Understanding RFID Counting Protocols

Binbin Chen
Advanced Digital Sciences Center
lllinois at Singapore Pte. Ltd.
Republic of Singapore
binbin.chen@adsc.com.sg

ABSTRACT

Counting the number of RFID tags, &FID counting is needed
by a wide array of important wireless applications. Motiedtby
its paramount practical importance, researchers have bipesl
an impressive arsenal of techniques to improve the perfoceaf
RFID counting (i.e., to reduce the time needed to do the dcoght
This paper aims to gain deeper and fundamental insightsim th
subject to facilitate future research on this topic.

As our central thesis, we find out that the overlooked keygdesi
aspect for RFID counting protocols to achieve near-optimpet-
formance is a conceptual separation of a protocol into twag#s.

The first phase uses small overhead to obtain a rough estimate

and the second phase uses the rough estimate to furthevachie
accuracy target. Our thesis also indicates that other preniance-

enhancing techniques or ideas proposed in the literatuesoaty of
secondary importance. Guided by our central thesis, we gaia
design near-optimal protocols that are more efficient thgisting

ones and simultaneously simpler than most of them.
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1. INTRODUCTION

Radio-frequency identification (RFID) technology uses REgs
and RFID readers (or simply callgdgs andreaderg to monitor
objects in physical world. A tag is a low-cost microchip tlean

be attached to an object. It can store some informationygict

a unique ID) and can communicate with a reader through wire-
less channel. Over the past decade, RFID technology hageehjo
significant growth. With more thaf billion tags sold in 2012,
RFID technology has by now impacted applications rangiogfr
inventory control, supply chain management, to people&ingc A
common basic functionality needed by many of these appbicat

is RFID counting— to count the number of tags and thus the num-
ber of tagged objects in certain physical area [17]. For eptam

e Wal-Mart [2] puts tags on individual clothes. Here RFID ctun
ing provides information about sales trend and speeds up the
restocking process.

e Purdue Pharma [4] has tagged millions of its tablet botttese
RFID counting ensures the right amount of its products asspa
ing through its manufacturing, packaging, and shippingess.

e Many events (e.g., TechEd [1] and Bonnaroo festival [3]} dis
tribute RFID wristbands to their visitors. Here RFID coungti
helps reveal the number of people around.

Often in such scenarios, it is desirable to simply count st @s-
timate the number of tags without explicitly identifyingdimidual
tags. This helps to significantly reduce the processing,tipne-
serve people’s privacy, and avoid the cost incurred for liagc
large amount of unnecessary information. In addition talitsct
utility, RFID counting can also serve as a preprocessing atel
help other tasks. For example, even if one were still to ifient
individual tags, knowing the rough number of tags can make th
identification process much more efficient [12, 20]. As arotx-
ample, one can use RFID counting to help find popular categori
in a large collection of tags [19].

In this paper, we will consider two common versions of RFID
counting problem. The firdingle-set RFID countingroblem is
simply to count the number of tags in a given physical areiagus
a single stationary reader whose radio range covers that eneéa.

In the secondnultiple-set RFID countingroblem, the reader’s ra-
dio range cannot cover the whole area. Instead, the (sirggeler
becomes mobile and sequentially visits a number of locatisn
that the union of the coverages at these locations can cheer t
whole physical area. Note that the coverage at differerations
may overlap and hence double counting needs to be avoided.

In both versions of the problem, a key performance metribés t
amount of time needed to count or estimate the total numhegef
which will be the focus of this work. Since exact results ditero
not necessary for many applications (e.g., for the earkample
application scenarios) and since the overhead of exacticouis



fundamentally higHh,as in most prior efforts [9, 12, 13, 16, 18, 24,
25], we will focus on approximate counting.

Previous efforts. Given the paramount practical importance of
RFID counting, there have been a steady stream of recerarobse
efforts on efficient RFID counting. To reduce the overheadd]
needed to count (i.e., to improve tperformancg these efforts
have developed an impressive arsenal of novel techniquel,as
probabilistic framed ALOHA [12], multi-resolution prokgn[13],
lottery frame protocol [16], first non-empty slot basedrestiion [9],
probabilistic estimating tree [24], average run basedregton [18],
and zero-one estimator [25].

While these efforts all aim at reducing the overhead of RFID
counting, they often approach the problem from rather difie
perspectives without being guided by a central principleisThas
led to ad hoc research outcomes where different researcigsvs
different aspects of RFID counting protocols as key. Fongxa,
some researchers focus on using novel statistical questibi es-
timate the count [9, 16, 18], some researchers put more eigpha
on obtaining optimal trade-offs among different protocatgme-
ters [13, 18], while others resort to gradually refining tlaegme-
ters via an adaptive iterative process [9, 12].

The fundamentals of the RFID counting problem get easiljeur
among all these research outcomes — At this point, it is famfr
clear whether all these techniques are equally importawhether
one technique plays the dominant role. Such a lack of deeprund
standing hinders future research on RFID counting — if weldou
like to advance the state of the art, should we combine afiethe
techniques despite the resulting complexity? Or should aced
on improving one of them and ignore others?

Our goal. Given such a lack of fundamental understanding into the
RFID counting problem, this paper aims to gain deeper ifsigh
facilitate future research. Specifically, we aim to ansvier fol-
lowing three key questions, none of which have been posed-or a
swered in prior efforts:

e Question 1:Given the long list of protocols in the literature, how
much room is there for further improvement?

e Question 2: What are the key aspects that determine a RFID
counting protocol’s performance? What are the technigoas t
are only of secondary importance?

e Question 3:Guided by the answers to the earlier two questions,
can we easily design simple protocols that outperform iexjst
ones?

Our results. Our main contributions are precisely the answers to
these three questions:

e Answer 1: Lower boundd.o determine how much improvement
is still possible, we obtain strong lower bounds on the osadh
of RFID counting, by leveraging a recent breakthrough tesul
communication complexity [5]. Our lower bounds show thé it
impossiblefor a single-set RFID counting protocol to use only
o(ﬁ + loglog n) time slots for all inputs. Here is the

number of tags to count, andis the relative error on the final
output of the protocol (since we are considering approx@émat
counting). In eachime slot the reader may broadcas{1) bits

to the tags, and all the tags combined can send l6¥dk bits

to the reader. A similar lower bound is obtained for multipkt
RFID counting.

We then compare these lower bounds with the asymptotic over-
head of existing protocols. Such comparison readily revigit:

!As implied by our formal lower bound results in Section 3.

— Forsingle-set RFID counting, some existing protocols-per
formance is already asymptotically close to optimal. Im-
provements are still possible though one should not expect
huge improvements.

— For multiple-set RFID counting, existing protocols’ pe¥fo
mance is further away from optimal. Larger improvements
hence seem still possible.

e Answer 2: The overlooked key design aspect for approaching
optimal performanceWe identify that a key design aspect for
single-set RFID counting protocols to approach optimafqrer
mance is to have two conceptual phases: The first phase uses
roughly ©(log log n) slots to obtain a rough estimate with con-
stant (e.g.0.5) relative error, and the second phase uses roughly
@(ﬁ) slots to eventually obtain a final estimate with the
desired relative error of Our thesis further indicates that many
other performance-enhancing techniques or ideas propgased
the literature are only of secondary importance. We als@igen
alize this answer to multiple-set RFID counting protocols.

It is worth noting that our answer to this question is quite- su
prising because prior efforts [9, 12, 13, 16, 18, 24, 25] of-
ten view various other aspects of RFID counting protocols as
key, and have overlooked this two-phase aspect. Thosasffor
also attribute their performance improvements to varideser
techniques on those aspegesg., the use of novel statistical
guantities to do the estimation, the use of complex optitinna
techniques to tune various parameters, and the use ofiiterat
process to refine the estimationpur answer implies that all
those design aspects are perhaps less important thanadisigin
thought.

As direct evidence to support our claim, this paper cangfett
amines the source of performance gains in some existing RFID
counting protocols. For example, some recent protocol$gp,
attribute their performance improvements over prior prote

to the use of the novel statistical quantities to do the extton.
Quite surprisingly, in our experiments, we find that theseeho
quantity does not necessarily improve the performanceesfeh
protocols: Replacing these novel quantities with some okihg

tity from some earlier protocol [13] either improves the tpro
cols’ performance or provides comparable performance in ou
experiments. We further show that the source of performance
gains in these protocols is their two-phase design, de#éte
such a two-phase design was not considered as the key.

e Answer 3: Simple & more efficient RFID counting protocols.
Guided by our answers to the earlier two questions, we se¢bout
search for more efficient RFID counting protocols while kagp
our design as simple as possible. We manage to design such
protocols by simply putting together a few basic buildingdis
(with some rather minor adaptations) from the literature. &/
not claim novelty on these building blocks — instead, we aim to
show that simply putting them together irpeoper manneras
guided by our earlier answers is already sufficient to otdioper
existing protocols. This serves as an ultimate validatibthe
utility of our earlier findings.

Specifically, our RFID counting protocols are significargign-
pler than most existing protocols — for example, we do notinee
iterative refinement or to solve optimization problems toetu
parameters. Despite the simplicity, our experiments shat t
our single-set (multiple-set) RFID counting protocol isand
100% (500%) faster than the best existing single-set (multiple-
set) RFID counting protocol. Furthermore, our protocols ar
near-optimaland are within a smalD(log <) factor from the
lower bounds, for both single-set and multiple-set RFIDnteu

ing.
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Figure 1: A multiple-set RFID counting example: A mobile
reader sequentially visits three locations.

Roadmap. The next section formalizes the RFID counting prob-
lem. Section 3 proves lower bounds on the overhead of ssgjle-
and multiple-set RFID counting. Section 4 reviews majoisexi
ing RFID counting protocols. Section 5 presents our thesithe
overlooked key design aspect of RFID counting. Section 6 pro
vides direct and immediate evidence to support our thesiexby
amining the source of performance gain of some recent potstoc
Section 7 demonstrates the utility of our insights by apmythem

to construct new protocols that are both simple and moreeftic
Section 8 and Section 9 discuss variant models and related wo
We conclude in Section 10.

2. PROBLEM FORMULATION

This section formalizes the RFID counting problem. We define
the overhead of RFID counting protocols mainly for latedying
the asymptotic lower bound on the problem and the asympiptic
per bound achieved by the protocols. Hence our formulateme h
will only be concerned with asymptotic overhead.

Single-set and multiple-set RFID countingln thesingle-set RFID
countingproblem, the reader covers a certain physical areaSLet
denote the set of tags in that area, andiet |S|. The goal of
the counting protocol is to produce an estimatéor n, so that
Pr(Jn —n| < en) > 1 — 4, with the probability taken over the
random coin flips done by the randomized protocol. Heaed o
captures the target estimation quality, and should be fpeédy
the end user. We also refer ¢@s therelative errorof 7. We call

7 as having(e, ) estimation qualityand callr itself as an(e, 0)
estimate.

In the multiple-set RFID countingroblem (Figure 1), a mobile
reader sequentially visits locations exactly oncé.At location,
the reader’s radio range covers a Sebf tags. Letn; = |S;|. The
goal of the counting protocol is to produce @né)-approximation
7 forn, wheren = |S1US2U...USk|. Usuallyn # ni+na+...+
ny since theS;’s may overlap. Note that such formulation of the
multiple-set RFID counting problem implicitly but fully paures
more general application scenarios. For example, it alptuces
the setting where a static reader takes a sequence of stspgho
mobile tags and then counts the total number of tags.

Since we aim for(e, §) estimation quality, the RFID counting
protocols are essentially Monte Carlo randomized algovitiil5].

In our reasoning on asymptotic overhead, we will adopt tHewe
ing standard way of treatingin Monte Carlo algorithms [15]: We
will only require the protocol to achieve constante.g.,0.2). Itis
well-known that to achieve a smallérone can repeat the protocol
O(log %) times and then take the median of #h¢log +) outputs
as the final output. A constanthelps simplify our discussion.

Abstracting RFID counting protocols. In an RFID counting pro-
tocol, the reader communicates with tags in synchronized slots.
In Section 1, we explained that in each time slot the readétize

2Some researchers (e.g., [18]) considesimpler variant of the
problem by assumingarallel access to all sets through multiple
readers. Section 8 discusses this simpler variant.

tags can exchang@(1) bits. Without loss of generality, from now
on, we will assume that in each time slot the reader may 6¥ngl
bits to the tags, while all the tags collectively can eithends a
single bit of “1” or send nothing. Such treatment is without loss
of generality because our formalization here is only fosogsng
about asymptotic overhead — one can easily@§é#) slots to send
O(1) bits. We say that a tagespondsin a slot iff it sends back a
“1” bit. If there exists at least one tag responding in a stug, slot
becomesion-empty Otherwise the slot ismpty

Now consider a given slot. Since the tags are distributech ea
tag will need to unilaterally determine whether it will resyl,
based on its id, random numbers generated locally, and iiterdu
state (since the protocol may be stateful), and the bitsvedé&om
the reader. For our formal reasoning later, it will be comeanto
imagine that in each slot the reader conceptually specifieskean
predicate functionf. A tag responds in the slot iff it satisfies the
predicatef. Note that the RFID counting protocol may be stateful
— this is captured by allowing the functighto take the local state
(i.e., local variables) of the tag as an input as well.

Measure of goodnessOur measure of goodness (@erformancg
of an RFID counting protocol is the amount of time it needs.éWwh
studying asymptotic behavior, this is the same as the totaler
of slots used by the protocol. Hence we defineaigmptotic over-
headof a protocol to beD(x), if for all inputs, it needsD(z) slots
on expectation for achieving the accuracy target. Herexpeca-
tion is taken over the coin flips done by the randomized patoc

3. LOWER BOUNDS ON THE OVERHEAD
OF RFID COUNTING PROTOCOLS

We first consider single-set RFID counting, and then gerzeral
to multiple-set RFID counting.

Single-set Counting: Lower bound as a function ofe. We will
use a standangductionapproach to obtain our novel lower bound
on the overhead of a RFID protocol. For readers not familiigéin w
reduction, following is a quick explanation. To prove thairab-
lem A (in our case, the RFID counting problem) is hard and hence
to obtain a lower bound for the complexity of any protocolttha
solves4, a common approach (calleeductior) in complexity re-
search is to establish a connection with another hard profile
Namely, one first shows that any protocol for solvidgcan be
used, as a black box sub-procedure, to s#veNext sinceB is
hard, any protocol for solvin§g must incur large overhead. This in
turn can be translated back to reason about the hardness of

The key step/challenge in reduction is to choose a prispend
then to show how to construct a protocol for solviiggiven any
protocol for solving4. We choose thelamming Distance Estima-
tion (HDE) problem as the hard probleth HDE is a two-party
communication complexity problem, where the two parties@\l
and Bob are given-bit stringsxz andy as input respectively. They
would like to estimate the hamming distance betweamdy, with
(e, 0) estimation quality, while minimizing the number of bits yhe
need to exchange. A recent breakthrough result by Chakrabar
and Regev [5] implies that even for a constansolving the HDE
problem requires2(1/¢*) bits of communication between Alice
and Bob (fore > 1/1/n).

With HDE as problem, our goal now is to design a protocol
for solving HDE, using any given RFID counting proto@las a
building block. To do so, Alice and Bob will locallgimulatean
execution ofP. Specifically, they will simulate: RFID tags, with
IDs from 1 throughn. We want tag to bepresentand be included

3Some protocols (e.g., [12]) assume that the reader carefuts-
tinguish whether a single tag or multiple tags send a bit. We w
cover this extended model in Section 8.



in the RFID counting result iff:[;] # y[i]. All other tagsj where
z[7] = y[j] should beabsentand will not be included in the count.
This will make the RFID count to exactly equal the hamming dis
tance between andy, hence solving the HDE problem once we
know the count.

Now to properly simulate the execution Bfwith those present
tags, Alice/Bob needs to determine which slots in the sitedla
execution of P are empty. Doing so enables Alice/Bob to simu-
late the responses received in all these slots and feed ithtosP
to obtain the final count. For each slot, we will show that Alic
and Bob can determine whether it is empty by only exchanging
O(log 1) bits. Consider the first slot> must have specified a
predicatef for the first slot. Alice/Bob can thus locally determine
the set of tags (e.g., ta@ 6, and7) that satisfyf. Next Alice
computes a short fingerprint of size(log %) for the (potentially
long) stringz[2]z[6]x[7] and sends to Bob. Bob similarly computes
the fingerprint ovey[2]y[6]y[7] and compares the two fingerprints.
For now assume no fingerprint collisions (collisions will fixe@p-
erly addressed in our proof). Then the two fingerprints diifie
x[2] # y[2] or z[6] # y[6] or z[7] # y[7], which in turn is equiv-
alent to tag2 or tag6 or tag7 being present, and also equivalent
to the first slot being non-empty. Alice and Bob now have sssce
fully determined whether the first slot is empty or not. Emess
of later slots can be sequentially determined in a similar.wa

Formalizing the above intuition will lead to the followingeo-
rem, whose proof is in our technical report [6]:

THEOREM 1. No single-set RFID counting protocol can output
an (e,0.2) estimate witb(ﬁig:) overhead, foe € [1/y/n,0.5].

Single-set Counting: Lower bound as a function of:. One natu-
rally expects that the number of slots needed by an RFID augint
protocol will increase withn as well. For example, to approxi-
mate every possible tag count betwdeo n within a relative error

of 0.5, a deterministic RFID counting protocol needs to be ready to
outputQ2(log n) different values, wittat leastone in each of ranges
[1,2], [4, 8], [16, 32], ... TheseQ(log n) different values require at
leastQ(log log n) bits (i.e., slots used by the RFID counting pro-
tocol) to encode. To extend this argument to randomized RFID
counting protocols witle, §) guarantee, we leverage Yao's well-
known minimax principle [22] on the complexity of randomize
algorithms. Doing so will eventually yield a simil&sg log lower
bound (see our technical report [6] for full proof):

THEOREM 2. No single-set RFID counting protocol can output
an (¢, 0.2) estimate witho(log log n) overhead, foe < 0.5.

Single-set Counting: Putting everything together.
CoROLLARY 3. No single-set RFID counting protocol can out-
put an(e, 0.2) estimate witm(ﬁ + log log n) overhead, for

2]
€ € [1/y/n,0.5].
This corollary also implies the difficulty of exact counting:x-
act counting is no easier that approximate counting with Ln

whereo(—2—) overhead is already impossible.

logn
Multiple-set Counting: Lower bounds. Recall that in multiple-
set RFID counting, the RFID reader sequentially sees a sequs
(potentially overlapping) set$;, Sz, ..., Sk. The goal is to estimate

Key implications of our lower bounds — how much room is
there for further improving RFID counting protocols? As we
will show in Section 5, in terms of asymptotic overhead, tlestb
existing single-set RFID counting protocol incurs an oeadh of
O(Ei2 + loglog n). This is already close to our lower bound. Im-
provements may still be possible though one should not éxpec
huge improvements. For multiple-set RFID counting, the bgs
isting protocol incurs an overhead Of( % log log(3°F_ ni)). It
exhibits a larger gap from our lower bound — in particulais th
overhead is multiplicative while our lower bound is additiHence
significant asymptotic improvement seems still possible.

4. REVIEW OF THE MAIN IDEAS IN
EXISTING PROTOCOLS

This section concisely reviews major RFID counting protsco
in the literature (Table 1). This serves to set up the stageto
later discussion on which design aspects are key for RFIDiteou
ing protocols. For each protocol, we will highlight whichsifgn
aspects are believed by the original authors as the key @spec
that protocol. Throughout this section, we us& denote a rough
estimate om (e.g., with constant relative error), ardto denote
the final estimation om with ¢ relative error.

These protocols adopt some common concepts. Each of these
protocols is comprised of a sequencetridls, where each trial is
a sequence of slots. At the beginning of a trial, the readedsa
command to the tags. This causes the tags to initialize e
state machines and potentially load new random numberst iflex
each slot within that trial, a tag will respond or not respdraged
on the command, its local state, and its random number. For al
existing protocols, a tag does not carry state across tiahdbary.
Due to the processing needed at the beginning of a trial,riaice
physical implementations of RFID systems, a trial may inaor
additionalper-trial overhead If there is indeed such overhead, this
extra overhead will be in addition to the time needed fortadlslots
in that trial [7].

The number of slots in a trial is called thengthof the trial. Re-
call that a slot is either empty or non-empty, depending oathér
there is at least one tag responding in that slot. A non-emsiptyis
called acollision slot iff at least two tags respond in that slot.

One simple way of running a trial, as adopted by multiple pro-
tocols, is to start a trial of lengthand let each tagarticipatein
that trial with a certain probability, with total np tags participat-
ing on expectation. Here we say a tagrticipatesin such a trial
iff it chooses a uniformly random slot within that trial arften re-
sponds in that slot, and we call such a triddals-and-bins trial
The value ofn can then be estimated from various statistical quan-
tities on the status of the slots. A basic principle, whicli tnelp
us understand these protocols, is that usually we want t@yse
value such thatyp is on the same order ds This ensures that we
see a healthy mixture of empty and non-empty slots in théstria
maximizing the amount of information carried about Besides
such balls-and-bins trials, existing protocols have akseetbped
alternative ways to use the slots of a trial, as will be désctilater
in the corresponding protocols.

the size of the union of all these sets. We can show that in the Unified probabilistic estimation (UPE) [12]. In UPE, all trials

worst case, to estimate the size of the union, it is actuedbessary
for the protocol to estimate with similar accuracy the sizg ©f
each individual sef;. Formalize such intuition, together with our
single-set RFID counting lower bound, would lead to thedieihg
theorem, whose proof is in our technical report [6]:

THEOREM 4. No multiple-set RFID counting protocol can out-
put an(e, 0.2) estimate witho(3_;_, (i + loglogn:)) over-

head, fore € [1/y/min{ni,n2,...,ny},0.25].

are balls-and-bins trials with the same length (e8@), In the first
trial, all tags participate. Depending on the number of gnsjiits
observed in this trial, the protocol will branch into seveliferent
execution paths. We will focus on the most important executi
path, which corresponds to largeand where the protocol observes
no empty slots in the first trial. In such a case, the protoomt@eds
sequentially to the second trial, the third trial, and sowith) each
tag participating withp = 0.1°~! probability in theith trial. This
process stops once the protocol sees an empty slot in aThial.



Protocol Venue Key source of performance gains, as belibyale authors

UPE [12] MobiCom’06 i) proper randomization; ii) use of emjind collision slots for estimatiof
EZB [13] INFOCOM'07 i) multi-resolution probing; ii) varias parameter optimization technique
LOF [16] PerCom’08/TPDS'11 small length of the trials

(Enhanced) FNEB [9] INFOCOM'10 use of the indices of the firsh-empty slots for estimation

PET [24] ICDCS’11/TMC'12 use of the binary search to find thdex of the last nonempty slot

ART [18] MobiCom’12 use of the average run length of non-grghots for estimation

ZOE [25] INFOCOM'13 i) each trial has a single slot; ii) twdwgse design

(2]

Table 1: Major Existing RFID Counting Protocols

protocol then generates a rough estimateased on the currempt
and the number of collision slots in the current trial (itee trial

the jth slot would be the first non-empty slot it sees. Therefoie
still called the index of the first non-empty slot here.

with at least one empty slot), and the first phase ends. In each To start, enhanced FNEB requires the user to input an upper

trial of the second phase, the protocol uses the rough dstifna
so far to calculate an optimal and has each tag participate with
probabilityp. Next using the new information received in this trial,
the protocol amend&. This iterative process continues until the
protocol believes that the estimation accuracy: @ high enough.
The authors [12] attribute UPE’s performance to the proger u
of randomization, i.e., carefully choosing the probapildr tags to
participate in trials (calleghrobabilistic framed ALOHAscheme),
and the unified use of empty slots and collision slots to daetie
timation. The basic idea of randomization has been inteiite
virtually all follow-up research on the problem. Despitath/PE
does have a rough estimation phase followed by an accutatees
tion phase, this two-phase design is not mentioned as a kects
of UPE by the authors. Multiple later protocols, includirg tau-
thors’ own follow-up work [13], abandon this two-phase ajgurh.

Enhanced zero based estimator (EZB) [13]EZB partitions the
entire domain for the possible valuesrointo logarithmic number
of narrow ranges{l, ), [r,72), [r%,73), .... Herer is some pa-
rameter to be explained later. Each of these narrow rangethba
property that the max of the range is at megimes larger than
the min. EZB works on each range sequentially and indepelyden
For each range, EZB uses a certain number of balls-and-bins t
als with a certain length. In each such trial, tags partieipeith
some probabilityp. Here the number of trials and trial length are
the same for all ranges, while the valuepadlepends on the range.
Finally for each range, EZB uses the number of empty slotken t
trials, together with the probabiliy, to estimate:. EZB then com-
bines all estimates from all ranges to obtain the final outfziB
uses various involved optimization techniques to chooseotiti-
mal values for the various parameters such asdp. Intuitively,
EZB works because the countmust be in one of these ranges.
Since each range is narrow, one can pick a sipglalue such that
for any valuez within that rangezp is on the same order as the
length of the trial. This enablesto be properly estimated, as long
asn isin that range.

The authors [13] attribute EZB’s performance gain to itqjuei
narrow range design (calledulti-resolution probingand the vari-
ous parameter optimization techniques.

First non-empty slots based estimator (FNEB) and enhanced
FNEB [9]. Enhanced FNEB has two phases, while FNEB is ex-

bound onn. The protocol determines thHé used in its first trial
by solving an optimization problem parameterized with tipper
bound. The protocol then uses the index of the first non-esipty

in its first trial to generate a rough estimate Intuitively, this in-
dex carries information abouit since for a giveri’, the larger the
value ofn, the smaller this index will likely be. Next the protocol
determines thé used in its second trial by solving the same opti-
mization problem, this time parameterized with the roughmeste

7. The second trial then proceeds in the same way as the fakt tri
and amends$:.. This iterative process continues until the protocol
believes that the estimation quality @fis good enough. Next the
protocol moves on to the second phase where all trials usathe
value ofl’, which is obtained by solving the optimization problem
again but parameterized using thdérom the first phase. The pro-
tocol then combines the first non-empty slot informatiomfrall

of its second-phase trials to produce a final estimate.

The authors [9] consider their use of the first non-emptysslot
as the key improvement of (enhanced) FNEB over prior prdsoco
This design enables (enhanced) FNEB to end a trial as sodn as i
finds the index of the first non-empty slot. Despite that enhdn
FNEB has two phases, these two phases are introduced by-the au
thors only as an “enhancement” instead of a key design aspect

Lottery frame protocol (LOF) [16]. LOF consists of multiple
independent trials. For each trial, a tag randomly choosést ac-
cording to a geometric distribution where thk slot is chosen with
L probability. A tag then responds in its chosen slot. LOF finds
the index; of the first empty slot by sequentially going through the
slots. Atrial ends immediately and returhg/hen the protocol sees
the first empty slot. The value gfcarries useful information about
n: On expectationg; tags respond in théh slot, and; tends to
take a value arounidg(n). Finally, LOF combines the information
obtained from all of its trials to produce a final estimate.

The authors [16] attribute LOF's improvement over priortpro
cols to its small trial length.

Probabilistic estimating tree (PET) [24]. Similar to LOF, PET
does a sequence of independgials, where in each trial each tag
randomly chooses a positive integeaccording to the same ge-
ometric distribution as LOF. But instead of determining thia
LOF, PET finds the maximunj’ such that there exists some tag
choosingj’. The intuition why suchj’ carries useful information

actly the same as the second phase of enhanced FNEB, so we onlaboutn is similar toj as in LOF. In addition, PET (implicitly) re-

review enhanced FNEB. A trial in enhanced FNEB is similar to a
balls-and-bins trial as it lets each tag uniformly randoriywose

an integer from the range dfto . Herel’ is some parameter to
be explained later. Different from a balls-and-bins tréafrial here
does not usé slots to sequentially scan the whole range. Instead, it
does so only for the first few slots. If any of them is non-enfpsy,

its index is chosen by some tag), the trial ends immediatadyre-
turns the index of that slot. Otherwise, the trial continuéth a
binary search to find the smallest integehat has been chosen by
at least one tag. Imagine the protocol uses a balls-andthais

quires an upper bound on the maximum;’. These two changes
enable PET to perform a more efficient binary search on thérslo
dex range of1, z] to find the maximumy’, instead of sequentially
going through the slots. In the first slot of this binary seaRET
asks all tags whose chosen integer falls withip2, 2] to respond.
If the slot is empty (non-empty respectively), PET can thecuf
on the range ofl, z /2] ([z/2, z] respectively) in the next slot.

The authors [24] attribute PET’s improvement over priortpro
cols to the efficient way of using binary search to determhe t
maximumj’.



Average run based tag estimation (ART) [18]. The first trial in
ART is roughly the same as a trial in LOF. ART uses this trial to
obtain a rough estimate onn. The quality of this rough estimate
is low since different from LOF which uses many trials to estie,
ART only uses a single trial. All the following trials are =hnd-
bins trials, where each tag participates independentliy egttain
probabilityp. The length of these trials and tpaised in these tri-
als are all the same. ART then observes which slots in eagh tri
are non-empty. Next it calculates the average lengthof non-
empty slots (i.e., the average length of sequences of cotisec
non-empty slots), and uses such information to generatabef#n
timate. Such average run length carries information abaihce
the larger the value of, the more non-empty slots, and the larger
the average run length. The total number of trials, the lengthe
trials, and the probability used in ART are determined by solving
an involved optimization problem with the rough estimatbeing

an input parameter.

The authors [18] attribute ART’s improvement over priortoro
cols to its novel use of run length to do the estimation. WAIRT
does have two phases (with the first phase having a singlg thia
authors neither emphasize this aspect nor attribute ARarfop
mance gain to this aspect.

Zero-One Estimator (ZOE) [25]. ZOE is independent of and con-
current with our work. ZOE has two explicit phases, wherefitise
phase gets a rough estimatend the second one obtains the final
estimate. As a key design decision, each trial in ZOE hasglesin
slot, so we directly describe slots here. In its first phasgf:aims

to find aj such that if all tags participate in a slot with a probability
of 1/27, the probability of the slot being empty is arouhge. To
find such aj efficiently, ZOE (implicitly) requires an upper bound

UPE [12]

EZB [13] O(Ei2 ogn)
LOF [16] O(Ei2 ogn)
FNEB [9] O(;lg logn)
Enhanced FNEB [9] O(Z + logn)
PET [24] O(; = loglogn)
ART [18] O( = +logn)
ZOE [25] O(Z5 + loglogn)

Table 2: Asymptotic Overhead of Single-Set Protocols

tions, we aim to identify the key aspects of efficient RFID miing
protocols.

While experimental study can help reveal about which aspect
these protocols are more important than others, we notitenthat
we are looking for could very well be buried deep under the vas
amount of experimental data. Thus we start by first systealti
investigating and comparing the asymptotic overhead afelpeo-
tocols, with respect to the ande. Interestingly, as we will soon
see, such a simple investigation already sheds much ligbttbe
question.

Itis worth noting that such a systematic comparison of tlyengs
totic behavior has never been done before: The end-to-erfidrpe
mance of some protocols [12, 18] has not been formally aedlyz
while the performance of other protocols [9, 13, 16, 24] hasrb
analyzed and presented in a rather detailed form. These pnere
cise but complex forms unfortunately prevent a direct caispa
across the protocols and bury the key insights we are sear&bi.

Asymptotic overhead of single-set RFID counting protocols
UPE [12] and ART [18] do not come with end-to-end overhead

z on the number of tags so that it can does a binary search overanalysis. We find that the estimator used by UPE is biased;ehen
[0, log x]. Each step of the binary search uses a constant number ofUPE cannot be used whenis small. This is consistent with the

slots. In each such slot, the tags respond with probabifity//@*

findings by the original authors of UPE in their follow-up Wwgf.3]

wheres is the current value tested in the binary search. The proto- and will be validated by our experiments in Section 7.3. Weeha

col then observes the fraction of empty slots, and detersriogy
to continue the binary search. With a suitapleound by the first
phase, ZOE's second phase uses a certain number of slots thiser
tags participate in each slot with probability bf2’. The number
of slots needed in the second phase is determined by theedqui
estimation quality. ZOE eventually estimatesrom the fraction
of empty slots observed in the second phase.

The authors [25] attribute ZOE’s improvement over priortpro
cols to the following two design aspects: i) each trial hguanly a
single slot so that this slot can potentially collect infation from
all tags, and ii) having two explicit phases. While this aanc
rent work of ZOE does emphasize the importance of its twaseha
design, the thesis identified in this paper is still not digred in
ZOE: ZOE believes that its unique design of each trial hagis@-
gle slot is also key to ZOE's performance. Our thesis, on thero
hand, suggests that the two-phase design is the key whi¢e ath
pects are only secondary. Guided by our thesis, a protosajoler
would not be overly concerned with sticking to ZOE'’s idea afh
ing a single slot in each trial. Section 7.3 will show that having
a single slot in each trial, as in our protocol, enables ugtdgtter
performance in our experiments.

5. WHICH DESIGN ASPECTS ARE KEY?

So far we have reviewed major RFID counting protocols in the
literature, each with its own unique techniques. Given suahyr-
iad of interesting techniques, which techniques are theaadom-
inant factors for good performance? Which techniques aita-
portant? If one would like to outperform the state-of-tlig-ahich
existing technique should one builds upon? To answer thesg-q

analyzed ART by ourselves, which shows that it ué¥$og n)
slots in the first phase ar@( ) slots in the second phase. This
implies a total overhead (ID( + logn). For space limitation,
we leave the full analysis, WhICh is straightforward andsuseher
standard approaches, to our technical report [6].

The other existing protocaols, i.e., EZB [13], (enhanced EBN9],
LOF [16], PET [24], and ZOE [25], all come with detailed analy
sis on the number of slots needed. Here all we do is to simplify
their more precise results to asymptotic forms (with adepto
our formulation when necessary), for later comparison. évibe-
tails about these protocols can be found in our technicalrtg].

Table 2 summarizes the asymptotic overhead of these siegle-
RFID counting protocols. At this point, it is clear that th®fcols
have either additive overhead or multiplicative overhe&dditive
overhead is obviously lower, and it comes from a conceptjahs
ration of two phases in these protocols, with the first phakimg
O(log n) or O(log log n) slots and the second phase taking; )
slots. Thelog n andlog log n term are about6 and4 respectively,
for n = 100,000. (Whenn is small, almost all known protocols
can complete fast, so further improvement is less interg9tiun-
less the hidden constant in a multiplicative overhead aits
comparably smaller, additive overhead protocol will be eneffi-
cient. Our experiments in Section 7 will show that this isded
the case.

Bring our lower bound from Section 3 into the picture makés th
key observation even clearer. There we proved that it is &sipte
to reduce the overhead of a single-set RFID counting protimco
o(=—— 521 r + loglogn). Now it is clear tha‘@(log log n) slots are

for the flrst phase, while the remainie( 57— 1
second phase.

) slots are for the



Our thesis. Our observations above lead us to conjecture the fol-
lowing thesis, which will be validated in the remainder otpa-
per:

The key design aspect for single-set RFID counting proto-
cols to achieve near-optimal performance is to have two ebas
where the first phase uses rougliylog log n) slots to obtain
a rough estimate with constant (e.g.5) relative error, and
the second phase uses rougtwﬁig:) slots to eventually

obtain a final estimate with the desired relative errorofur-
thermore, other techniques/ideas proposed in the liteeatuie
only of secondary importance.

While this thesis is almost obvious from our discussion sp fa
somewhat surprisingly, it has never been identified by anthef
previous efforts (including the concurrent work on ZOE [23h-
stead, existing protocols often overlook the two-phaségdesnd
often attribute their improvements to a diverse set of deagpects
other that the two-phase design. Our thesis implies thabalfol-
lowing design aspects, emphasized by previous effortfaatess
important than originally thought:

e using various novel statistical quantities to do the ediitna
(such as using the average run length in ART [18] and using

the index of the first non-empty slot in FNEB [9]);

using an iterative process to refine the estimation over nitany
erations (such as in UPE [12] and enhanced FNEB [9]);

using complex optimization techniques to tune various para
ters (e.g., to trade off the trial length with the number @lg as
in EZB [13], FNEB [9], and ART [18));

e using a single slot in each trial as in ZOE [25].

Generalizing to multiple-set RFID counting protocols. We nat-
urally generalize our thesis to the multiple-set settingrefe the
protocol should have two phases at each locatifon 1 < i < k,
where the first phase uses rouglth(loglog n;) slots to obtain
a rough estimate, and the second phase uses ro@hly-1—)

€ logz
slots.

Existing multiple-set RFID counting protoc8I$EZB, FNEE,
LOF®, and PET) all focus on other aspects of the protocol instead
of having the above two phases, and incur multiplicativerlozad.
Specifically, EZB, LOF, and FNEB all incup(Z; log;(Zf:1 ni))
overhead, while PET inc:w@(ei2 log log;(Zf:1 n;)) overhead.
Such multiplicative overhead contrasts sharply with thditac
overhead of our new SR protocol (Section 7.2), which has ap-
plied our thesis on the two-phase design. Hence in the nedsiet
setting, these previous efforts have not even implicitlyliaga our
thesis.

6. SOURCE OF PERFORMANCE GAIN
— TWO CASE STUDIES

An ultimate way of validating our thesis is to see whethenapp
ing such a design principle enables new protocols that grefisi
cantly better than existing ones. We will do so later in Setf.
This section instead aims to provide direct and immediateace
to support our thesis, by carefully examining the source ef p
formance gains in existing protocols. We will focus on twoeet

40ther protocols are not for the multiple-set RFID countimgkp
lem. Among those, ART only works for a simpler variant of the
multiple-set problem (see Section 8).

SEnhanced FNEB no longer works in the multiple-set problem.
SHere LOF requires an upper boumdn the number of tags, and
can no longer end a trial when it sees the first empty slot.

protocols, ART [18] and enhanced FNEB [9], as two prominent e
amples. As reviewed in Section 4, ART uses the average rgtHen
of non-empty slots as gaugefor estimation and attributes its per-
formance gain over prior protocols to this unique gauge.il&ity,
the authors of enhanced FNEB [9] consider the novel use dirtte
non-empty slots as gaugebeing the key source of performance
gain.

We will show that quite surprisingly, in our experimentseske
two novel gauges do not necessarily improve the performahce
ART and enhanced FNEB: Replacing these two novel gauges with
a simple gauge (i.e., the number of empty slots in balls{zind-
trials) from the earlier EZB protocol [13] either improvd®tper-
formance or provides comparable performance in our exgarisn
We further show that the actual source of performance gans i
these two protocols is their (implicit) two-phase desigesplte that
such a two-phase design was not considered as the key.

6.1 Source of Performance Gain in ART

For all experimental results presented in this section, seau=
100, 000 and a constant = 0.2 unless otherwise mentioned — we
have performed extensive experiments under other settengs
with smallern) and observe similar trends (see our technical report
[6]). Our evaluation in this subsection adopts the saméngetis
the original ART paper [18]. Specifically, we assume thaheslot
takes0.3ms, and each trial incurs an additional overheatlim$.

ART outperforms EZB. To identify the source of performance
gain in ART [18], for clarity, we focus on ART’s performancaig
when compared with a specific prior protocol EZB [13]. As aisan
check, we first perform experiments to see whether ART indeed
outperforms EZB, as claimed in [18]. Figure 2 summarizes our
experimental results, showing the amount of time neededRyr

and EZB to achieve a certain target relative eerdConsistent with
[18], we observe that ART significantly outperforms EZB — mor
than200% faster.

ART’s novel gauge and ART'’s performance. Next we proceed

to test whether this performance gain comes from ART’s nowvel
length based gauge. To do so, we keep everything else unetbdifi
in ART except that we replace ART’s novel run length basedygau
with the old gauge in EZB. This old gauge in EZB is based on the
number of empty slots. We call this protocol as the revised AR
If the run length based gauge were indeed the source of ART-s p
formance gain, the revised ART should perform significanilyse
than ART. Quite surprisingly, as shown in Figure 2, the redis
ART actually outperforms the original ART.

Resolving the contradiction. To resolve such contradiction with
the claims from [18] that ART’s novel gauge is the source af pe
formance gain, we trace back and examine the reasoning in tha
work. There the authors [18] compare the variance of ART&-av
age run length based gauge with the variance of other oldegaug
including the gauge in EZB (and hence the gauge in revised)ART
They show that the variance of ART’s gauge is smaller, legttn

the conclusion that ART'’s gauge is the source of performgade.
Again as a sanity check, we examine the variance of ART’s gaug
and EZB's gauge as observed in our experiments. Consisiént w
[18], we also observe that ART's gauge has smaller variafaiel¢

3). On the other hand, however, we find that smaller variafiee o
gauge does not necessarily translate to better accurabg dinal
estimate. Table 3 also presents the variance of the finahati

as generated by ART and revised ART (which uses EZB’s gauge).
Despite ART’s gauge has smaller variance than EZB's, the var
ance of ART'’s final estimate is actually larger than that eiged
ART'’s final estimate. Note that this is consistent with thétdre
performance of revised ART as we observed in Figure 2.
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The fundamental reason behind these results is that in wder  trial. While this is obviously true, the total overhead ofratpcol
the final estimate to have better accuracy, the gauge neeutst to  also depends on the number of trials needed. For exampla) whe
only have small variance but also bensitiveo the count. In other 60 = 0.2, to achievee = 0.01, enhanced FNEB uses on average
words, under different number) of tags, the value of the gauge  around?2 slots per trial but it needs to invoke arouh@l 000 trials.
should ideally be very different. This ensures that we casilyea  To achieve the same estimation quality with EZB’s gaugeh ¢l
differentiate different, even if the value of the gauge is a bit off uses242 slots and only aroun@l20 trials are needed. Hence the to-
from its expectation. In fact, if we were not concerned witicts tal number of slots needed by EZB'’s gauge is comparable to tha
sensitivity, it would be trivial to design a gauge with zeariance: needed by FNEB's gauge.
We simply let the value of the gauge always be a constantdegar Exactly as in the case of revised ART, here one can altegigtiv
less of whatn is. Clearly such gauge cannot be used to accurately view the revised version of enhanced FNEB as adding a firstepha
estimaten. Hence the reason that the variance of ART’s final es- to EZB. This directly leads to our conclusion that the acamlrce
timate is larger is exactly that ART'’s gauge is less seresitian of the performance gain in enhanced FNEB is having two phases
EZB’s. Intuitively, such insensitivity can even be partlyserved as suggested in our thesis.
from the fact that under practical parameters, the value RT’A

gauge has a smaller domain that EZB's. 7. DESIGNING BETTER RFID COUNTING
The actual source of performance gain.It will shed much light PROTOCOLS
onto the problem if we view the revised ART protocol from a dif
ferent perspective. Namely, one can alternatively viewréwised
ART protocol as a variant of the EZB protocol — the only main
difference between these two is that EZB does not have a roug
estimate from a first phase. Thus EZB has to divide the passibl
domain forn into O(log n) narrow ranges and process them se-
quentially. In comparison, revised ART has a rough estirfrai@
its first phase to identify the correct range to process.

Hence one can view revised ART as adding a first phase to EZB.
This implies that the performance gain of revised ART oveBEZ

comes from having two phases as suggested by our thesignin tu 7.1 SRG: Our Simple RFID Counting
this is also the source of the performance gain in ART. ' =) ) .
rotocol for Single-Set

6.2 Source of Performance Gain in Enhanced For single-set RFID counting, our thesis suggests thattbiep
FNEB col should have two conceptual phases, the first one doesgh rou
Using the same approach as above, we continue to examine theeStimation, while the second one generates the final egtiniéten
source of the performance gain of enhanced FNEB [9] over EZB. designing these two phases, we will use as simple buildiagks|
Here our evaluation adopts the same setting as [9], wherle eac @S Possible. This is because: i) more complex designs teimavto
slot still takes.3ms (as in [18]) but there is no per-trial overhead. 'arger hidden constants, and ii) our thesis indicates ttraroer-
As shown in Figure 3, our experiments first confirm that eneenc ~ formance tricks only have minor effects in further imprayiper-
FNEB significantly outperforms EZB. To test whether thisfper formance.
mance gain comes from FNEB'’s unique first non-empty slotgaug Our SRCg protocol. Algorithm 1 summarizes the main steps of
we revise the enhanced FNEB by using EZB’s gauge in its sec- our SRG protocol. The first phase of our SR@rotocol is exactly
ond phase while keeping all other design in enhanced FNEB un- the same as the simple LOF protocol [16] as reviewed in Sedtio
changed. Our revised version of enhanced FNEB providesaomp Recall that LOF does a sequence of independent trials with ea

Guided by our thesis in Section 5, this section aims to design
new RFID counting protocols that are more efficient than texis
hing ones and also simultaneously simpler than most of them. W

will design our protocols by simply putting together vasdoasic
building blocks in the literature. We dwot claim novelty on these
building blocks — instead, we aim to show that simply puttimgm
together in goroper manners guided by our thesis is already suf-
ficient to outperform existing protocols. This serves aslémate
validation of the utility of our thesis.

rable performance as the enhanced FNEB (specifically, oigae trial usingO(log n) slots. Ford = 0.2, our protocol invokes LOF
protocol outperforms enhanced FNEB slightly by aroafi, show- to do10 trials, using totabD(log n) slots. It then uses LOF’s output
ing that FNEB'’s novel gauge does not necessarily improvpsdts as the rough estimate By LOF'’s analysis [16]7i's relative error
formance. is below0.5 with at Ieastli0 probability. Given such ai, the second
The original authors of (enhanced) FNEB [9] attribute the- pe  phase of SRE (as we will soon describe) guarantees to output an
formance gain to their novel gauge, because they believestich estimaten of relative error below with probability of%. Combin-

gauge enables (enhanced) FNEB to end a trial as soon as it seefng the guarantees from these two phases ensures’theglative
the first non-empty slot and thus reduces the number of skats p error is belowe with probability of% X g which corresponds to



Algorithm 1 Our SRC s protocol (for § = 0.2)

1: Invoke LOF with10 trials to getn;

2: Start a balls-and-bins trial of lengthand let each tapartici-
pate in the trialwith probabilityp = min{1, 1.6//n};

3: Count the number of empty slotsn the trial;

4: Outputln(z/1)/In(1 — p/l).

0 = 0.2. To achieve & smaller than0.2, one can sequentially
invoke m (m being some odd integer) independent instances of
Algorithm 1 and then take the median of their outputs as the fi-
nal output. Asymptotically, it is well-known that, = O(log %)
suffices [15]. Obtaining a concrete valueraffor a certain target

0 is not hard: Each instance of Algorithm 1 has- 0.2 = 0.8
probability to generate a “good” result with at meselative error.
For the median to have at mostelative error, it suffices to have
at least(m + 1) /2 good results among the results. With all in-
stances being independent, we simply pick the smatesich that

S myyya (7)) x 0.8" % 0.2™7" > 1 — 4. Sincem is usually
small (e.g.,m only needs to bel even for§ = 107°), the value

of m can be trivially determined via brute-force calculation.

The second phase of SRGimply consists of a single trial with
[ slots, and each tag participates in this trial (i.e., redgan a uni-
formly random slot in the trial) independently with probidli p.

We will explain the two parametetsandp later. The expected frac-
tion of empty slots in this trial will thus bél —p/1)™. Our protocol
determines the observed number of empty slots in this tieadoted
by z. Obviously,z directly carries information about. The pro-
tocol finally generates the final estimateby solving the equation
(1 —=p/D)" = z/l, which leads tov = In(z/l)/In(1 — p/l). The
second phase of our protocol is rather similar to subpraesdused
in UPE [12] and EZB [13]. The only (minor) difference is thag¢w
further simplify the design and use a single trial insteadi@ihg
multiple trials. This simplification actually also sligitimproves
our performance: By putting all slots into the same trialetter a
slot is empty becomes negatively correlated with each ofhiach
negative correlation makes the total number of empty slotsen-
trate better near its expected value.

The parametetis uniquely determined by the target relative er-
ror of ¢, and there are two ways to do so. The first approach is to
setl = (170%45) , Which isO(Z) (see the proof of Theorem 5 in
our technical report [6], where we have proved that suishsuf-
ficiently large). The second approach is to directly construct a nu-
merical lookup table. This lookup table is constructed hyning
the algorithm under a wide range nfvalues, and then observing
thel needed to achieve a certainSee our technical report [6] for
a sample table. Between the two approaches, since matlcamati
analysis is often a loose approximation, in practice, uait@pkup
table usually offers superior performance. The paramei®set to
bemin{1, 1.6//n}, so that the expected number of tags responding
is on the same order @s The constant.6 here provides the best
estimation performance (see analysis in [12, 13]).

The following theorem summarizes the end-to-end guaraosftee
our SRG protocol, whose proof is in our technical report [6]:

THEOREM 5. Our SRG protocol outputs are, 0.2) estimate
with O(; + log n) overhead.

Incurring O(log log n) slots in the first phase.The first phase of
the design above incu@(log n) slots. It is possible to use only
O(log logn) slots by using a revised version of PET protocol [24]
instead. As reviewed in Section 4, PET does a sequence of inde-
pendent trials. In each trial, each tag randomly choosesiiyeo
integer according to a geometric distribution. Given a pragpper
boundz (from the end user) on, PET uses a binary search over
[1,log ] to find the maximumy;’ such that there exists some tag

choosingj’. Hence the number of slots incurred in PET for each
trial is O(log log ). It is possible forz to be much larger than,
in which case this will still not give u® (loglogn) complexity.
To always have)(log logn) complexity, we slightly modify PET
so that the user does not inptt In each trial before the binary
search, the protocol uses some extra slots. Initieextra slot,
tags that have chosen an integer larger than or equziitowill
respond. This process stops once the protocol observes @ty em
slot. Let the correspondingin this empty slot bey. Next the
protocol does a binary search as before, except that nowithe b
nary search is done ovér, 2Y '] instead of/1, log z]. This binary
search will take anothey slots at most. It can be easily shown that
y = O(loglogn) on expectation. Hence the total overhead will
be O(loglog n) slots. See our technical report [6] for more details
and the pseudo-code.

Under practical settings, however, the overhead for therskc
phase usually dominates and such improvement will be ribgig
But we will need this revised PET later in our multi-set paab

7.2 SRG,: Our Simple RFID Counting
Protocol for Multiple-Set

For multiple-set counting, our thesis suggests that theopob
should have two conceptual phases at each locafaml < i < k.
We will focus on achieving the two phases in a simple way.

Protocol intuition. Recall that SR& conceptually works by throw-
ing np (on expectation) balls uniformly randomly intdins. The
value ofn can then be inferred from the fraction of empty bins.
We would like to design SRG in a similarly simple way, i.e., by
throwingnp balls (on expectation) intbbins, wheren is the total
number of tags in all sets (if there is no overlapping betwsss,
n =ni+n2+...+nx). The value of can still be determined by
and our Theorem 6 later shows thhat O(1/¢%). Imagine for now
that magically, we can also properly geto bemin{1, 1.61/7},
wheren is a rough estimate for with constant relative error. With
such value forp, the problem becomes trivial: At each location,
the protocol simply does a balls-and-bins trial with papttion
probability of p, so that on expectation there aup balls in to-
tal. The protocol records the outcome at each location arrdese
these results for producing a final estimate. The mergingrig dby
considering a bin occupied as long as it is occupied in anyef t
k locations. Note that this already takes care of potentiatlaps
between thé: sets — as long as we use the same random seed when
doing these experiments, the same tag will always be hashed i
the same bin, even if it appears in multiple sets.

So far we have assumed that the protocol can properly.set
However in the multiple-set setting, the protocol séesSa, ..., Sk
sequentially and it is not possible to obtaimntil the last location.
Observe however that at locatianthe protocol can easily get a
rough estimat@, for the size ofS; US> .. .US; (by merging all the
first phase results up to locatieh Definep; = min{1, 1.61/7n;}
and we obviously havg; > p (note thatp, = p). Next note that
these values gf andp, do not need to be accurate, since the rough
estimate is rough in the first place. Hence let us assumepuiith
loss of generality, that they are both in the formlgR® for some
integerzx. If not, we simply round them to the nearest value with
such a form. When the reader finishes the first phase failteet,
it knows p; but notp. Conceptually for sef;, the protocol will do
the balls-and-bins trial with participation probabilgig;, &, &,

&, ..., and so on. This ensures that one of the participatiobgsr
bility will equal p, regardless of whatis. After processing all sets,
we can then decide the proper valuepand use the combined re-
sult for the corresponding trial to obtain the final estimate

Naively doing the above trials with the infinite sequence arfp
ticipation probabilities will result in infinite overheadOne can
easily make things correlated to avoid this: For each ppdimon



S, S, To estimate |S; U S, | Algorithm 2 Our SRC ,, protocol (for 6 = 0.2)

B 1: Each tag uniformly randomly chooses a hin out bfns, and
pj1234567811234567812345678 chooses a positive integgraccording to a geometric distribu-
1 BB :. tion with mean of2;

2 (111N W [ HE BN | | ERY 2: Initialize A to an array of elements with values of 1. A[j]
1/4 | HN will record the largesy chosen by a tag in thgh bin;

1/8 3: for each sefS; do
L I CIC T AR TP RP PPN 4:  Invoke revised PET witl30 trials, and merge its outcome

with previous revised PET outcomes to get a rough estimate
7, for the size ofS; U S2... U S;;

Find an integex that minimizeg1/2* — min{1, 1.61/n;}
for j =1toldo

Figure 4: An example run of SRS, with two reader loca-
tions: Each column corresponds to a bin (note that the same
bins appear at both locations), and each row corresponds to a

CoNod

participation probability. A filled (non-filled) rectangle means h =,
an occupied (non-occupied) bin. At a given location, once a while truedo o
bin becomes non-occupied at a certain participation probat- - Let all tags in thejth bin withy > h respond;
ity, there is no need to further examine smaller probabilities 10: if (See a non-empty slothen
for this bin. In this example, the second phase of SRS starts 115 Alj] = ma_X{A[JL h};
at the participation probability of 1 and % respectively at the 12; h=h+1
first and the second location. SRG; eventually merges the out- 13: else
comes at the participation probability of £ from the two loca- 14: Br.eak,
tions to estimate|S; U Sa|. 15: end if
16: end while
probability except the first one, a tag flips a fair coin andipar 17: endfor
pate iff the coin flip result is head and the tag participatethie 18: end for
previous participation probability. This would mean thathis se- 19: Consider the: used for the last set and letbe the number of
quence, a tag will keep participation, and then stop padiang elements in4 with value no less than:

after a certain probability. In turn, this means that for 2egi bin 20: Outputln(z/1)/In(1 — 27 /1).
in this sequence of experiments, it will initially be occegiand
then will never be occupied again after a certain particpgbrob-
ability (Figure 4). This enables the protocol to do the foiiog:
Instead of checking all bins for a given probability, thetpaml it-
erates through the bins. For each bin, the protocol checlsheh

itis occupied, for all the probabilities in the sequenceteNbat the
protocol can stop once the bin becomes empty. The roughastim
from SRGy,’s first phase ensures that its second phase sees a con
stant number of balls in each bin on expectation. From thenmea

of geometric distributions, one can easily see that on gecri ing. By PET's analysis [24], the relative error @f is below0.5

only needs to move down the sequence of participation pitbab with at least-= probability. The second phase now determipgs

i i i 10
tr:ﬁiqgg)o?tsﬁgtssfg ;:dglt\j/?: jltfl@nl(;? 'bleiogw F Lze )mjpty. Hence the total based orf; in exactly the same way as in our SR@rotocol. We

then roundp; to the nearest/2” for some integet:. The protocol
Our SRCy protocol. Our SRGy protocol implements the above  then iterates through thiebins. For each bin, the protocol uses a
intuitions. Algorithm 2 summarizes the main steps of our SRC  sequence of slots, which corresponds to participationgbitities
protocol (for§ = 0.2). To achieve & smaller thar).2, exactly pi, B, Zt, ... For each slot, those tags who select this bin and still
as for SR, one only needs to sequentially invoke multiple in-  participate at the current participation probability wilspond. The
dependent instances of Algorithm 2 and then take the meean r protocol records all such information and stops once an esipt
sult. See Section 7.1 for how to determine the number ofmests: is observed. It then proceeds to the next bin.

needed. For the parametirthe only difference between SREC At the last §th) location, SRG; can merge the first phase re-
and SRG is that the participation probability used in SRGeeds sults from all thek sets to obtain a rough estimate for the size of
to be rounded to the form df/2”. Taking this into account, we can  the union of allk sets, and it can compute a proper participation
either mathematically sét= % whichisO(%) (see the probability p based on this rough estimate. By our design, $SRC

ipate. At location ¢, our SRG, protocol has two phases. For a
constantd = 0.2, thefirst phase invokes the revised PET proto-
col (with 30 trials), which was described at the end of Section 7.1.
This incurs totalO(log log n;) slots. SRGy; then merges all the
first phase results it sees so far to get a rough estifmafer the
size of S; U S» ... U S;. Such merging is possible since PET, and
therefore the revised PET, is able to do multiple-set RFIDnto

proof of our Theorem 6 in our technical report [6]), or findvtdue must have collected the information regarding whether é&acls
from a numerical lookup table. The lookup table is conseddiy empty underp for every location. SR then combines such in-
running the algorithm under a wide rangerofalues and then ob-  formation by setting a bin to be empty iff it is empty in alls¢see
serving thel needed to achieve a certain Note that/ does not Figure 4). Letz denote the number of empty bins in the combihed
depend on the number of sets and how the sets overlap (see mordins, SRG, generates the final estimateby solving the equation
detailed reasoning in our technical report [6]), one onlgch® run (1—p/1)™ = z/1. See our technical report [6] for the proof for the
the algorithm against a single set. following theorem about the end-to-end guarantee of our SRC
Givenl, each tag determines which bin it will choose, and also protocol:
the smallest participation probability for which it willitpartic- THEOREM 6. Our SRG, protocol outputs arfe, 0.2) estimate

- with O(3°%_ (% + loglog n;)) overhead.
A less efficient design would be to iterate through the secgien .
of participation probabilities. For each probability, ocieecks all 7.3 Evaluation Results

bins. The process stops if all bins are empty. Such a desigidwo We conduct extensive simulations to compare the overhead of
need on expectatio@(logi#) slots. our protocols against all major existing protocols in therkture,
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Figure 5: Overhead of single-set Figure 6: Overhead of single-set Figure 7: Overhead of multiple-set
protocols (n = 10, 000). protocols (n = 100, 000). protocols (n = 100, 000 and k = 10).
including UPE, EZB, (enhanced) FNEB, LOF, PET, ART, and ZOE. In addition, the quality of the rough estimate in enhanced&BNs
As in Section 6, we consider a constant= 0.2 to simplify our also lower than desirablezinally, our results show that UPE can-
discussion — we observe similar trends under all other adiié. not support relative errar < 0.03 due to its biased estimator. This
When comparing the performance of these protocols, for each is consistent with the findings by the original authors [13].
periment, we first choose a time budget, then we simulatertie p As we see, the overhead difference between SR@ some ex-
tocols and observe their achieved relative eergiven such budget isting protocols is partly due to the existence of per-tiarhead.
(i.e., overhead). This evaluation methodology is alsorakere- To understand how significant this factor is, we have furttzan-
cent prior work [25]. An alternative evaluation methodatagould pared the protocols when there is no per-trial overhead. Wk fi

be to compare the overhead of different protocols when wgicigje SRGCs continues to have the lowest overhead among all protocols.
the same target. We do not take this method since for several For example, whela = 0.01, SRGs is 20% to 100% faster than

two-phase protocols (e.g., [18, 25]), when they matheralyide- the most efficient existing protocol, i.e., ZOE. See dethikesults
cide the number of slots needed in their second phase, teaynas in our technical report [6].

a perfect estimate from their first phase. Since the estifnate Comparing SRCy; with existing multiple-set protocols. Fig-
the first phase is only a rough estimate, following their akition ure 7 presents the overhead of our SR@rotocol against exist-
will actually achieve a relative error that is somewhat éarthan ing multiple-set RFID counting protocols. We perform estee

the target. This will make the comparison inconsistent across the experiments under different values ofand k, as well as differ-

protocols. Unless otherwise mentioned, all our experisase the ent ways that the sets overlap with each other. Since theshaW
following parameters derived from EPCglobal C1G2 stanfidkd  gjmilar trends, Figure 7 presents a concrete setting, véntal of
aslot in UPE take8.8m<’, a slotin all other protocols tak@sims, n = 100, 000 tags (with index from to 100, 000) are distributed

and for all protocols each trial incurs an extra overheathas. over k = 10 overlapping sets.Fori = 1,...,9, theith set is

Comparing SRCs with existing single-set protocols. Figure 5 comprised ofi 1, 000 tags with index from(z — 1) x 10000 + 1 to
and Figure 6 present the overhead of our SRi€otocol against i x 10000 + 1000. The last set is comprised @6, 000 tags with
the overhead of existing single-set RFID counting protec@br index from90001 to 100000. In this setting, our SR& protocol
tag count of10, 000 and 100, 000 respectively. As shown in the is around500% faster than the most efficient existing multiple-set
figures, SRG is significantly (more than000%) faster than EZB, protocol, i.e., PET. In particular, while all existing poebls require
PET, and LOF. This is because asymptotically SR@curs addi- more thanl0 minutes to provide an estimate with relative errof

tive overhead while EZB, PET, and LOF all incur multiplicei 0.01, our SRG, protocol can achieve the same estimation quality
overhead (see Section 5). SRG at leastl00% faster than ART, in 2 minutes. The significant difference between SR@nd ex-
ZOE, and enhanced FNEB (eFNEB for short in the figures) in all isting multiple-set protocols is mainly because asympéity all

of our settings. The difference between SRahd these three pro-  existing multiple-set protocols incur multiplicative oiead, while
tocols is relatively moderate, since all of them incur asdiover- SRGy incurs additive overhead (see Section 5).

head. For each of thenBRGs is faster than ART, partly because Same to the single-set experiments, the overhead of mesigt
the novel gauge used by ART does not perform as well as the sim- protocols partly comes from the per-trial overhead. To ustded
pler gauge used by SR(see Section 6), and partly because the the significance of this factor here, we again evaluate mgetiith-
quality of the rough estimate in ART is overly low. SR® faster out per-trial overhead. We find that SRCcontinues to b&00%
than ZOE for the following two reasons. First, recall thatZO  faster than the most efficient existing protocol (see ouhriaal
uses a single slot for each trial, while SR@uts all its slots in the report [6] for details).

second phase into a single trial. Therefore for the secordeh

of SRGs, whether a slot is empty becomes negatively correlated 8§ \JARIANT MODELS

with each other. Such negative correlation makes the tatai-n . . . . .
ber of empty slots concentrate better near its expected \axhal T,hls schorT discusses §ome variants of RFID counting probl
thus provides higher estimation equality, as compared tesigd A simpler variant of multiple-set problem. Some researchers
using independent slots like ZOE. Second, each slotin ZGHEse (6.9, [18]) consider a simpler variant of the multiple-8dtID
to incur per-trial overhead since each of them correspoadmt  counting problem, where multiple readers jointly cover aeaa
individual trial, while the per-trial overhead is incurretlich less ~ 1hese readers together count the total number of tags uheiier t
often in SRG. For enhanced FNEB, recall that each of its trials CcOVverage. One can actually solve this simpler variant ohaultiple-
also only uses a small number of slots. Therefore, the sarae tw S€t problem usingny single-set RFID counting protocol. Recall

reasons that explain why SRGs faster than ZOE also apply here. that a single-set protocol specifies a predicate for eathRtughly
speaking, all readers send the same predicate to theifeggsther

8UPE requires a tag to send more bits in a slot to detect amilisi the readers return an empty slot to the single-set protéfoalery
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