by itself.

to round, as determined by some adversary and subject to the fol-

lowing constraint: For every T consecutive rounds, the topologies

in those rounds must contain a common connected spanning sub-

graph, which implies that this subgraph remains stable in those T
rounds. (Note that this subgraph is required to be both connected

and spanning.) Let Hr to be the maximum (in terms of number of

edges) such subgraph for the T rounds from round r to r +T − 1.
We define the backbone diameter d of a T -interval dynamic net-

work to be the maximum diameter of all such Hr ’s, for r ≥ 1. The

distributed algorithm knows neither d nor any upper bound on

d . The above notions can also be extended to T = ∞. Namely, in

an∞-interval dynamic network, the adversary guarantees that the

topologies in all rounds contain a common connected spanning

subgraph. Let H be the maximum (in terms of number of edges)

such subgraph. We define the backbone diameter d of an∞-interval

dynamic network to be the diameter of this graph H . This paper

will focus on T -interval dynamic networks with sufficiently large

T (see exact condition later), including T = ∞.
Following [1, 2, 13], we use the broadcast CONGEST model [26]

where in each round, each node is allowed to choose a single mes-

sage of O (logn) size, and send the message simultaneously to all

its neighbors. (A node cannot send different messages to different

neighbors.) Without loss of generality, we assume that a message

always contains its sender’s id. At the end of each round, each node

receives all the messages sent in that round by all its neighbors

(as determined by the topology of that round). Note that, a node

does not know its neighbors, before it receives messages from them.

Also, a node does not know the topology in each round.

The time complexity (or simply complexity) of a distributed al-

gorithm for solving a certain problem is defined to be the number

of rounds needed for all nodes to output and terminate, under the

worst-case input and worst-case adversary
2
. We describe the time

complexity as a function of n and d . The central challenge in design-

ing distributed algorithms in T -interval dynamic networks is that

the Hr ’s (or H ) and d are all unknown to the algorithm, and that in

each round, the algorithm does not know beforehand which edges

in the network will survive and which edges will be deleted/added.

Problems and existing results. We consider the following fun-

damental distributed computing problems in T -interval dynamic

networks, where each node has an input of O (logn) size:

• Count: All nodes should output n.
• Max/Median/Sum: All nodes should output themax/median/

sum of the n inputs (as integers).

• LeaderElect: A unique leader should be elected, and all

nodes should output the leader’s id.

2
We will mainly be concerned with deterministic algorithms, where it is irrelevant

whether the adversary can see and then adapt to the coin flip outcomes in the algorithm.

(Namely, it is irrelevant whether the adversary is oblivious or adaptive.)
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• Consensus: All nodes should output some common consen-

sus value, while satisfying the standard agreement, validity,

and termination requirements [24].

• ConfirmedFlood [29]: One distinguished node needs to

propagate its input to all nodes, and then should output “1”

after all nodes have received its input.

We note that all these distributed computing problems are non-

trivial to solve, even in∞-interval dynamic networks, given that d
and H are not known beforehand.

3
To our knowledge, all existing

deterministic and randomized
4
algorithms [1, 6, 11, 13, 17] for all the

above problems have time complexity of Ω(n) rounds in T -interval
dynamic networks, even forT = ∞. A dynamic network’s backbone

diameter d may range from 1 to n − 1. While the existing works [1,

6, 11, 13, 17] do not describe their algorithms’ time complexities

in terms of both n and d , it can be easily verified that their time

complexities remain Ω(n) even when d is as small asO (1) (and even
when T = ∞). Putting it another way, if these complexities were

described as functions of both n and d , such functions would still

all be Ω(n). The reason for such Ω(n) complexity is that existing

approaches usually solve these problems by each node collecting all

n inputs — namely, these problems are often solved as a byproduct

of solving token dissemination [1, 6, 11, 13]. But token dissemination

fundamentally requires each node to receive Ω(n logn) bits, which
takes Ω(n) rounds for a constant degree node, even when d = O (1).

Solving Count/Max/Median/Sum/LeaderElect/Consensus/

ConfirmedFlood by collecting all n inputs appears to be quite

an overkill. All these problems are “global” in the sense that the

output could be affected by far away nodes in the network. Such

a need for “global” information does lead to an Ω(d ) lower bound,
but not an Ω(n) lower bound. While there is no hope of getting

o(n) complexity when d = Θ(n), it seems that we still should be

able to solve these “global” problems in less than n rounds when d
is small. Despite such natural thoughts, no existing algorithms can

achieve this.

Our results. This paper first presents a novel deterministicCount

algorithm withO (d3 log2 n) complexity, forT -interval dynamic net-

works withT ≥ c ·d2 log2 n. Here c is a (sufficiently large) constant

independent of d , n, and T . (Throughout this paper, whenever we
say T is larger than some value, it always includes the limiting

case of T = ∞.) To our knowledge, our algorithm is the very first

such algorithm whose complexity does not contain a Θ(n) term.

For d = O (na ) with constant a < 1

3
, our deterministic algorithm

has o(n) complexity, which is better than all existing (both deter-

ministic and randomized) Count algorithms in this setting. For

d = O (polylog(n)), our algorithm is exponentially faster than all

existing algorithms.

Following the framework of our Count algorithm, the paper

further develops novel algorithms for solvingMax/Median/Sum/

3
IfH is known, then regardless of whether d is known, one can trivially solve all these

problems inO (d ) rounds, by doing simple tree-based aggregation over edges inH . IfH
is not known but d is known, then Max/LeaderElect/Consensus/ConfirmedFlood

can all be solved trivially via flooding in O (d ) rounds, while Count/Median/Sum

remain non-trivial. If neitherH nor d is known, then all these problems are non-trivial.

4
A randomized algorithm is designed either for oblivious adversaries or adaptive ad-
versaries. The complexity of a randomized algorithm is always defined under the

worst-case adversary for which the algorithm is designed.

LeaderElect/Consensus/ConfirmedFlood, while incurring ei-

therO (d3 log2 n) orO (d3 log3 n) complexity, inT -interval dynamic

networks with T ≥ cd2 log2 n for some (sufficiently large) constant

c . Again, for all these problems, our algorithms are the first ones

without a Θ(n) term in its complexity, achieving o(n) complexity

when d = O (na ) with constant a < 1

3
.

Finally, when T < cd2 log2 n or when d is large, our algorithms

can no longer achieve o(n) complexity. Obtaining sublinear algo-

rithms under those parameter ranges will be our future work.

Implications of our results. For T ≥ cd2 log2 n and when d =
O (na ) with constant a < 1

3
, our new algorithms confirm that

Count/Max/Median/Sum/LeaderElect/Consensus/Confirmed-

Flood are indeed all easier than token dissemination (which has a

lower bound of Ω(n)). This implies that future research can benefit

from approaching these problems directly, as compared to view-

ing their solutions as the byproduct of solving token dissemina-

tion [1, 6, 11, 13].

Our results have some further implications. It is known that even

when d = O (1), problems such as Count and Sum have Ω(poly(n))
lower bounds in all the following settings:

• Same as our∞-interval setting except that in each round, a

node can choose to either send a message or receive mes-

sages, but cannot do both [29].
5

• Same as our∞-interval setting except that the set of nodes

(instead of the edges) can change (by crashing) from round

to round [9].

• Same as our∞-interval setting except that the topology is

directed and never changes [19].

Despite some of the above settings being seemingly close to our

setting, our O (d3 log2 n) upper bound for Count and Sum implies

that such Ω(poly(n)) lower bound can never carry over to our

setting. The only currently known lower bound in our setting is

the trivial Ω(d ) lower bound.

Our approach. The approach taken by our algorithms is quite

different from most existing approaches in dynamic networks for

solving these problems. At the highest level, we rely on the clas-

sic idea of aggregation. In this classic approach, there is a rooted

spanning tree and each node contributes a value of 1. These values

are propagated upstream along the tree paths to the root, while

being aggregated (i.e., summed together) along the way. The root

can then eventually learn the total count of nodes from the final

sum. In dynamic networks however, such aggregation can be easily

disrupted by the topology changes. To deal with this, conceptu-

ally, we do massively parallel aggregation simultaneously along

many (up to exponential number of) aggregation paths. We further

stagger the aggregation, together with carefully designed re-tries,

to limit the adversary’s damage. Next, we use a number of tricks

(e.g., by allowing repeated nodes in an aggregation path), to mini-

mize the amount of bookkeeping needed when dealing with a large

number of aggregation paths — otherwise the design would have

been highly inefficient. Finally, naively applying the previous ideas

would require the knowledge of n and d , as well as a unique leader

5
While [29] does not explicitly mention the∞-interval model, its proofs apply without

any change.

2



node, which would beat the purpose. We use several techniques to

overcome this.

More discussions on related works. As mentioned earlier, in the

T -interval model, researchers often solves problems (such asCount

and LeaderElect) that are functions of the n inputs/ids, by having

each node collect all the n inputs/ids [1, 6, 11, 13, 17]. Collecting all

the n inputs/ids is also explicitly studied as the token dissemination
problem. (Some of these works [1, 6, 11, 13, 17] actually focus on

token dissemination, while solving problems such as Count as

byproduct.) Kuhn et al. [17] have further explored solving Count

without collecting alln inputs/ids. They propose an elegant random-

ized algorithm for computing a constant factor approximation for n
inO (n log logn) time. Different from our algorithm, their algorithm

works even for T = 1. However, their algorithm’s complexity is

always Ω(n) even when d = O (1). The reason is that even when

d is small, although the approximation quickly becomes good, the

algorithm does not know this, and has to wait for sufficient long

before it can make sure. In comparison, our Count algorithm has

O (d3 log2 n) complexity, is deterministic, and outputs the exact n.
Researchers have also considered these distributed computing

problems under other settings. Kuhn et al. [18] have studied Con-

sensus, and its variants coordinated/simultaneous consensus, in the

T -interval model without limit on message sizes. Under such a

setting, results from [18] imply that all the problems considered in

this paper can be solved inO (d ) rounds. Count has been studied in

anonymous dynamic networks (e.g., [7, 16, 21–23, 25]), but all the

algorithms there have Ω(n) complexity. Among these, similar to

our algorithm, the design in [16] also aggregates all values to one

node to solve Count. One of the major differences, however, is that

they use random walks to do so, which relies on mixing time and re-

sults in Õ (n5) complexity. Our algorithm uses explicit aggregation

paths, together with a range of other techniques, which eventually

achievesO (d3 log2 n) complexity. Some researchers (e.g., [8, 10, 27])

have studied LeaderElect and Consensus in directed dynamic

networks, which is quite different from our undirected setting. Au-

gustine et al. [4, 5] have studied LeaderElect and Consensus in

dynamic network with node churn and where the topology is an

expander. They rely on efficient random walks in expander graphs,

which does not apply to our setting. Finally, there have been a body

of works (e.g., [14]) on eventually-stable networks. The topology
of an eventually-stable network may change from round to round,

but such changes eventually stop and the algorithm should output

sometime after that [12]. In comparison, our algorithms do not wait

for the network to stop changing.

2 OVERVIEW OF OUR COUNT ALGORITHM
This section provides the key intuitions behind our Count algo-

rithm, and Section 3 gives the details. Section 4 presents our al-

gorithms forMax/Median/Sum/LeaderElect/Consensus/ Con-

firmedFlood, all of which follow the same framework as our

Count algorithm.

2.1 Starting Point
Letα be the largest id, among all then nodes in the network. Assume

for now that all nodes know α , and we remove this assumption

later. In static networks, aggregation is known to be an efficient

way to compute Count: We first build a spanning tree rooted at

node α . Next each node contributes a value of 1. These values are

propagated upstream along the tree, while being aggregated (i.e.,

summed together) at intermediate tree nodes. Finally, node α gets

the sum of all the values, and floods this Count result to all nodes.

InT -interval dynamic networks, however, the changing topology

may disrupt the spanning tree. Namely, a tree edge may no longer

exist when we need to use it, causing the value from some node u
(there can be many such u’s) to get stuck somewhere in the middle

of the tree path. Imagine that the entire tree aggregation process,

including the building of the spanning tree, takes no more than T
rounds. By the T -interval model, there must exist some connected

spanning subgraph that remains stable in those T rounds. Recall

thatHr is the maximum such subgraph for round r through r+T −1.
Since Hr is connected, there must exist some path from node u to

node α that persists throughout those T rounds. But the problem

is that the spanning tree may not contain that particular path —

hence the value from u may get stuck in the tree. (If we could

magically ensure that the spanning tree only uses edges inHr , then

all problems are solved.) Naively retrying with a different spanning

tree does not lead to good complexity.

From the above simple scenario, it is also easy to see that while

deleted edges cause problems, newly added edges (i.e., edges that

did not exist before but are later created) do not immediately cause

any harm. In fact, given that all edges in Hr persist throughout all

T rounds, in those T rounds the algorithm can temporarily ignore

all edges that are newly added: Even after ignoring those newly

added edges, there must still exist a path from every node u to node

α . Hence the main challenge here is how to deal with deleted edges.

2.2 Parallel Propagation Over All Paths
Assume for now that the backbone diameter d is known, and we

remove this assumption later. (Recall that the Count problem is

still non-trivial even with known d .) Consider the set L of all paths
6

from some node u to node α with length at most d , in the topology

of some round r . Let l = |L|, which can be exponentially large.

Ignore for now the challenge of keeping track of all these paths.

Our first key idea is to avoid committing to any specific path for

propagating the value. Instead, node u splits its value (of 1.0) into l
equal pieces, and propagates each piece along a different path, all

in parallel and taking O (d ) rounds. We will imagine that a piece

“moves” from one node to another along the path, which gives the

standard mass conservation property [3, 15, 16, 28] — the sum of all

these pieces on all nodes always remain fixed.

As the pieces are moving, it is possible for most of these l paths
to get cut by the adversary — this will cause most pieces to get

stuck. But observe that the adversary can stall a piece only if a

path existed when we computed the available paths, and then no

longer exists when we actually use the path. We can thus effectively

limit the adversary’s damage by staggering the propagation and

by spreading our stake. Specifically, node u propagates its value

of 1.0 over x sequential intervals (we will set x later), where each

interval comprises of O (d ) rounds and only deals with a value of

6
Throughout this paper, we only need to be concerned with paths in a given (static)

graph. In dynamic networks, sometimes researchers consider dynamic paths [20] —
we do not need those.
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1

x . Within each interval, node u further breaks the
1

x value into

many pieces, with each piece corresponding to a distinct path that

is still alive at the beginning of that interval. (Namely, if all l paths
are always alive in all x intervals, then the value of 1.0 is split into

total xl pieces, with l pieces for each interval.) A path cut by the

adversary can then only affect a single interval.

Over the course of these x intervals, the number of paths in L that
survive may gradually decrease, due to some edges being deleted.

Assume that T is no smaller than the total number of rounds in all

these x intervals. Then the number of surviving paths can decrease

from at most O (nd ) to at least 1. It is “at least 1” because by the

definition of the backbone diameter d , the diameter of Hr is at

most d and hence Hr must contains a path from node u to node α
with length at most d . This path must have survived. Let fi be the
fraction of paths that are alive (i.e., survive) at the end of interval i ,
among all the paths that were alive at the beginning of interval i .
We then have

∏x
i=1 fi ≥

1

nd
. The sum of all those pieces that get

stuck is at most

∑x
i=1 (1 − fi ) ·

1

x ≤ 1 − ( 1

nd
)
1

x , and the optimal

strategy of the adversary is simply to have f1 = f2 = . . . = fx . With

x = d logn, the sum
∑x
i=1 (1 − fi ) ·

1

x will be at most
1

2
. This means

that at least half of the value from each node u will successfully

reach node α .
At the end of the x intervals, the stuck pieces are simply left in

various arbitrary locations across the network. To collect all these

stuck pieces, we repeat the above entire process for 2 logn times

(called 2 logn phases), where each phase has x = d logn intervals.

(There is no need forT to be larger than the total number of rounds

in all phases —T only needs to be larger than the number of rounds

in a single phase.) When we repeat the above process, the nodes

holding the stuck pieces will be viewed as new u’s for that phase,
except that each such u will start with a value corresponding to

the stuck pieces it is holding, instead of starting with a value of 1.0.

With such a design, in each phase, node α collects at least half of

the remaining value in the network. Since the total count is only n,
after the 2 logn phases, the leftover will be n · 1

n2
= 1

n < 1. Having

node α round up the total collected value then gives the exact count

n. Finally, note that the algorithm does not know n beforehand, and

hence cannot readily compute the quantities of d logn and 2 logn
— we deal with this later.

At this point, the above ideas can already enable us to solve

Count inO (d2 log2 n) time complexity:We need total 2 logn phases,
with each phase having d logn intervals and each interval having

O (d ) rounds. The caveat is that we have made a number of signifi-

cant assumptions along the way. Section 2.3 and 2.4 will explain

how we remove all these assumptions, which entails a collection of

non-trivial techniques. One of the techniques will add additional

complexity to the algorithm, and our final Count algorithm will

have O (d3 log2 n) time complexity.

Before proceeding, we quickly stress that a proper balance be-
tween intervals and phases is needed for the idea to work. Without

multiple phases,Θ(n2d logn) intervals would be needed for the left-

over to be
1

n . Without multiple intervals in each phase, Θ(nd logn)
phases would be needed. Consider any node u holding some pieces

at the beginning of a phase. The key difference between intervals

and phases is that for all intervals within that phase, these pieces all

start their propagation from the same node u. This allows us to an-

alyze based on the number of surviving paths from node u to node

α . While in the next phase, these pieces may start (i.e., continue)

their propagation from arbitrary locations in the network.

2.3 Avoiding Excessive Bookkeeping
We next overcome the challenge of keeping track of all the pieces

and paths. Consider the simple example in Figure 1, where the

network has a fixed topology, with n = 9 and d = 4. Here as shown

in Figure 1(a), node u1 has exactly 4 paths to node α with length at

most d , out of which 3 paths have nodev as the second node on the

path. Imagine that we split the value of 1.0 on node u1 into 4 equal

pieces, and then propagate one piece along each path. Obviously,

instead of sending 3 individual pieces to node v where each piece

corresponds to
1

4
, node u1 only needs to send to node v a combined

value of
3

4
. Similarly, as shown in Figure 1(b), node u2 has 3 paths

to node α with length at most d , out of which 2 paths have node

v as the second node on the path. Hence node u2 only needs to

send to node v a combined value of
2

3
(corresponding to 2 pieces,

each worth
1

3
). But now it is unclear what node v should do: It gets

3 pieces from node u1 and 2 pieces from node u2, where different
pieces correspond to different values. Each piece needs to follow its

own respective path. Obviously, with exponential number of paths

and pieces, this becomes tricky.

Allowing repeated nodes. Interestingly, we observe that allowing
paths to contain repeated nodes (vertices) helps to overcome the

above problem. From now on, we use simple paths (e.g., in Figure 1(a)
through (b)) to refer to paths with no repeated nodes, while paths
(e.g., in Figure 1(c) through (e)) in general may contain repeated

nodes. To see why it helps to consider paths instead of simple paths,

let us continuewith the example in Figure 1. As shown in Figure 1(c),

there are total 3 paths from node v to node α with length at most

d − 1. Then it must hold, as illustrated in Figure 1(d), that there

are exactly 3 paths of length at most d going from node u1 to node

α with v being the second node on the path. By the same reason,

there also must be exactly 3 such paths from node u2 to node α
(see Figure 1(e)).

7
This means that node v always gets exactly 3

pieces from each of its neighbors. For each set of 3 pieces, node v
should forward one piece along each of the 3 paths in Figure 1(c),

regardless of which neighbor this set came from. Effectively, the

pieces can now be processed in amemorylessway. In fact, it suffices

for node v to just add up (aggregate) all values it receives from all

it neighbors, and send
1

3
of the total value along each of the 3 paths

in Figure 1(c).

A further optimization would enable node v to do this by just

sending a single message instead of 3messages, and without nodev
needing to know whether some of its previous neighbors no longer

exist (i.e., due to edge removals). To do so, node v simply sends

the total value and the number 3. A neighborw of node v simply

takes a part of the value that is proportional to the number of paths

going from nodew to node α with length at most d −2. At the same

time, since node v also receives a message from each of its current

neighbors, node v can simultaneously determine how much value

7
In comparison, recall that previously in Figure 1(a) and Figure 1(b), the corresponding

numbers for simple paths were 3 and 2 for node u1 and u2 , respectively.
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u1

u2

v α u1

u2

v α u1

u2

v α u1

u2

v α

(a) There are total 4 
simple paths from node 
u1 to node α with length 
at most d. Among 
these, 3 simple paths 
have node v as the 
second node on the 
simple path.

(b) There are total 3 
simple paths from node 
u2 to node α with length 
at most d. Among 
these, 2 simple paths 
have node v as the 
second node on the 
simple path.

(c) There are total 3
paths from node v to 
node α with length at 
most d−1. (In this 
example, all these paths 
happen to be simple 
paths.)

(e) There are total 3
paths from node u2 to 
node α with length at 
most d, with node v as 
the second node on 
the path. (In this 
example, one of the 3 
paths is not a simple 
path.)

u1

u2

v α

(d) There are total 3 
paths from node u1 to 
node α with length at 
most d, with node v as 
the second node on 
the path. (In this 
example, all these 
paths happen to be 
simple paths.)

Figure 1: Why allowing repeated nodes on paths helps us to avoid excessive bookkeeping. This example has d = 4.

has not been taken by its neighbors (due to edge removals). Such

leftover value will be kept locally, to be fed into the next phase.

With the above ideas, now we only need to keep track of the

number of paths going from each node to node α . As a convenient
consequence of using paths instead of simple paths, we will be

able to easily count such paths efficiently via recursion. (Counting

simple paths would instead be #P-Complete.)

Rounding. In the above, when a node transfers a value to another

node, precisely describing the value may take too many bits. To

avoid this, we carefully round the value so that it takes O (logn)
bits to encode. (We do not know n and hence cannot compute logn
— we deal with this later.) The discrepancy between the value and

its rounded version will still be kept locally, to be fed into the next

phase. (Not discarding the discrepancy is important.) We use similar

rounding when counting the number of paths, and will show that

such rounding does not compromise correctness.

2.4 Dealing with Unknown d , n, and α
Unknown d . So far we have assumed the knowledge of the back-

bone diameter d — recall that the algorithm should only use those

paths with length at most d , and that the number of intervals in

each phase needs to be Θ(d logn). To remove this assumption, we

use a standard doubling trick to guess d . Let ˜d be our current guess

for d . The crux is to determine whether
˜d is too small.

To make such determination, we have node α distribute a pre-

determined number (i.e., n
˜d
) of votes to all the nodes over

˜d rounds,

where in each round each vote-holding node gives some of its votes

to each of its neighbors. (We do not know n — we deal with this

later.) This value of n
˜d
ensures that if

˜d is large enough (e.g.,
˜d ≥ d),

then every node will get at least one vote. Roughly speaking, this is

because each node has at mostn neighbors, and the number of votes

can only get “split” for
˜d times. On the other hand, if

˜d is too small,

then some node will not get any vote. Those nodes then force all

their neighbors to discard their respective votes. Since the topology

is always connected, this causes the total number of remaining

votes in the network to be less than n
˜d
. We next invoke our earlier

Count algorithm, for a second time, to count the remaining votes.

(While the algorithm was for counting the number of nodes, it can

be easily adapted to count votes, by using Θ(d logn) instead of

Θ(logn) phases.) If ˜d is too small, we will find the vote count to be

smaller than n
˜d
.

Note that the approach may appear circular: When invoking the

algorithm to count votes, we again need to know d . But it turns out

that if
˜d is too small, our algorithm may undercount the votes but

can never overcount. Hence if
˜d is too small, we will always find

the vote count to be smaller than n
˜d
.

Unknown n. While our goal is to compute n, our design so far

has relied on the knowledge of n for determining: (i) how many

intervals/phases to run (Section 2.2), (ii) how many bits to use

during rounding (Section 2.3), and (iii) howmany votes to distribute

(Section 2.4). One could try to potentially use randomization to first

get some rough approximation of n — but we aim for a (stronger)

deterministic solution. To this end, we exploit the node ids: Instead

of viewing the node ids as opaque, we view them as positive integers.

Since i) there are total n nodes, ii) all ids are unique, and iii) the

length of each id is O (logn), we know that the largest id α among

the n nodes must satisfy n ≤ α ≤ poly(n). This means that logn ≤
logα = Θ(logn). We thus could use logα in place of logn for

determining the parameters in the above three places, and we can

show that doing so does not cause problems. A difficulty, however, is

that the algorithm does not actually know α . (If the algorithm were

directly given a polynomial upper bound on n, there would be no

such difficulty.) In fact, a trivial reduction shows that determining

α is at least as hard as LeaderElect, which is exactly one of the

problems we aim to solve.

Unknown α . We finally deal with the fact that the algorithm does

not actually know α . First, in the background, we let each node

keep sending to its neighbors the largest id that it has seen so far

(initially its own id). Next, for any given node α̃ , letW be the set of

nodes where α̃ is the largest id they have seen so far. The nodes in

W will then together run an instance of our algorithm. Hence at any

point of time, there may be multiple concurrent instances running.
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Table 1: Key notations.

n total number of nodes

d backbone diameter

T parameter T in T -interval dynamic network model

α largest id among the n nodes in the network

˜d , α̃ current guesses on d and α , respectively
V the set of all n nodes in the network

σ (r1, r2) the maximum spanning subgraph contained

by all topologies from round r1 to r2 (both inclusive)

ΓG (u) eccentricity of node u in G

Each instance has its own root α̃ . When a node in an instance with

smaller α̃ learns about another instance with larger α̃ , the node
switches to the latter instance. Switching into or out of an instance

in the middle of its execution may cause various technical problems,

and hence we only allow nodes to switch in/out at certain specific

steps of an instance. We will show, via a careful analysis, that

such “delayed” switches will not weaken the asymptotic properties.

Finally, with the vote distribution/counting mechanism mentioned

earlier, we will ensure that only the instance containing node α can

output, when that instance has “grown” to include all nodes. We

can then show that such output must be correct.

3 OUR O (d3 log2 n) COUNT ALGORITHM
3.1 Definitions and Technicalities

Definitions. Table 1 summarizes our key notations. As a reminder,

in our setting at the beginning of Section 1, we already defined

T -interval dynamic network, backbone diameter, and time complexity.
The following gives some more definitions.

Given a T -interval dynamic network, define σ (r1, r2) to be the
maximum (in terms of number of edges) spanning subgraph con-

tained by all the topologies in all rounds from r1 to r2 (both inclu-

sive). Given a node id x , we use “x” to refer to the integer value of

x , and “node x” to refer to that node. Without loss of generality, we

assume that node ids are never smaller than 2. We use V to denote

the set of all nodes in the network, where |V | = n. We use α to

denote the largest node id among the n nodes in the network. Recall

that d is the backbone diameter of the dynamic network. We use
˜d

and α̃ to denote a node’s current guesses on d and α , respectively.
Without loss of generality, in each round, we add a self-loop to

each node in the topology — hence every node is also a neighbor

of itself, and receives its own message. For a given graphG (with

self-loops), a path of lengthm is a sequence of nodes x0, x1, . . ., xm
such that xi−1 is a neighbor of xi for all i ∈ [1,m]. In particular,

a path may contain repeated nodes. With self-loops, we will only

need to consider paths of length exactly d , rather than at most d .
Let ΓG (u) be the eccentricity of node u in G, and ΓG (u) = ∞ if

G is disconnected. Recall from Section 2.4 that there may be mul-

tiple concurrent instances running in the network. We say that

node v does not interfere with instance α̃ in round r iff node v in

round r only sends messages of the form ⟨x ,y, . . .⟩ where either
x ∈ {SWITCH, OUTPUT} or y , α̃ .

Newcomer messages and oldcomer messages. In our algorithm,

each node always sends a message in each round. Consider any

given node u. Throughout our Count algorithm (and across all the

invocations of the various subroutines), node u maintains a global

variable S , which is initialized to the set of all positive integers.

(Obviously, one can use finite data structures to achieve what we

need for S here.) At the end of each round, node u receives a set of

messages. A message whose sender’s id is not in S is a newcomer
message, otherwise it is an oldcomer message. Unless otherwise
mentioned in the algorithm, node u will always ignore newcomer

messages. After processing all the messages in this round, node u
immediately updates S to be the ids of all the senders of the oldcomer

messages received in this round. Finally, at the very beginning of

each round, node u has the option of resetting S to the set of all

positive integers, by invoking ResetNeighbors().
Intuitively, the above mechanism enables node u to temporar-

ily ignore messages coming from newly created (or newly recov-

ered) edges in the network, until the next time that node u invokes

ResetNeighbors(). For clarity, our pseudo-codes do not explicit

mention that newcomer messages are ignored. (We will, of course,

clearly indicate when to invoke ResetNeighbors().) In several spe-

cial places, our algorithm does not ignore newcomer messages,

which we will clearly indicate.

Rounding. Section 2.3 mentioned that our algorithm sometimes

(e.g., when a node transfers a value to another node) uses rounding

to avoid needing more than O (logn) bits in each message. The

following explains how exactly such rounding is done. Consider

any real value x ≥ 0, and consider the id α̃ of any node in the

network. (We must have α̃ ≤ α ≤ poly(n).) When x > 0, let the

unique real value a and integer b be such that 1 ≤ a < 2 and

x = a2b . Our algorithm later will need to use both a “rounded-up”

version of x and a “rounded-down” version of x .
For the “rounded-up” version, our algorithm will be concerned

with x ∈ [1, 2(nα̃ )
4

]. (The algorithm actually may also encounter

the case of x = 0. But obviously, this special case can be separately

encoded using one extra bit.) For x ∈ [1, 2(nα̃ )
4

], the corresponding

b value will be in [0, (nα̃ )4], and can already be encoded using

O (logn) bits. So we only need to properly round the a value. To

do so, we discretize a using a granularity of
1

α̃ 6
. (We do not use a

granularity of 1/poly(n) because the algorithm does not know n.
In comparison, α̃ will be explicitly maintained and hence known

by the algorithm.) Specifically, let a+ be the smallest value such

that a+ ≥ a and a+ is a multiple of
1

α̃ 6
. We define the “rounded-up”

version of x as round+ (x , α̃ ) = a+ × 2b . For convenience, we also
define round+ (0, α̃ ) = 0. Obviously, we have x ≤ round+ (x , α̃ ) ≤(
1 + 1

α̃ 6

)
x . For all x ∈ [1, 2(nα̃ )

4

], the value of round+ (x , α̃ ) can be

encoded usingO (logn) bits: To encode round+ (x , α̃ ) = a+ × 2b , we
only need to specify three integers b, α̃6, and a+ × α̃6, taking only

O (log log 2(nα̃ )
4

+ log α̃ ) = O (logn) bits.
For the “rounded-down” version, our algorithmwill be concerned

with x ∈ [0, 2(nα̃ )
4

]. We again use a granularity of
1

α̃ 6
. To avoid

dealing with too small a b value when x is close to 0, we define the

“rounded-down” version of x as round– (x , α̃ ) = 0 for x ∈
[
0, 1

α̃ 6

)
.

For x ∈
[
1

α̃ 6
, 2(nα̃ )

4
]
, we let a– be the largest value such that a– ≤ a

and a– is a multiple of
1

α̃ 6
, and we define the “rounded-down”

version of x as round– (x , α̃ ) = a– × 2b . For all x ∈ [0, 2(nα̃ )
4

], one
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can easily verify that (1 − 1

α̃ 6
)x − 1

α̃ 6
≤ round– (x , α̃ ) ≤ x , and that

the value of round– (x , α̃ ) can be encoded using O (logn) bits.

3.2 Building Blocks
3.2.1 Counting paths. Algorithm 1 gives the subroutine for count-

ing the number of distinct paths via a simple recursion. The time

complexity of the algorithm will be much smaller than T , under
our invocation parameters later and when T ≥ cd2 log2 n. Line 5
of Algorithm 1 sets li ← round+ (x , α̃ ). Here rounding the value

up (instead of down) ensures that during the value propagation

later, a node never runs out of value to forward to the next hop.

The network topology may change during the execution of Algo-

rithm 1, potentially decreasing the number of paths as we go. This

will not cause any problem, and no special mechanism is needed to

avoid this. (Algorithm 1 never invokes ResetNeighbors(), hence
the number of paths seen by the algorithm does not increase.)

3.2.2 Aggregating within an interval. Algorithm 2 gives the subrou-

tine for aggregating the values, within an interval. Each interval

here consists of 2
˜d rounds. Under invocation parameters later and

when T ≥ cd2 log2 n, the value 2
˜d will be much smaller than T .

Recall from Section 2 that each node splits its value itv_input
across all the paths, and propagates all those pieces to node α̃ in

parallel, with proper aggregation along the way. Algorithm 2 first

invokes Algorithm 1 to count paths. For any node u, let li,u be

the computed number of paths from node u to node α̃ with length

exactly i . Next the algorithm goes through
˜d steps. Intuitively, each

step moves all pieces simultaneously one step further along their

respective paths. Consider any node u and any neighboring node v
of node u. In the first step, node u sends a message containing the

rounded-down version of its initial value itv_input. (We round

down so that a node never sends more than what it has.) Doing

so transfers

l ˜d−1,v
l ˜d,u

fraction
8
of itv_input from node u to node v

(and also transfers some other fractions from node u to its other

neighbors). This quantity should then be added to the value on

node v and subtracted from the value on node u. The remaining

steps are similar: In the i-th step (i ≥ 2), each node sends its current

local value, and we use the fraction

l ˜d−i,v
l ˜d−i+1,u

instead of

l ˜d−1,v
l ˜d,u

.

3.2.3 Aggregating over multiple phases/intervals. Following the

ideas in Section 2.2 and Section 2.4, Algorithm 3 gives the subrou-

tine for summing up all the input parameters of all the invoking

nodes. This is done over multiple phases, with each phase consist-

ing of
˜d log α̃ intervals. At the beginning of each phase, each node

has some value remain. In each interval in that phase, the node

invokes IntervalAggregate() with remain
˜d log α̃

being the input. Each

such invocation will end up with some leftover value. The sum of

all the leftover values from all these intervals will be fed into the

next phase. Note that under our invocation parameters later and

when T ≥ cd2 log2 n, the total number of rounds in a phase will be

no larger than T .

8
If l ˜d,u = 0, then node u has no path of length

˜d to α̃ . This necessarily implies that

node v has no path of length
˜d − 1 to α̃ , and hence l ˜d−1,v = 0 as well. In such a case,

node u will not transfer any value to node v . Hence we define 0

0
= 0 here.

Later Algorithm 3 will be separately invoked for i) counting

the number of nodes, and ii) counting the number of votes. For

counting the number of votes, where the sum can be as large as nd ,

Algorithm 3 is invoked with max_out = O (nd ) and reset = true.

Having max_out = O (nd ) results in O (d logn) phases, which in

turn ensures the leftover value to be less than 1 even if the sum is

as large as nd . Having reset = true causes Algorithm 3 to invoke

ResetNeighbors() after each phase, enabling the algorithm to fully

utilize those newly created edges in the network (see Section 3.1).

For counting the number of nodes, Algorithm 3 is invoked with

max_out = O (n) and reset = false. This gives O (logn) phases,
without ResetNeighbors() being invoked after each phase. Here

we do not want to invoke ResetNeighbors(), so that later Algo-

rithm 4 can properly distribute votes as desired.

The following lemma summarizes the guarantees of Algorithm 3.

The lemma’s proof largely follows the intuition in Section 2.2, and

is deferred to Appendix B. For the lemma, recall that V denotes the

set of all nodes in the network. Also, recall that for a node id x , we
use “x” to refer to the integer value of x , and “node x” to refer to

that node.

Lemma 3.1. Consider any round r , any node α̃ , any integer ˜d

where 2 ≤ ˜d ≤ α̃ , any positive integer max_out, and any reset ∈
{true, false}. Let W be any set of nodes where node α̃ ∈ W and
where each node u ∈W invokes Aggregate(α̃ , ˜d, inputu , max_out,
reset) (i.e., Algorithm 3) in round r with some integer inputu ≥ 0

such that
∑
u ∈W inputu ≤ n + α̃

˜d . Let outputα̃ be the return value
of Algorithm 3 on node α̃ , and let r ′′ = r +6 ˜d2 log α̃ log(max_out). If
no node in V \W interferes with instance α̃ in any round from round
r to round r ′′ − 1 (both inclusive), then we have:

outputα̃ ≤
∑
u ∈W

inputu (1)

We further have:

outputα̃ =
∑
u ∈W

inputu , (2)

if all of the following four conditions hold:
• no node inV \W interferes with instance α̃ in any round from
round r to round r ′′ − 1 (both inclusive);
• W = V and α̃ ≥ n;
•

∑
u ∈W inputu ≤ max_out;

• (reset = false and ˜d ≥ ΓG (α̃ ), where G = σ (r , r ′′)) or
(reset = true, ˜d ≥ d , and T ≥ 3

˜d2 log α̃ ).
Finally, for any u ∈W , node u always sends O (logn) bits in every
round of its execution of Algorithm 3.

3.2.4 Distributing votes. Following the ideas in Section 2.4, in order

to check whether
˜d is sufficiently large, node α̃ will distribute α̃

˜d

votes to all the nodes, over about
˜d rounds. (By the definition of

α and by the discussion in Section 2.4, we must have α̃ ≤ α ≤

poly(n).) The quantity α̃
˜d
ensures that each node, within distance

of
˜d from node α̃ , gets at least one vote when α̃ ≥ n. Algorithm 4

gives the subroutine for doing this. A simple design would be for

each node, upon receiving some votes for the first time, to keep

one vote for itself and distribute all the remaining votes to its

neighbors. But this would need Θ( ˜d log α̃ ) message size. To reduce
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Algorithm 1 CountPaths.

Input: α̃ (guess on α ) and ˜d (guess on d);

Output: Each node u outputs, for i ∈ [0, ˜d], the number of paths of length exactly i from node u to node α̃ .

1: procedure CountPaths(α̃ , ˜d)
2: if α̃ = my id then l0 ← 1; else l0 ← 0;

3: for i ← 1, . . . , ˜d do ▷ This loop takes total
˜d rounds.

4: send ⟨COUNT_PATH, α̃ , li−1⟩;
5: li ← round+ (x , α̃ ), where x is the sum of all the l ′i−1 values in all the ⟨COUNT_PATH, α̃ ′, l ′i−1⟩ messages I receive this round with

α̃ ′ = α̃ ;

6: return l0, l1, l2, . . . , l ˜d ;

Algorithm 2 IntervalAggregate.
/* Let z be the sum of all the itv_input values on all the invoking nodes. This subroutine aims to collect z to node α̃ as much as possible,

while leaving the leftovers on the other nodes. */

Input: α̃ (guess on α ), ˜d (guess on d), and itv_input (real value);

Output: Node α̃ outputs the total value it has collected. Other nodes output their respective leftover values.

1: procedure IntervalAggregate(α̃ , ˜d, itv_input)
2: l0, l1, . . . , l ˜d ← CountPaths(α̃ , ˜d ); ▷ CountPaths() takes total ˜d rounds.

3: remain← itv_input;
4: for i ← 1 . . . ˜d do ▷ This loop takes total

˜d rounds.

5: rounded← round– (remain, α̃ );
6: send ⟨AGGREGATE, α̃ , rounded, l ˜d−i+1, l ˜d−i ⟩;

7: for every ⟨AGGREGATE, α̃ ′, rounded′, l ′
˜d−i+1
, l ′

˜d−i
⟩ message received this round where α̃ ′ = α̃ do

8: remain← remain +
l ˜d−i
l ′
˜d−i+1

× rounded′ −
l ′
˜d−i

l ˜d−i+1
× rounded; // Here,

0

0
is defined to be 0.

9: end for
10: return remain;

Algorithm 3 Aggregate.
/* Let z be the sum of all the input values on all the invoking nodes. */

Input: α̃ (guess on α ), ˜d (guess on d), input (integer), max_out (integer upper bound on z), and reset (whether ResetNeighbors() needs
to be called at the end of every phase);

Output: Node α̃ outputs z. We do not care about the outputs on other nodes.

1: procedure Aggregate(α̃ , ˜d , input, max_out, reset)
2: remain← input; ResetNeighbors();
3: repeat 3 log(max_out) times ▷ This loop takes total 6

˜d2 log α̃ log(max_out) rounds.

4: if α̃ = my id then itv_input← 0; else itv_input← remain/( ˜d log α̃ );

5: invoke IntervalAggregate(α̃ , ˜d, itv_input) for ˜d log α̃ times (sequentially), and let itv_output be the sum of all the
˜d log α̃

return values;

6: if α̃ = my id then remain← remain + itv_output; else remain← itv_output;
7: if reset = true then ResetNeighbors();
8: end
9: return ⌈remain⌉;

themessage size toO (logn), in each round each node in Algorithm 4

only sends a single bit (in addition to also sending α̃ ) indicating
whether it has any votes. In the i-th iteration, if node u has votes

while a neighboring node v has none, then exactly α̃
˜d−i

votes

are transferred from node u to node v . Here the quantity α̃
˜d−i

is

implicit. We will show that when doing so, a node never runs out

of votes to distribute, as long as it never has more than α̃ neighbors.

On the other hand, if the number of neighbors exceeds α̃ (at Line 4),

in Algorithm 4 the node simply refuses to distribute any vote, and

will cause vote verification later to fail. This is intentional since

more than α̃ neighbors implies α̃ < n and hence α̃ , α . Failing
the vote verification then forces the algorithm to later update α̃ .
The following lemma (see proof in Appendix C) summarizes the

guarantees of Algorithm 4. (Also, recall that V denotes the set of

all nodes in the network.)
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Algorithm 4 DistributeVotes.

/* This subroutine distributes α̃
˜d
votes.*/

Input: α̃ (guess on α ) and ˜d (guess on d); Output: Each node outputs the number of votes it ends up having.

1: procedure DistributeVotes(α̃ , ˜d)
2: if α̃ = my id then votes← α̃

˜d
; else votes← 0;

3: send ⟨NOTIFY, α̃⟩; ▷ Takes one round.

4: if I receive more than α̃ messages of the form ⟨NOTIFY, α̃ ′⟩ with α̃ ′ = α̃ then bad← true; else bad← false;
5: for i ← 1, . . . , ˜d do ▷ This loop takes total

˜d rounds.

6: if (votes > 0) and (bad = false) then
7: send ⟨HAS_VOTE, α̃⟩, then let x1 be the number of ⟨NO_VOTE, α̃ ′⟩ messages received where α̃ ′ = α̃ ;

8: votes← votes − x1α̃
˜d−i

;

9: else
10: send ⟨NO_VOTE, α̃⟩, then let x2 be the number of ⟨HAS_VOTE, α̃ ′⟩ messages received where α̃ ′ = α̃ ;

11: votes← votes + x2α̃
˜d−i

;

12: end if
13: end for
14: if votes = 0 then send ⟨FAIL, α̃⟩; else send ⟨NO_FAIL, α̃⟩; ▷ Takes one round.

15: if there exists some node such that in this round: i) I do not receive ⟨NO_FAIL, α̃ ′⟩ with α̃ ′ = α̃ from that node, and ii) I receive some

(other) message from that node then return 0; else return votes; /* For this line, a node takes into account both oldcomer messages

and newcomers messages. */

Algorithm 5 CountNodes and FloodRoot.
/* For counting the number of nodes. CountNodes() and FloodRoot() should be invoked concurrently and they run in parallel. In this

algorithm, all newcomer messages in the form of ⟨x , . . .⟩ where x ∈ {SWITCH, SYNC, OUTPUT} will be used instead of being ignored. */

Input: Nothing; Output: n

1: procedure CountNodes()
2:

˜d ← 1;

3: repeat forever
4: tmp← the largest α̃ ′ among all the ⟨SWITCH, α̃ ′⟩ messages that I have ever received (if no such message have been received, then

tmp← my id);

5: if tmp = my id then
6: α̃ ← tmp; ˜d ← min(2 ˜d, α̃ ); num_round← ˜d ;
7: else
8: wait until I receive some ⟨SYNC, α̃ ′, ˜d ′, num_round′⟩ message;

9: α̃ ← α̃ ′; ˜d ← ˜d ′; num_round← num_round′;
10: end if

11: while num_round > 0 do ▷ This loop takes at most
˜d rounds.

12: num_round← num_round − 1; send ⟨SYNC, α̃ , ˜d, num_round⟩;
13: end while
14: result← Aggregate(α̃ , ˜d, 1, α̃ , false); ▷ Takes total 6 ˜d2 log2 α̃ rounds.

15: votes← DistributeVotes(α̃ , ˜d ); ▷ Takes total 2 + ˜d rounds.

16: collected← Aggregate(α̃ , ˜d, votes, α̃
˜d , true); ▷ Takes total 6 ˜d3 log2 α̃ rounds.

17: if (α̃ = my id and collected = α̃
˜d
) then send ⟨OUTPUT, result⟩, output result, and terminate;

18: /* Upon receiving ⟨OUTPUT, result⟩, in the next round, a node sends ⟨OUTPUT, result⟩, outputs result, and terminates. */
19: end

20: procedure FloodRoot()
21: tmp← my id;

22: repeat forever
23: send ⟨SWITCH, tmp⟩; tmp← largest α̃ ′ among all the ⟨SWITCH, α̃ ′⟩ messages I have ever received;

24: end
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Lemma 3.2. Consider any rounds r ′ and r where r ′ ≤ r , any
node α̃ , and any integer ˜d where 2 ≤ ˜d ≤ α̃ . LetW be any set of
nodes that all (i) invoke DistributeVotes(α̃ , ˜d ) (i.e., Algorithm 4)
simultaneously in round r , and (ii) last invoked ResetNeighbors() at
the beginning of round r ′. LetG1 = σ (r ′, r ) andG2 = σ (r ′, r + ˜d +2).
For u ∈W , let outputu be the return value of Algorithm 4 on node u.
If (i) α̃ ∈W , and (ii) for allv ∈ V \W and in every round from round
r to round r + ˜d + 1 (both inclusive), node v sends some message but
does not interfere with instance α̃ , then all the following holds:

•
∑
u ∈W outputu ≤ α̃

˜d and outputu is a non-negative integer
for all u ∈W .
• If

∑
u ∈W outputu = α̃

˜d , thenW = V and ˜d ≥ ΓG1
(α̃ ).

• IfW = V , ˜d ≥ ΓG2
(α̃ ), and α̃ ≥ n, then

∑
u ∈W outputu =

α̃
˜d .

Finally, for all u ∈ W , node u always sends O (logn) bits in every
round of its execution of Algorithm 4.

3.3 Putting Everything Together
Algorithm 5 gives our final algorithm for Count, which follows the

intuition in Section 2.4. Namely, the nodes first invoke Aggregate()
to count the number of nodes. Next they use DistributeVotes()

to distribute α̃
˜d
votes, and then invoke Aggregate() again to count

the total number of votes. If the second Aggregate() result matches

α̃
˜d
, the nodes output.

In Algorithm 5, each node runs CountNodes() and FloodRoot()
in parallel. In FloodRoot(), each node keeps sending the largest

id that it has seen so far. If this id equals its own id, then the

node will initiate a new “instance”, by flooding a SYNC message.

Multiple nodes may start flooding such SYNC messages simulta-

neously. Other nodes will wait until they receive the first such

SYNC message, and join the “instance” corresponding to that SYNC
message. The SYNC message also carries information on when this

“instance” should start — this enables all nodes in the “instance”

to invoke Aggregate() and DistributeVotes() in a synchronized

fashion (at Line 14 to 16). A node may need to switch from one

“instance” to another. To avoid various technical issues, we do not

allow such switch to happen during the invocations of Aggregate()
and DistributeVotes(), and hence the switch may be delayed. Fi-

nally, all the SWITCH/SYNC/OUTPUT messages in the algorithm are

“signaling” messages, and we want nodes to process them as soon

as possible. Hence a node will process (rather than ignore) these

messages even if they are newcomer messages.

With FloodRoot(), all nodes will see the largest id α (among the

n nodes) within d rounds. All nodes hence will later switch into

the “instance” whose root is node α , which eventually causes the

algorithm to produce a correct answer. A careful reasoning will

show that the delayed switches will not blow up the time complexity.

The following theorem summarizes the final guarantees of our

Count algorithm, with proof in Appendix D:

Theorem 3.3. There exists some constant c independent of d , n,
and T , such that as long as T ≥ cd2 log2 n:

• Algorithm 5 always outputs n (and terminates) inO (d3 log2 n)
rounds.

• In each round during the execution of Algorithm 5, each node
sends only O (logn) bits.

4 OUR O (d3polylog(n)) ALGORITHMS FOR
OTHER PROBLEMS

We have presented ourO (d3 log2 n) Count algorithm. The general

framework in this Count algorithm can be adapted to solve a range

of other problems, as following, when T ≥ cd2 log2 n. For solving
Max/LeaderElect/ Consensus/ConfirmedFlood, we only need

to replace Line 14 in Algorithm 5 in the following way. Instead

of invoking Aggregate(), Line 14 will now simply flood, for 2
˜d

rounds, the maximum input value seen (for Max and Consensus)

or the maximum node id seen (for LeaderElect) or the input of the

distinguished node (for ConfirmedFlood). When the condition at

Line 17 is satisfied,
˜d must have been large enough, and hence every

node must have previously in Line 14 “heard from” all nodes . This

then enables the algorithm to output a correct result inO (d3 log2 n)
rounds.

For solving Sum and Median, we first invoke the Count al-

gorithm to obtain n. Note that when the algorithm terminates, all

nodes must already see the largest idα among all then nodes. Hence
in all future invocations of the algorithm, there will only be a single

“instance” — namely, the “instance” whose root is α . Next, we invoke
the algorithm again to get the maximum value z among the n input

values. Finally, for Sum, we invoke the algorithm a third time while

changing Line 14 from “result← Aggregate(α̃ , ˜d, 1, α̃ , false)” to
“result ← Aggregate(α̃ , ˜d,x ,nz, false)”, with x being the local

input on the node. Doing so solves Sum in O (d3 log2 n) rounds.
For Median, after getting n and z, node α does a binary search

in the range of [0, z]. In each step of the search, node α indicates

the current range of interest, and uses the algorithm to count the

number of inputs falling within that range. This solves Median in

O (d3 log3 n) rounds.
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A ADDITIONAL NOTATIONS
We need a few additional notations in this appendix. Given graph

G and node u, let ΛG (u) be the set of neighbors of node u in G.
Given graph G, integerm ≥ 1, and any two nodes u and v , define
ΨG (m,u,v ) to be the number of distinct paths from node u to node

v in G of length exactly m. Define ΨG (0,u,v ) = 1 if u = v , and
ΨG (0,u,v ) = 0 if u , v .

B PROOF FOR LEMMA 3.1
This section proves Lemma 3.1. To do so, we first prove Lemma B.1

and Lemma B.2. Recall that V denotes the set of all nodes in the

network. Lemma B.1 proves the guarantees of CountPaths() (i.e.,
Algorithm 1):

Lemma B.1. Consider any rounds r ′ and r where r ′ ≤ r , any node
α̃ , and any integer ˜d where 2 ≤ ˜d ≤ α̃ . LetW be any set of nodes
that (i) invoke CountPaths(α̃ , ˜d ) (i.e., Algorithm 1) simultaneously
in round r , and (ii) last invoked ResetNeighbors() at the beginning
of round r ′. LetG1 = σ (r ′, r ) andG2 = σ (r ′, r + ˜d ). Let li,u be the li
value output by Algorithm 1 on node u, for i ∈ [0, ˜d] and u ∈W . If
no node in V \W interferes with instance α̃ in any round from round
r to round r + ˜d − 1 (both inclusive), then all the following holds for

all i ∈ [0, ˜d] and all u ∈W :

li,u ≥
∑

v ∈(ΛG
2
(u )∩W )

li−1,v for i , 0 (3)

0 ≤ li,u ≤

(
1 +

1

α̃4

)
ΨG1

(i,u, α̃ ) (4)

li,u ≥ ΨG2
(i,u, α̃ ) if W = V (5)

Finally, for all i and u, the value li,u can be encoded using O (logn)
bits, and node u always sends O (logn) bits in every round of its
execution of Algorithm 1.

Proof. For Equation 3, letG3 = σ (r ′, r + i − 1). Since ΛG2
(u) ⊆

ΛG3
(u), we have li,u = round+ (

∑
v ∈(ΛG

3
(u )∩W ) li−1,v , α̃ ) ≥

round+ (
∑
v ∈(ΛG

2
(u )∩W ) li−1,v , α̃ ) ≥

∑
v ∈(ΛG

2
(u )∩W ) li−1,v .

Equation 3, together with the fact that l0,v ≥ 0 for all v ∈
W , implies that li,u ≥ 0. For Equation 4, now we only need to

prove li,u ≤
(
1 + 1

α̃ 4

)
ΨG1

(i,u, α̃ ). We will show via an induc-

tion that li,u ≤
(
1 + 1

α̃ 6

)i
ΨG1

(i,u, α̃ ), which implies that li,u ≤(
1 + 1

α̃ 6

) α̃
ΨG1

(i,u, α̃ ) ≤
(
1 + 1

α̃ 4

)
ΨG1

(i,u, α̃ ). The induction base

for i = 0 is trivial. Suppose the claim holds for i = j. Let G4 =

σ (r ′, r + j ). Since ΛG4
(u) ⊆ ΛG1

(u), by the induction hypothesis

and by the property of round+ (), we have:

lj+1,u = round+
*..
,

∑
v ∈(ΛG

4
(u )∩W )

lj,v , α̃
+//
-

≤ round+
*..
,

∑
v ∈(ΛG

1
(u )∩W )

lj,v , α̃
+//
-

≤

(
1 +

1

α̃6

) ∑
v ∈(ΛG

1
(u )∩W )

lj,v

≤

(
1 +

1

α̃6

) j+1 ∑
v ∈(ΛG

1
(u )∩W )

ΨG1
(j,v, α̃ )

≤

(
1 +

1

α̃6

) j+1 ∑
v ∈ΛG

1
(u )

ΨG1
(j,v, α̃ )

=

(
1 +

1

α̃6

) j+1
ΨG1

(j + 1,u, α̃ )

Next, we use an induction on i to directly prove Equation 5. The

induction base for i = 0 is trivial. Suppose the claim holds for i = j .
Let G4 = σ (r ′, r + j ). Since ΛG2

(u) ⊆ ΛG4
(u), together with the in-

duction hypothesis, we have lj+1,u = round+ (
∑
v ∈(ΛG

4
(u )∩W ) lj,v , α̃ )

= round+ (
∑
v ∈ΛG

4
(u ) lj,v , α̃ ) ≥ round+ (

∑
v ∈ΛG

2
(u ) lj,v , α̃ ) ≥∑

v ∈ΛG
2
(u ) lj,v ≥

∑
v ∈ΛG

2
(u ) ΨG2

(j,v, α̃ ) = ΨG2
(j + 1,u, α̃ ).

Finally, we show that li,u can be encoded using O (logn) bits.
Note that li,u is assigned a value (i..e, round+ (x , α̃ )) only once at

Line 5 of Algorithm 1. One can easily verify based on the pseudo-

code that at Line 5, either x = 0 or x ≥ 1. If x = 0, then li,u =
round+ (x , α̃ ) = 0 can be encoded using a single bit. If x ≥ 1,

Equation 4 tells us that x ≤ li,u ≤ 2ΨG1
(i,u, α̃ ) ≤ 2ni ≤ 2n

˜d ≤

2nα̃ ≤ 2
(nα̃ )4

, implying that li,u = round+ (x , α̃ ) can be encoded

using O (logn) bits. Therefore li,u can always be encoded using

1 + max(1,O (logn)) = O (logn) bits. A node u ∈ W , during its
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execution of Algorithm 1, only send a message at Line 4. Each such

message contains a label COUNT_PATH, a node id α̃ , and li,u , all of
which can be encoded using O (logn) bits. □

Lemma B.2 next proves the guarantees of IntervalAggregate()
(i.e., Algorithm 2). In the lemma, Equation 7 is themass conservation

property, while Equation 8 shows that the fraction of total mass

moved to α̃ is proportional to the fraction of surviving paths. We

prove the lemma by showing that in the ith step, the value on any

node u is proportional to the fraction of surviving paths from each

node v to node α̃ with node u being the ith vertex on that path.

For the purpose of such reasoning, a “surviving” path would mean

that the part from node v to node u is still intact, regardless of

whether the part from node u to node α̃ is still intact. This careful

reasoning is needed — otherwise we would be overly pessimistic

and the proof would not go through. Again, recall that V denotes

the set of all nodes in the network.

Lemma B.2. Consider any rounds r ′ and r where r ′ ≤ r , any
node α̃ , and any integer ˜d where 2 ≤ ˜d ≤ α̃ . Let W be any set
of nodes where α̃ ∈ W and where each node u ∈ W (i) invokes
IntervalAggregate(α̃ , ˜d, itv_inputu ) (i.e., Algorithm 2) in round
r with some itv_inputu ≥ 0 such that

∑
u ∈W itv_inputu ≤ n +

α̃
˜d , and (ii) last invoked ResetNeighbors() at the beginning of round

r ′. Let G1 = σ (r ′, r ) and G2 = σ (r ′, r + 2
˜d ). Let outputu be the

return value of Algorithm 2 on node u for u ∈W . If no node inV \W
interferes with instance α̃ in any round from round r to round r+2 ˜d−1
(both inclusive), then all the following holds:

outputu ≥ 0 for all u ∈W (6)∑
u ∈W

outputu =
∑
u ∈W

itv_inputu (7)

outputα̃ ≥
3

4

∑
v ∈V

*
,

ΨG2
( ˜d,v, α̃ )

ΨG1
( ˜d,v, α̃ )

× itv_inputv +
-
−

n

α̃5

if W = V and ˜d ≥ ΓG2
(α̃ )

(8)

Finally, for any u ∈W , node u always sends O (logn) bits in every
round of its execution of Algorithm 2.

Proof. All line numbers in this proof refer to Algorithm 2. For

any u ∈W , let l0,u , l1,u , . . . , l ˜d,u denote the values of l0, l1, . . . l ˜d ,

respectively, on node u immediately after Line 2. Consider the iter-

ation from Line 5 to 8 (both inclusive). For i ∈ [1, ˜d], let remaini,u
be the value of remain at the end of iteration i on node u. Let
remain0,u = itv_inputu . Recall that Algorithm 2 defines

0

0
to

be 0. We also define
0

0
to be 0 in this proof. One can (tediously)

verify that in both Algorithm 2 and our proof next, we will never

encounter a quantity of
x
0
with x , 0.

We first use a simple induction to prove remaini,u ≥ 0 for

all i ∈ [0, ˜d], which would imply Equation 6. The induction base

is trivial. Suppose remaini,u ≥ 0 holds for i = j, and we now

prove for j + 1. Let G3 = σ (r ′, r + ˜d ) and G4 = σ (r ′, r + ˜d + j ).

By Equation 3 in Lemma B.1, we have

∑
w ∈(ΛG

4
(u )∩W )

l ˜d−j−1,w
l ˜d−j,u

≤∑
w ∈(ΛG

3
(u )∩W )

l ˜d−j−1,w
l ˜d−j,u

≤ 1. Hence:

remainj+1,u

≥ remainj,u −
*..
,

∑
w ∈(ΛG

4
(u )∩W )

l
˜d−j−1,w

l
˜d−j,u

+//
-
×

round– (remainj,u , α̃ )

≥ remainj,u − round
– (remainj,u , α̃ ) ≥ 0 (9)

We next prove

∑
u ∈W remaini,u =

∑
u ∈W itv_inputu for all

i ∈ [0, ˜d], whichwould imply Equation 7. Obviously

∑
u ∈W remain0,u

=
∑
u ∈W itv_inputu . The value of

∑
u ∈W remain1,u is fully de-

termined in the first iteration, which is in round r + ˜d . Consider
any given u ∈ W , and any node v that is a neighbor of node u

in round r + ˜d . If v < W , then by the condition in the lemma,

node v does not interfere with instance α̃ in that round. By the

pseudo-code, the message from nodev to node u will be ignored by

the algorithm, and has no effect on remain1,u . If v ∈W , then the

messages exchanged between node u and node v in that round will

cause remain1,u to increase by

l ˜d−i,u
l ˜d−i+1,v

×round– (remaini−1,v , α̃ )−

l ˜d−i,v
l ˜d−i+1,u

× round– (remaini−1,u , α̃ ), while causing remain1,v to de-

crease by the same amount. Hence,

∑
u ∈W remain1,u will remain

unchanged after the message exchange between node u and nodev .
Putting both cases together, we have

∑
u ∈W remain1,u =∑

u ∈W remain0,u =
∑
u ∈W itv_inputu . The same argument gen-

eralizes to

∑
u ∈W remaini,u for all i ∈ [0, ˜d].

We move on to prove Equation 8. We will prove that for all

i ∈ [0, ˜d] and all u ∈ V , there exist non-negative real values yi,u
such that:∑

v ∈V
yi,v ≤

in

α̃6
(10)

remaini,u ≥

(
1 − 1

α̃ 6

)i
1 + 1

α̃ 4

∑
v ∈V

*
,

ΨG2
(i,v,u) × l

˜d−i,u

ΨG1
( ˜d,v, α̃ )

×

itv_inputv +
-
− yi,u (11)

Equation 8 directly follows from Equation 10 and Equation 11

since:

outputα̃ = remain
˜d, α̃

≥

(
1 − 1

α̃ 6

) ˜d

1 + 1

α̃ 4

×
∑
v ∈V

*
,

ΨG2
( ˜d,v, α̃ ) × l

0, α̃

ΨG1
( ˜d,v, α̃ )

× itv_inputv +
-
− y

˜d, α̃

≥

(
1 − 1

α̃ 6

) α̃
1 + 1

α̃ 4

∑
v ∈V

*
,

ΨG2
( ˜d,v, α̃ )

ΨG1
( ˜d,v, α̃ )

× itv_inputv +
-
− y

˜d, α̃

≥
3

4

∑
v ∈V

*
,

ΨG2
( ˜d,v, α̃ )

ΨG1
( ˜d,v, α̃ )

× itv_inputv +
-
− y

˜d, α̃

≥
3

4

∑
v ∈V

*
,

ΨG2
( ˜d,v, α̃ )

ΨG1
( ˜d,v, α̃ )

× itv_inputv +
-
−

n

α̃5

We next prove Equation 10 and 11 via an induction. For i =

0, we set y0,v = 0 for all v . By Lemma B.1 we have

(
1

1+ 1

α̃ 4

)
×∑

v ∈V

(
ΨG

2
(0,v,u )×l ˜d,u

ΨG
1
( ˜d,v, α̃ )

× itv_inputv

)
−y0,u =

1

1+ 1

α̃ 4

l ˜d,u
ΨG

1
( ˜d,u, α̃ )

×

12



itv_inputu ≤ itv_inputu = remain0,u . Next assume the claim

holds for i = j. Let G3 = σ (r ′, r + ˜d ) and G4 = σ (r ′, r + ˜d + j ). We

7set yj+1,u =
∑
w ∈ΛG

4
(u )

( l ˜d−j−1,u
l ˜d−j,w

(
1

α̃ 6
+ yj,w

))
. For Equation 10,

we have:

∑
v ∈V

yj+1,v =
∑
v ∈V

∑
w ∈ΛG

4
(v )

*
,

l
˜d−j−1,v

l
˜d−j,w

(
1

α̃6
+ yj,w

)
+
-

=
∑
w ∈V

∑
v ∈ΛG

4
(w )

*
,

l
˜d−j−1,v

l
˜d−j,w

(
1

α̃6
+ yj,w

)
+
-

≤
∑
w ∈V

∑
v ∈ΛG

3
(w )

*
,

l
˜d−j−1,v

l
˜d−j,w

(
1

α̃6
+ yj,w

)
+
-

≤
∑
w ∈V

(
1

α̃6
+ yj,w

)
(Lemma B.1 and sinceW = V )

≤
n

α̃6
+

jn

α̃6
(by inductive hypothesis)

=
(j + 1)n

α̃6

For Equation 11, we already proved in Equation 9 that remainj,u−(∑
w ∈ΛG

4
(u )

l ˜d−j−1,w
l ˜d−j,u

)
× round– (remainj,u , α̃ ) = remainj,u−(∑

w ∈ΛG
4
(u )∩W

l ˜d−j−1,w
l ˜d−j,u

)
× round– (remainj,u , α̃ ) ≥ 0. Hence:

remainj+1,u

= remainj,u −

( ∑
w ∈ΛG

4
(u )

l
˜d−j−1,w

l
˜d−j,u

)
× round– (remainj,u , α̃ )

+
∑

w ∈ΛG
4
(u )

*
,

l
˜d−j−1,u

l
˜d−j,w

× round– (remainj,w , α̃ )+
-

≥
∑

w ∈ΛG
4
(u )

*
,

l
˜d−j−1,u

l
˜d−j,w

× round– (remainj,w , α̃ )+
-

≥
∑

w ∈ΛG
4
(u )

*
,

l
˜d−j−1,u

l
˜d−j,w

((
1 −

1

α̃6

)
remainj,w −

1

α̃6

)
+
-

≥
∑

w ∈ΛG
4
(u )

*
,

l
˜d−j−1,u

l
˜d−j,w

*
,

(
1 −

1

α̃6

)
*
,

(
1 − 1

α̃ 6

) j
1 + 1

α̃ 4

×

∑
v ∈V

*
,

ΨG2
(j,v,w ) × l

˜d−j,w

ΨG1
( ˜d,v, α̃ )

× itv_inputv +
-
− yj,w +

-
−

1

α̃6
+
-
+
-

(by inductive hypothesis)

=

(
1 − 1

α̃ 6

) j+1
1 + 1

α̃ 4

∑
v ∈V

( l
˜d−j−1,u

ΨG1
( ˜d,v, α̃ )

× itv_inputv ×

∑
w ∈ΛG

4
(u )

ΨG2
(j,v,w )

)
−

∑
w ∈ΛG

4
(u )

*
,

l
˜d−j−1,u

l
˜d−j,w

(
1

α̃6
+

(
1 −

1

α̃6

)
yj,w

)
+
-

≥

(
1 − 1

α̃ 6

) j+1
1 + 1

α̃ 4

∑
v ∈V

( l
˜d−j−1,u

ΨG1
( ˜d,v, α̃ )

× itv_inputv ×

∑
w ∈ΛG

4
(u )

ΨG2
(j,v,w )

)
− yj+1,u

≥

(
1 − 1

α̃ 6

) j+1
1 + 1

α̃ 4

∑
v ∈V

( l
˜d−j−1,u

ΨG1
( ˜d,v, α̃ )

× itv_inputv ×

∑
w ∈ΛG

2
(u )

ΨG2
(j,v,w )

)
− yj+1,u

=

(
1 − 1

α̃ 6

) j+1
1 + 1

α̃ 4

∑
v ∈V

*
,

ΨG2
(j + 1,v,u) × l

˜d−j−1,u

ΨG1
( ˜d,v, α̃ )

×

itv_inputv +
-
− yj+1,u

This completes our inductive proof for Equation 10 and 11.

Finally, Algorithm 2 sends messages only at Line 2 and Line 6.

By Lemma B.1, any node u ∈W always sendsO (logn) bits in every

round during the execution of Line 2. At Line 6, the algorithm sends

a label AGGREGATE, a node id α̃ , round– (remaini,u , α̃ ), l ˜d−i+1,u ,

and l
˜d−i,u . We earlier proved that remaini,u ≥ 0 for all i and

u, and that

∑
u ∈W remaini,u =

∑
u ∈W itv_inputu . This implies

0 ≤ remaini,u ≤
∑
u ∈W itv_inputu ≤ n + α̃

˜d ≤ 2
(nα̃ )4

. Hence,

by the property of round– (), we can encode round– (remaini,u , α̃ )
usingO (logn) bits. Lemma B.1 tells us that both l

˜d−i+1,u and l
˜d−i,u

can also be encoded using O (logn) bits. Thus each message sent at

Line 6 has just O (logn) bits. □

We can now prove Lemma 3.1:

Lemma 3.1 (Restated). Consider any round r , any node α̃ , any
integer ˜d where 2 ≤ ˜d ≤ α̃ , any positive integer max_out, and
any reset ∈ {true, false}. LetW be any set of nodes where node
α̃ ∈W andwhere each nodeu ∈W invokes Aggregate(α̃ , ˜d, inputu ,
max_out, reset) (i.e., Algorithm 3) in round r with some integer
inputu ≥ 0 such that

∑
u ∈W inputu ≤ n + α̃

˜d . Let outputα̃
be the return value of Algorithm 3 on node α̃ , and let r ′′ = r +

6
˜d2 log α̃ log(max_out). If no node in V \W interferes with instance

α̃ in any round from round r to round r ′′ − 1 (both inclusive), then
we have:

outputα̃ ≤
∑
u ∈W

inputu (1)

We further have:

outputα̃ =
∑
u ∈W

inputu , (2)

if all of the following four conditions hold:

• no node inV \W interferes with instance α̃ in any round from
round r to round r ′′ − 1 (both inclusive);
• W = V and α̃ ≥ n;
•

∑
u ∈W inputu ≤ max_out;

• (reset = false and ˜d ≥ ΓG (α̃ ), where G = σ (r , r ′′)) or
(reset = true, ˜d ≥ d , and T ≥ 3

˜d2 log α̃ ).
13



Finally, for any u ∈W , node u always sends O (logn) bits in every
round of its execution of Algorithm 3.

Proof. We only prove the lemma for n ≥ 2. The case for n = 1

is straightforward and much easier, and we omit for brevity. All line

numbers below refer to Algorithm 3. We refer to Line 4 through 6

(both inclusive) as an iteration. Let remain0,u (for all u ∈ W )

be the value of remain on node u immediately after Line 2. For

all i ∈ [1, 3 log(max_out)] and all node u ∈ W , let remaini,u ,
itv_outputi,u , and itv_inputi,u be the value of the variables

remain, itv_output, and itv_input, respectively, at the end of the
i-th iteration on node u. Consider any invocation of

IntervalAggregate() at Line 5 in the i-th iteration. Let round

r ′i be the round when ResetNeighbors() was last invoked, before
this invocation of IntervalAggregate(). One can easily verify

from the pseudo-code that r ′i = r if reset = false, and r ′i =

r + (i − 1) × 2 ˜d2 log α̃ if reset = true.
For all i , we first prove (i) itv_inputi,u ≥ 0 for all u ∈ W

and (ii)

∑
u ∈W itv_inputi,u ≤ n + α̃

˜d
, so that we can later invoke

Lemma B.2. We prove (i) and (ii) via an induction, together with two

additional equations (iii) remaini,u ≥ 0 and (iv)

∑
u ∈W remaini,u =∑

u ∈W inputu . For the base case of i = 1, Equations (i) and (ii) obvi-

ously hold. Equations (iii) and (iv) follow from Equation 6 and Equa-

tion 7 in Lemma B.2. Next consider the inductive step of i = j + 1.
For Equation (i), if u = α̃ , we trivially have itv_inputj+1,u ≥ 0.

If u , α̃ , we have itv_inputj+1,u = remainj,u/( ˜d log α̃ ) ≥ 0. For

Equation (ii), we have itv_inputj+1,u ≤ remainj,u/( ˜d log α̃ ) ≤

(
∑
v ∈W remainj,v/( ˜d log α̃ )) ≤

∑
v∈W inputv

˜d log α̃
≤ n + α̃

˜d
. For Equa-

tion (iii), if u , α̃ , by Lemma B.2, we have remainj+1,u =
itv_outputj+1,u ≥ 0. If u = α̃ , by Lemma B.2 and by the inductive

hypothesis, we have remainj+1,u = remainj, α̃+itv_outputj+1,u ≥
itv_outputj+1,u ≥ 0. Finally for Equation (iv), we have∑
v ∈W remainj+1,v = remainj, α̃ +

∑
v ∈W itv_outputj+1,v =

(by Lemma B.2) remainj, α̃ + ˜d log α̃
∑
v ∈W itv_inputj+1,v =∑

v ∈W remainj,v = (by inductive hypothesis)

∑
v ∈W inputv . This

completes the inductive proof for the 4 equations.

Define x =
∑
u ∈W inputu and z = 3 log(max_out). We have

outputα̃ = ⌈remainz, α̃ ⌉ ≤ (by Equation (iii))

⌈∑
u ∈W remainz,u

⌉
= (by Equation (iv)) ⌈

∑
u ∈W inputu ⌉ =

∑
u ∈W inputu , which

proves Equation 1. (The last equality holds because inputu is an

integer for all u.)

We nextmove on to Equation 2. LetGi = σ (r ′i , r+i×2
˜d2 log α̃ ) for

all i ∈ [1, z]. We first claim that
˜d ≥ ΓGi (α̃ ) for all i: First, consider

the case where reset = false. We then have r ′i = r . This means

that σ (r , r ′′) must be a subgraph of Gi . Hence by the condition

˜d ≥ ΓG (α̃ ) in the lemma, we must have
˜d ≥ ΓGi (α̃ ). Second, if

reset = true, then r ′i = r + (i − 1) × 2
˜d2 log α̃ and Gi = σ (r +

(i − 1) × 2 ˜d2 log α̃ , r + i × 2 ˜d2 log α̃ ). By the conditionT ≥ 3
˜d2 log α̃

in the lemma, and also by the definition of backbone diameter of

T -interval dynamic networks, we know that the diameter of (the

graph) Gi is at most d . By the condition of
˜d ≥ d in the lemma, we

have
˜d ≥ ΓGi (α̃ ).

Next, for all i ∈ [0, z], define yi =
∑
u ∈V remaini,u − remaini, α̃ .

We will later prove that ifW = V , α̃ ≥ n, and ˜d ≥ ΓGi (α̃ ) for

all i ∈ [1, z], then yi ≤
5

8
yi−1 +

n
α̃ 3

for all i ∈ [1, z]. This will
imply that if we further have x ≤ max_out, then outputα̃ =
⌈remainz, α̃ ⌉ = ⌈

∑
u ∈V remainz,u −yz ⌉ = (by Equation (iv)) ⌈x −

yz ⌉ ≥
⌈
x −

((
5

8

)z
y0 +

n
α̃ 3

∑z−1
i=0

(
5

8

)i )⌉
≥
⌈
x −

(
1

4max_outy0 +
8n
3α̃ 3

)⌉
≥

⌈
x − 1

4max_outx −
8n
3α̃ 3

⌉
≥

⌈
x − 1

4
− 8

3n2

⌉
= x . (The last equality

holds because x =
∑
u ∈W inputu is an integer.) This proves Equa-

tion 2.

The following proves that ifW = V , α̃ ≥ n, and ˜d ≥ ΓGi (α̃ )

for all i ∈ [1, z], then yi ≤
5

8
yi−1 +

n
α̃ 3

for all i ∈ [1, z]. By

Equation (iv), we have

∑
u ∈V remaini,u = x =

∑
u ∈V remaini−1,u .

Thus yi =
∑
u ∈V remaini,u − remaini, α̃ =

∑
u ∈V remaini−1,u −

(remaini−1, α̃ +itv_outputi, α̃ ) = yi−1−itv_outputi, α̃ . It suffices

to prove itv_outputi, α̃ ≥
3

8
yi−1−

n
α̃ 3

. Consider any given i . For all

j ∈ [1, ˜d log α̃+1], letGi, j = σ (r ′i , r+(i−1)2
˜d2 log α̃+(j−1)2 ˜d ). Note

that Gi is a subgraph of Gi, j for all j, hence ˜d ≥ ΓGi (α̃ ) ≥ ΓGi, j (α̃ ).
We thus have:

itv_outputi, α̃

≥
∑

j ∈[1, ˜d log α̃ ]

*
,

3

4

∑
u ∈V

*
,

ΨGi, j+1 (
˜d,u, α̃ )

ΨGi, j (
˜d,u, α̃ )

× itv_inputi,u+
-
−

n

α̃5
+
-

(by Lemma B.2)

= −
n × ˜d log α̃

α̃5
+

3

4

∑
u ∈V

*
,
itv_inputi,u ×

∑
j ∈[1, ˜d log α̃ ]

ΨGi, j+1 (
˜d,u, α̃ )

ΨGi, j (
˜d,u, α̃ )

+
-

≥ −
n

α̃3
+
3

4

∑
u ∈V

*
,
itv_inputi,u ×

*..
,

∏
j ∈[1, ˜d log α̃ ]

ΨGi, j+1 (
˜d,u, α̃ )

ΨGi, j (
˜d,u, α̃ )

+//
-

1

˜d log α̃

× ˜d log α̃+
-

≥ −
n

α̃3
+
3

4

∑
u ∈V

*
,
itv_inputi,u ×

*.
,

ΨGi, ˜d log α̃+1
( ˜d,u, α̃ )

ΨGi,1 (
˜d,u, α̃ )

+/
-

1

˜d log α̃

× ˜d log α̃+
-

≥ −
n

α̃3
+
3

4

∑
u ∈V

*.
,
itv_inputi,u ×

(
1

n
˜d

) 1

˜d log α̃
× ˜d log α̃+/

-
(the above step holds because (i) ΨGi,1 (

˜d,u, α̃ ) ≤ n
˜d
, and

(ii) ΓGi, ˜d log α̃+1
(α̃ ) ≤ ˜d which implies ΨGi, ˜d log α̃+1

( ˜d,u, α̃ ) ≥ 1)

≥ −
n

α̃3
+
3

4

∑
u ∈V

*.
,
itv_inputi,u ×

(
1

α̃
˜d

) 1

˜d log α̃
× ˜d log α̃+/

-
≥ −

n

α̃3
+
3

8

∑
u ∈V

(
itv_inputi,u × ˜d log α̃

)
= −

n

α̃3
+
3

8

*
,

∑
u ∈V

remaini−1,u − remaini−1, α̃ +
-
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= −
n

α̃3
+
3

8

yi−1

This completes our proof that ifW = V , α̃ ≥ n, and ˜d ≥ ΓGi (α̃ ) for

all i ∈ [1, z], then yi ≤
5

8
yi−1 +

n
α̃ 3

for all i ∈ [1, z].
Finally, the claim on the number of bits sent in each round di-

rectly follows from Lemma B.2. □

C PROOF FOR LEMMA 3.2
Lemma 3.2 (Restated). Consider any rounds r ′ and r where r ′ ≤

r , any node α̃ , and any integer ˜d where 2 ≤ ˜d ≤ α̃ . LetW be any set
of nodes that all (i) invoke DistributeVotes(α̃ , ˜d ) (i.e., Algorithm 4)
simultaneously in round r , and (ii) last invoked ResetNeighbors() at
the beginning of round r ′. LetG1 = σ (r ′, r ) andG2 = σ (r ′, r + ˜d +2).
For u ∈W , let outputu be the return value of Algorithm 4 on node u.
If (i) α̃ ∈W , and (ii) for allv ∈ V \W and in every round from round
r to round r + ˜d + 1 (both inclusive), node v sends some message but
does not interfere with instance α̃ , then all the following holds:

•
∑
u ∈W outputu ≤ α̃

˜d and outputu is a non-negative integer
for all u ∈W .
• If

∑
u ∈W outputu = α̃

˜d , thenW = V and ˜d ≥ ΓG1
(α̃ ).

• IfW = V , ˜d ≥ ΓG2
(α̃ ), and α̃ ≥ n, then

∑
u ∈W outputu =

α̃
˜d .

Finally, for all u ∈ W , node u always sends O (logn) bits in every
round of its execution of Algorithm 4.

Proof. Recall thatV denotes the set of all nodes in the network.

All line numbers below refer to Algorithm 4. The claim on the

number of bits sent in each round is obvious from the pseudo-code

of Algorithm 4. Let votesu be the votes variable in Algorithm 4

on node u ∈ W . Consider the iteration from Line 6 to 12 (both

inclusive). We first claim that one of the following two cases must

hold:

Case 1: votesu = 0 in all rounds in all
˜d iterations.

Case 2: votesu = 0 in all rounds in iterations 1 through i − 1

for some i ∈ [1, ˜d], and votesu is a positive integer in all

rounds in iterations i through ˜d .

We first prove the above claim for u , α̃ . Let iteration i be the first
iteration during which votesu gets assigned a non-zero value. If

such i does not exist, then Case 1 holds. Otherwise by the condition

at Line 6 and also by Line 11, we have votesu ≥ α̃
˜d−i > 0 at the

end of iteration i . In each future iteration j where i + 1 ≤ j ≤ ˜d ,

votesu can decrease by at most (α̃ − 1) × α̃
˜d−j

. Since α̃
˜d−i − (α̃ −

1) × α̃
˜d−i−1 − (α̃ − 1) × α̃

˜d−i−2 − · · · − (α̃ − 1) × α̃0 ≥ 1, we have

votesu > 0 in all rounds in iterations i through ˜d . One can further

trivially verify that votesu must always be an integer. We have

thus finished proving the above claim for u , α̃ . For u = α̃ , one can
easily prove (in a similar way) that Case 2 always holds.

We next show that

∑
u ∈W votesu = α̃

˜d
immediately after Line 13.

We obviously have

∑
u ∈W votesu = α̃

˜d
immediately after Line 2.

The value of votes on a node can only change at Line 8 and Line 11.

Consider any given iteration from Line 6 to Line 12, which has

only a single round. Consider any node u ∈ W and any node v
that is a neighbor of node u in that round. If v <W , then by the

condition in the lemma, node v does not interfere with instance α̃

in that round. By the pseudo-code, the message from nodev to node

u will be ignored by the algorithm, and has no effect on votesu
and

∑
u ∈W votesu . Next consider the case where v ∈W . If node

u sends ⟨HAS_VOTE, α̃⟩ and node v sends ⟨NO_VOTE, α̃⟩, then such

message exchanged between node u and node v will decrease (in-

crease) votesu (votesv ) by α̃
i−1

. This means that

∑
u ∈W votesu

does not change due to this message exchanged between node u
and node v . One can verify that the same holds in all the remaining

3 cases (e.g., when both node u and node v send ⟨HAS_VOTE, α̃⟩).

Putting everything together, we know that

∑
u ∈W votesu = α̃

˜d

immediately after Line 13.

We are now ready to prove the three properties claimed by the

lemma:

• The first property directly follows from i) votesu must al-

ways be a non-negative integer, ii)

∑
u ∈W votesu = α̃

˜d
im-

mediately after Line 13, and iii) the pseudo-code at Line 15.

• We prove the second property by showing that ifW , V

or
˜d < ΓG1

(α̃ ), then
∑
u ∈W outputu < α̃

˜d
. LetW ′ be the

set of nodes u inW such that votesu > 0 immediately after

Line 13. Note that we have votesα̃ > 0 in the first round of

the algorithm, and hence votesα̃ must satisfy Case 2 with

i = 1. This means that α̃ ∈W ′ and hence,W ′ is non-empty.

Next sinceW , V or
˜d < ΓG1

(α̃ ), we must haveW ′ , V .
Consider the topology of the dynamic network at Line 14

(i.e., in round r + ˜d + 1). Since the topology in each round

is always connected and sinceW ′ is non-empty, there must

exist neighboring nodes u and v such that u ∈ W ′ and
v ∈ V \W ′. If v ∈W , then node v will satisfy the condition

at Line 14 and send ⟨FAIL, α̃⟩ in round r + ˜d + 1. If v <W ,

then by the condition in the lemma, node v will send some

message but does not interfere with instance α̃ in that round.

In both cases the condition at Line 15 will be satisfied on node

u, causing nodeu to return 0 instead of votesu . (Recall that at
Line 15 a node uses both oldcomer and newcomer messages.)

We showed earlier that

∑
u votesu ∈W = α̃

˜d
immediately

after Line 13. Hence we have

∑
u ∈W outputu < α̃

˜d
.

• If α̃ ≥ n, then obviously each node has at most α̃ neighbors,

and bad will be set to false at Line 4 (and remain false
throughout). We first prove that for any node u ∈W , there

exists i (1 ≤ i ≤ j) such that votesu > 0 immediately after

Line 12 of the i-th iteration. Here j is the length (in terms

of the number of hops) of the shortest path from node u to

node α̃ inG2. We use a simple induction on j . The induction
base for j = 1 is trivial. For the inductive step, suppose that

the hypothesis holds for j = k . Consider any node u whose

shortest path to node α̃ in G2 has a length of k + 1, and let

node v be the node immediately after node u on any such

path. Then by the inductive hypothesis there exists some i
(1 ≤ i ≤ k) such that votesv > 0 immediately after Line 12

of the i-th iteration. Then in the (i + 1)-th iteration, node v
will send ⟨HAS_VOTE, α̃⟩. If votesu = 0 at Line 6 in the (i+1)-
th iteration, then node u will execute Line 11, which will

make votesu > 0 immediately after Line 12 of the (i + 1)-th
iteration. Otherwise if votesu > 0 at Line 6 in the (i + 1)-th
iteration, then votesu must belong to Case 2, and votesu

15



will remain positive immediately after Line 12 of the (i+1)-th
iteration.

Finally, we showed earlier (in Case 2) that if votesu > 0

immediately after Line 12 of the i-th iteration, then votesu >

0 in all future iterations. SinceW = V and
˜d ≥ ΓG2

(α̃ ), at

the end of the
˜d-th iteration we must have votesu > 0 on

all nodes. Hence, all nodes will send ⟨NO_FAIL, α̃⟩ at Line 14.

Together with our earlier claim that

∑
u votesu ∈W = α̃

˜d

immediately after Line 13, this implies

∑
u ∈W outputu =

α̃
˜d
.

□

D PROOF FOR THEOREM 3.3
This section proves Theorem 3.3. To facilitate the proof, we de-

fine the notion of subexecution. For any round r , any integer
˜d ,

and any nodes u and α̃ , we say that subexecution(u, r , α̃ , ˜d ) ex-
ists if during node u’s execution of Algorithm 5, node u invokes

Aggregate(α̃ , ˜d, 1, α̃ , false) at Line 14 in round r . If

subexecution(u, r , α̃ , ˜d ) does exist, then we use

subexecution(u, r , α̃ , ˜d ) to refer to node u’s execution of Line 11

through 16 (both inclusive), with Line 14 being invoked in round r .

Note that the values of α̃ and
˜d on node u never change during a

subexecution.

In the following, we first prove Lemma D.1 and Lemma D.2 , and

then prove Theorem 3.3.

Lemma D.1. Consider any round r , any node α̃ , and any integer
˜d where 2 ≤ ˜d ≤ α̃ . LetW = {u | subexecution(u, r , α̃ , ˜d ) exists}.
If W , ∅, then i) α̃ ∈ W , and ii) for all v ∈ V \W and r ′ ∈

[r , r + 1 + ˜d + 6 ˜d2 log2 α̃ + 6 ˜d3 log2 α̃], in round r ′ of the execution
of Algorithm 5, node v does not interfere with instance α̃ .

Proof. All line numbers below refer to Algorithm 5. Consider

anyW whereW , ∅. We first prove α̃ ∈ W . Let u be any node

inW . If u = α̃ , then we are done. Otherwise node u must have

received ⟨SYNC, α̃ ′, ˜d ′, num_round′⟩ at Line 8 with α̃ ′ = α̃ and
˜d ′ =

˜d in round r − num_round′ − 1. From the pseudo-code, one can

then easily verify that node α̃ must have sent ⟨SYNC, α̃ , ˜d, ˜d − 1⟩ in

round r − ˜d . Hence node α̃ will execute Line 14 starting at round

r − ˜d + ˜d = r , which means that subexecution(α̃ , r , α̃ , ˜d ) must exist

and that α̃ ∈W .

Next, consider any node v ∈ V \W and any r ′ ∈ [r , r + 1 + ˜d +

6
˜d2 log2 α̃ + 6 ˜d3 log2 α̃]. Obviously, we only need to prove that if

node v has not terminated in round r ′, then node v does not inter-

fere with instance α̃ in round r ′. We enumerate all possible places

where nodev can send a message in round r ′: (i) The messages sent

at Line 17 and Line 23 will never cause node v to interfere with

instance α̃ . (ii) Ifv sends a message somewhere between Line 11 and

Line 16 in round r ′, then nodev in round r ′must be in the middle of

some subexecution(v, r0, α̃0, ˜d0) for some r0, α̃0, and ˜d0. It suffices

to prove that α̃0 , α̃ . We prove by contradiction and assume α̃0 = α̃ .

DefineX = {x | subexecution(x , r0, α̃ , ˜d0) exists}, and hencev ∈ X
and X , ∅. By the first part of the lemma, we know that α̃ ∈ X

and that subexecution(α̃ , r0, α̃ , ˜d0) exists. Furthermore in round r ′,

since node v is in the middle of subexecution(v, r0, α̃ , ˜d0), node

α̃ must also be in the middle of subexecution(α̃ , r0, α̃ , ˜d0) (i.e. the
subexecution has not ended).

Recall that we earlier already showed that subexecution(α̃ , r , α̃ , ˜d )

also exists. Since r ′ ∈ [r , r +1+ ˜d+6 ˜d2 log2 α̃ +6 ˜d3 log2 α̃], in round

r ′ node α̃ must still be in the middle of subexecution(α̃ , r , α̃ , ˜d ) (i.e.
the subexecution has not ended). At any given point of time, node

α̃ can only be in a single subexecution. Hence the two subexecu-

tions, subexecution(α̃ , r0, α̃ , ˜d0) and subexecution(α̃ , r , α̃ , ˜d ), must

be the same, and we have
˜d0 = ˜d and r0 = r . This then means that

subexecution(v, r0, α̃0, ˜d0) is the same as subexecution(v, r , α̃ , ˜d ),

and that subexecution(v, r , α̃ , ˜d ) exists. This implies v ∈W , which

contradicts with v ∈ V \W . □

Lemma D.2. For any given r ≥ 1, a subexecution that starts in
round r must end by round 10r + 96 log2 α .

Proof. Consider any subexecution(u, r1, α̃ , ˜d ) that starts in round

r . By LemmaD.1, subexecution(α̃ , r1, α̃ , ˜d )must also exist. It suffices

to show that subexecution(α̃ , r1, α̃ , ˜d ) ends by round 10r +96 log
2 α ,

since this implies that subexecution(u, r1, α̃ , ˜d ) also ends by round

10r + 96 log2 α . During its execution of Algorithm 5, node α̃ goes

through a sequence of subexecutions. If subexecution(α̃ , r1, α̃ , ˜d ) is

the very first subexecution in this sequence, then r = 1 and
˜d = 2.

This implies that subexecution(α̃ , r1, α̃ , ˜d ) must end by round 2 +

2
˜d + 6

˜d2 log2 α̃ + 6
˜d3 log2 α̃ ≤ 10r + 96 log

2 α . If

subexecution(α̃ , r1, α̃ , ˜d ) is not the very first subexecution in this

sequence, then consider the subexecution(α̃ , r ′
1
, α̃ ′, ˜d ′) on node

α̃ that is immediately before subexecution(α̃ , r1, α̃ , ˜d ) in the se-

quence. One can easily verify from the pseudo-code that α̃ =

α̃ ′ and ˜d ′ ≥ 1

2

˜d . Since subexecution(α̃ , r ′
1
, α̃ , ˜d ′) takes at least

6( ˜d ′)2 log2 α̃ + 6( ˜d ′)3 log2 α̃ ≥ 3

4
( ˜d2 log2 α̃ + ˜d3 log2 α̃ ) rounds, we

have r ≥ 3

4
( ˜d2 log2 α̃ + ˜d3 log2 α̃ ). Next, since

˜d ≥ 2,

subexecution(α̃ , r1, α̃ , ˜d ) takes at most 2+2 ˜d+6 ˜d2 log2 α̃+6 ˜d3 log2 α̃

≤ 13

2
( ˜d2 log2 α̃ + ˜d3 log2 α̃ ) ≤ 9r rounds. Hence

subexecution(α̃ , r1, α̃ , ˜d ) must end by round r +9r ≤ 10r +96 log2 α .
□

Theorem 3.3 (Restated). There exists some constant c indepen-
dent of d , n, and T , such that as long as T ≥ cd2 log2 n:

• Algorithm 5 always outputs n (and terminates) inO (d3 log2 n)
rounds.
• In each round during the execution of Algorithm 5, each node
sends only O (logn) bits.

Proof. All line numbers below refer to Algorithm 5. Our proof

focuses on asymptotic results, without optimizing the constants.

Since the nodes have ids of size O (logn), there must exist some

(sufficiently large) constant c independent of n, such that c log2 n ≥
400 log

2 u always holds for all node id u. We will show that this

value of c satisfies all the requirements in the theorem.

Time complexity. We first prove that Algorithm 5 outputs and

terminates in O (d3 log2 n) rounds. Let r6 be the very first round

duringwhich some node satisfies the condition at Line 17. By Line 17

and 18, and since T ≥ cd2 log2 n > d , all nodes will terminate by

round r6 + d . Let r7 = 2300d3 log2 α , and hence it suffices to prove
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that r6 ≤ r7. Prove by contradiction and assume that r6 > r7. This
implies that node α (among others) does not satisfy the condition

at Line 17 in the first r7 rounds. Furthermore, by the definition of

r6, no node can possibly terminate in the first r7 rounds.
Let r1 = d . With FloodRoot(), every node will have seen a

⟨SWITCH,α⟩ message by the end of round r1. Hence starting from
round r1+1, only node α can possibly satisfy the condition at Line 5.

Putting it another way, only node α can “initiate” new SYNC mes-

sages. Furthermore, before round r1 + 1, all ⟨SYNC, α̃ , ˜d, num_round⟩

message must have
˜d ≤ d . Otherwise some previous subexecution

would have taken at least 6

(
˜d
2

)
2

> 6

(
d
2

)
2

> d = r1 rounds, and it

would be impossible for any node to send ⟨SYNC, α̃ , ˜d, ˜d − 1⟩ before

round r1 + 1 (i.e., “initiate” the SYNC messages before round r1 + 1).
Let r2 = r1 + d = 2d . Then after round r2, no node will ever send

a ⟨SYNC, α̃ , ˜d, num_round⟩ message with α̃ , α . Hence after round

r2, no new subexecution(u, r , α̃ , ˜d ) with α̃ , α will be started. In

other words, every subexecution(u, r , α̃ , ˜d ) where α̃ , α must have

started before or in round r2. By Lemma D.2, all those subexecutions

must end by round r3 = 10r2 + 96 log
2 α = 20d + 96 log2 α .

Define r4 to be the first round after round r3 where node α sends

⟨SYNC,α ,d1,d1 − 1⟩ with d1 ≥ d . The following shows that r4 must

exist. First, let d0 be the largest power of 2 that is no larger than

d . Then for
˜d on node α to first reach or exceed d , it takes at most

15(2)3 log2 α + 15(4)3 log2 α + . . . + 15(d0)
3
log

2 α < 30d3 log2 α
rounds. Next, if node α is in the middle of some subexecution in

round r3, by Lemma D.2, this subexecution must end by round

10r3 + 96 log
2 α . Note that 10r3 + 96 log

2 α + 30d3 log2 α + 1 <

220d3 log2 α . Since 220d3 log2 α < r6, we know that r4 must ex-

ist and that r4 ≤ 220d3 log2 α . Let subexecution(α , r5,α ,d1), for
some r5, be the subexection on node α that starts in round r4.
By Lemma D.2, subexecution(α , r5,α ,d1) must end by round r7 =
2300d3 log2 α , since r7 ≥ 10r4 + 96 log

2 α .
We will show that immediately after subexecution(α , r5,α ,d1)

ends, the conditions at Line 17 are satisfied on node α . This would
imply that r6 ≤ r7, which contradicts r6 > r7 and completes

the proof by contradiction. We first reason about the value of

d1. We already have d1 ≥ d . Recall that subexecution(α , r5,α ,d1)
must end by round r7 = 2300d3 log2 α . Since the execution of

Line 16 in subexecution(α , r5,α ,d1) takes 6d
3

1
log

2 α round, we have

2300d3 log2 α ≥ 6d3
1
log

2 α which implies d1 ≤ 8d . We thus have

d ≤ d1 ≤ 8d . LetW = {x | subexecution(x , r5,α ,d1) exists}. Next,

we show thatW = V . Recall that every subexecution(u, r , α̃ , ˜d ) with
α̃ , α must have ended by round r3. Since r4 ≥ r3, no node can be

in the middle of some subexecution(u, r , α̃ , ˜d ) with α̃ , α during

any round between round r4 and round r4 + d1 − 1. Also recall

that node α sends ⟨SYNC,α ,d1,d1 − 1⟩ in round r4. Since d1 ≥ d ,
every node must receive some ⟨SYNC,α ,d1, num_round⟩ message

in some round between round r4 and round r4 + d1 − 1. A node u
after receiving such a message will then invoke Line 14 in round

r5, which impliesW = V .

We next show that we satisfy all the conditions needed to invoke

the third clause of Lemma 3.2, for the invocation of

DistributeVotes() at Line 15. One can verify from the pseudo-

code that prior to this DistributeVotes() invocation,

ResetNeighbors() was last invoked at the beginning of round r5 —

namely, at the beginning of the very first round during the invoca-

tion of Aggregate() at Line 14. LetG2 = σ (r5, r5+6d
2

1
log

2 α+d1+2).

Recall that we earlier proved d1 ≤ 8d . Hence T ≥ cd2 log2 n ≥
400d2 log2 α ≥ 6d2

1
log

2 α + d1 + 3. By the definition of the back-

bone diameter of T -interval dynamic networks, we immediately

have ΓG2
(α ) ≤ d . Define z =

∑
x ∈W (value of votes on node x

immediately after subexecution(x , r5,α ,d1)). We earlier showed

thatW = V and d1 ≥ d . SinceW = V , d1 ≥ d ≥ ΓG2
(α ), α ≥ n,

and since FloodRoot ensures that each node always send some

message in each round before it terminates, we can now invoke

Lemma D.1, and then the third clause of Lemma 3.2 for the in-

vocation of DistributeVotes() at Line 15. Doing so tells us that

z = αd1 .
By invoking Lemma D.1 and the first clause of Lemma 3.2, we

know that the value of votes on node x immediately after

subexecution(x , r5,α ,d1) must be an integer. Since we further have

W = V ,α ≥ n, z = αd1 ,d1 ≥ d , andT ≥ cd2 log2 n ≥ 400d2 log2 α ≥
3d2

1
logα , we invoke Lemma D.1 and Equation 2 in Lemma 3.1 for

the the invocation of Aggregate() at Line 16 to get collected =

αd1 on node α . Hence, all the conditions at Line 17 are satisfied

on node α immediately after subexecution(α , r5,α ,d1) ends. This
implies that r6 ≤ r7, which contradicts r6 > r7 and completes the

proof by contradiction.

Correctness. We next show that Algorithm 5 never outputs a

wrong result. In order for any node to output, some node needs

to satisfy the conditions at Line 17 and send the OUTPUT message.

Recall from earlier that round r6 was defined to be the very first

round during which some node satisfies the conditions at Line 17.

Let node α̃ be any such node. Let subexecution(α̃ , r , α̃ , ˜d ) be the
subexecution on node α̃ immediately before node α̃ satisfies the con-

ditions. LetW = {x | subexecution(x , r , α̃ , ˜d ) exists}, and we have

W , ∅. For every x ∈W , one can easily verify from the pseudo-code

that prior to the invocation of DistributeVotes(α̃ , ˜d ) at Line 15

in subexecution(x , r , α̃ , ˜d ), ResetNeighbors() was last invoked by

node x at the beginning of round r — namely, at the beginning

of the very first round during the invocation of Aggregate() at
Line 14 by node x . Since node α̃ satisfies the conditions at Line 17,

on node α̃ we must have collected = α̃
˜d
. By definition of r6,

no node can terminate before subexecution(α̃ , r , α̃ , ˜d ) ends, and
FloodRoot() further ensures that each node sends some message in

each round before the node terminates. Define z =
∑
x ∈W (value of

votes on node x immediately after subexecution(x , r , α̃ , ˜d )). Invoke
Lemma D.1 and the first clause in Lemma 3.2, and finally Equation 1

in Lemma 3.1, and we will eventually have α̃
˜d ≥ z ≥ collected =

α̃
˜d
. Hence we have z = α̃

˜d
. By Lemma D.1 and the second clause

of Lemma 3.2, we further haveW = V and
˜d ≥ ΓG1

(α̃ ), where

G1 = σ (r , r + 6 ˜d2 log2 α̃ ). SinceW = V , we have α ∈W and that

subexecution(α , r , α̃ , ˜d ) exists. On the other hand, node α always

satisfies the condition at Line 5. This implies that there will never be

any subexecution(α , r , α̃ , ˜d ) with α̃ , α . Hence we have α̃ = α . In-
voke Lemma D.1 and Equation 2 in Lemma 3.1 for the Aggregate()

invocation at Line 14 (sinceW = V , ˜d ≥ ΓG1
(α̃ ), α̃ = α ≥ n), and

we have result = n on node α̃ .
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Finally, we have shown above that α̃ = α andW = V , this means

that no node can be in any subexecution after round r6, since no
node will ever send out SYNC messages after that round. Hence no

other node will ever satisfy the conditions at Line 17, and there will

be no other output values.

Message size. We finally prove that in each round during the

execution of Algorithm 5, each node u sends only O (logn) bits.
Recall from earlier that r6 is the very first round during which some

node satisfies the condition at Line 17. We have shown in the above

that no node can be in any subexecution after round r6. Hence after
round r6, trivially, each node u sends only O (logn) bits per round.

Before or in round r6, we focus on the number of bits sent in

each round by node u at Line 14, Line 15, and Line 16 — one can

easily but tediously verify that the number of bits sent by node

u at all other lines of the algorithm is always O (logn). Consider

any subexecution(u, r , α̃ , ˜d ) during which node u invokes Line 14,

Line 15, or Line 16. LetW = {x | subexecution(x , r , α̃ , ˜d ) exists}.
Then we have u ∈W andW , ∅. By Lemma D.1, Lemma 3.1, and

Lemma 3.2, we know that the number of bits sent in each round by

node u at Line 14, Line 15, and Line 16 must all be O (logn). □
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