
The Cost of Unknown Diameter in Dynamic Networks∗

[Extended Abstract]
†

Haifeng Yu
Dept. of Computer Science
National Univ. of Singapore

haifeng@comp.nus.edu.sg

Yuda Zhao
Dept. of Computer Science
National Univ. of Singapore

yuda@comp.nus.edu.sg

Irvan Jahja
Dept. of Computer Science
National Univ. of Singapore

irvan@comp.nus.edu.sg

ABSTRACT
For dynamic networks with unknown diameter, we prove
novel lower bounds on the time complexity of a range of ba-
sic distributed computing problems. Together with trivial
upper bounds under dynamic networks with known diame-
ter for these problems, our lower bounds show that the com-
plexities of all these problems are sensitive to whether the
diameter is known to the protocol beforehand: Not know-
ing the diameter increases the time complexities by a large
poly(N) factor as compared to when the diameter is known,
resulting in an exponential gap. Here N is the number of
nodes in the network. Our lower bounds are obtained via
communication complexity arguments and by reducing from
the two-party DisjointnessCP problem. We further prove
that sometimes this large poly(N) cost can be completely
avoided if the protocol is given a good estimate of N . In
other words, having such an estimate makes some problems
no longer sensitive to unknown diameter.

Keywords
unknown network diameter, dynamic networks, communica-
tion complexity, lower bounds

1. INTRODUCTION
Background and motivation. It is well-known that
smaller network diameter often implies smaller time com-
plexity for distributed computing problems. If the diameter
D is known beforehand to the protocol (e.g., specified as an
input parameter to the protocol), then the protocol needs
to guarantee correctness only for the given D, and does not
need to provide any guarantee for other D values. This al-
lows the protocol to incur as small a complexity as possible

∗The first two authors of this paper are alphabetically or-
dered.
†A full version of this paper is available at
http://www.comp.nus.edu.sg/%7Eyuhf/TRA4-16.pdf

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SPAA ’16, July 11 - 13, 2016, Pacific Grove, CA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4210-0/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2935764.2935781

for the given D. If D is not known beforehand, in typical
static networks, D can still be efficiently estimated by build-
ing a spanning tree in just O(D) rounds. This estimate can
then be plugged into protocols requiring the knowledge of
D. Hence, the complexities of problems in static networks
are usually not sensitive to unknown diameter, or more rig-
orously, not sensitive to whether the diameter is known be-
forehand.

In recent years, there has been a growing interest in dy-
namic networks [17], where the network topology may change
over time. Similar to static networks, a dynamic network’s
diameter [17] is the smallest D such that any node can
causally affect any other node in the network withinD rounds
(see Section 2 for the formal definition). A dynamic net-
work’s diameter depends on the future behavior of the net-
work, and hence is usually unknown to the protocol. Within
such a context, we focus on the following question:

In dynamic networks, do any problems (or which problems)
have complexities sensitive to unknown diameter?

The answer to this question can have broad implications:
If many basic problems are sensitive, it means that different
from static networks, unknown diameter in dynamic net-
works incurs a fundamental cost. If most problems are not
sensitive, then there could be great opportunities in improv-
ing many existing protocols for dynamic networks (e.g., [5,
7, 11, 12, 14]): Some of these protocols need the diameter D
to be specified as an input parameter. When D is not known
beforehand, one is forced to pessimistically set D = N to en-
sure correctness (N being the total number of nodes). Other
protocols do not need such an input, but internally implic-
itly use N as the diameter. In summary, these protocols
have not yet explored potentially reducing the complexity
when D is unknown, but turns out to be much smaller than
N .

To our knowledge, so far the only problem that has been
proved to be sensitive to unknown diameter in dynamic net-
works is the simultaneous consensus problem. Specifically,
Kuhn et al. [15] investigate a dynamic network model that
ignores congestion. Using a knowledge-based proof, they
show that the time complexity of simultaneous consensus
can increase by a large poly(N) factor if the diameter is not
known beforehand, as compared to when the diameter is
known. (See later for more discussion on related work.)

Overview of our results. This paper is the first to ap-
proach the previous question without ignoring congestion.
Doing so perhaps is more realistic since real systems do

not have unlimited bandwidth. We adopt the standard
CONGEST model [19], with O(logN) message sizes. Via
communication complexity arguments, we prove several
novel lower bounds for confirmed flooding, consensus, and
leader election (all defined later) in dynamic networks with
unknown diameter. Our results also carry over to the Hear-
from-N-nodes problem [16] (see the full version [21] of
this paper), which in turn, reduces to computing globally-
sensitive functions [16] such as Max.

Our lower bounds show that all these basic problems are
sensitive to unknown diameter: Not knowing the diameter
increases the time complexity by a poly(N) factor, as com-
pared to when the diameter is known. Such extra complexity
is due to the protocol’s need to be correct under all possible
diameters, even though any given execution only experiences
a certain (and potentially small) diameter. Without know-
ing the actual diameter beforehand, the protocol is forced
to be conservative. On the other hand, interestingly, we fur-
ther prove that sometimes this large cost can be completely
avoided if the protocol is given a good estimate of N . In
other words, having such an estimate makes some problems
no longer sensitive to unknown diameter.

Our results differ from Kuhn et al. [13]’s at a fundamental
level: We show that when congestion is taken into account,
many more basic problems (besides simultaneous consen-
sus1) are sensitive to unknown diameter. Furthermore, con-
sidering congestion is necessary to reveal the sensitivity of
these problems — in their model ignoring congestion, Kuhn
et al. actually have implicitly shown that none of these
problems is sensitive.

Our setting and our problems. In our model, nodes pro-
ceed in synchronous rounds. In each round, each node may
choose to either send O(logN) bits or receive, as determined
by the randomized protocol executed by the node. A mes-
sage sent is received by all the sender’s neighbors who are
receiving in that round. The topology in each round is deter-
mined by an adversary and can be an arbitrary connected
graph. (See full details of our model in Section 2.) Such
a dynamic network model is similar to the evolving-graph
model [2] and the T -interval model [14]. All our results and
proofs also extend to the dual graph model [9, 13] without
any modification.

In confirmed flooding (CFlood), a certain node V needs
to propagate a token of size O(logN) bits to all nodes. V
further, intuitively, wants to confirm that all nodes have re-
ceived the token.2 More rigorously, a CFlood protocol ter-
minates when V outputs a special symbol, and the output
is correct if by the time that V outputs, the token has been
received by all nodes. In consensus (Consensus), each node
has an initial binary value, and they aim to achieve a con-
sensus. The standard requirements of termination, agree-
ment, and validity apply. The protocol terminates when ev-
ery node decides. Leader election (LeaderElect) aims to
elect a leader and the protocol terminates when every node
outputs the leader’s id. The time complexity of a protocol
captures the number of rounds needed for the protocol to
terminate. To discuss the time complexity under different
topologies with different diameters in a consistent way, we

1Kuhn et al.’s results on simultaneous consensus trivially
carry over to the CONGEST model as well.
2V may potentially confirm without explicit acknowledge-
ments, such as by counting the number of rounds.

will often describe the time complexity under a given dy-
namic network in terms of flooding rounds, with each flood-
ing round having D rounds. We say that a protocol has
a time complexity of s(N) flooding rounds if it terminates
within s(N) flooding rounds on all dynamic networks of size
no more than N . When the context is clear, we also write
s(N) as s.

With known diameter, the above three problems can all
be solved in O(logN) flooding rounds. With known diame-
ter, O(logN) protocols also exist for Hear-from-N-nodes,
Max, and estimating N . See the full version [21] of this pa-
per for all these trivial upper bounds. Under unknown di-
ameter, it was not clear whether O(logN) flooding rounds
is still sufficient, and there have been no prior non-trivial
lower bounds.

Our main results. Under unknown diameter, we prove
the first non-trivial lower bounds of Ω(4

√
N/ logN) flood-

ing rounds for CFlood, Consensus, and LeaderElect.
Such lower bounds are at least exponentially larger than
the upper bounds when the diameter is known, resulting
in an exponential gap. It is worth noting that for obtain-
ing these lower bounds, the topologies we construct for each
round all have the same diameter (asymptotically), and the
dynamic network’s diameter also remains fixed (asymptoti-
cally) throughout.3 In other words, these lower bounds are
not due to changing diameters (or increasing diameters) in
each round. Rather, they are due to the difficulty of con-
firming whether certain information has reached a sufficient
number of nodes.

Our lower bound for CFlood holds even if N is known,
while the lower bounds for Consensus and LeaderElect
hold even if the protocol knows an estimate N ′ of N that

guarantees |N
′−N
N
| ≤ 1

3
. On the other hand, when there ex-

ists a positive constant c such that N ′ guarantees |N
′−N
N
| ≤

1
3
− c, we further propose novel Consensus and Leader-

Elect protocols that do not require prior knowledge of D
and yet need only O(logN) flooding rounds.

Our upper bound protocols suggest that interestingly, the
cost of unknown diameter sometimes can be avoided if a
good estimate of N is known. The upper bounds also im-

ply that obtaining an N ′ such that |N
′−N
N
| ≤ 1

3
− c needs

Ω(4
√
N/ logN) flooding rounds, under unknown diameter.

When the diameter is known, the full version [21] of this
paper explains how to obtain such an N ′ in only O(logN)
flooding rounds. Hence, obtaining such an N ′ itself is also
a problem that is sensitive to unknown diameter.

Our main techniques. Our lower bounds are from com-
munication complexity arguments, and more specifically, via
reductions from the recently introduced two-party Disjoint-
nessCP [4] problem. Our reductions not only are novel
themselves, but also rely on some interesting techniques that
have not been exploited in related reductions in other con-
texts [4, 6, 16, 20, 22]:

• We design three novel types of subnetworks as building
blocks. We then prove a general composition lemma
that enables flexible composition of these subnetworks.

• In our reduction, we allow the two parties in the Dis-

3If needed, one can trivially modify our construction so that
the diameter is always fixed, and not just fixed asymptoti-
cally.

G a dynamic network Γ, Λ, Υ 3 types of subnetworks
N number of nodes in the dynamic network AΓ, BΓ special nodes in the type-Γ subnetwork
N ′ estimate of N AΛ, BΛ special nodes in the type-Λ subnetwork
D diameter of the dynamic network AΥ, BΥ special nodes in the type-Υ subnetwork

U , V , W generic nodes in the network

n size of the DisjointnessCP problem x, y input strings to DisjointnessCP
q parameter in the DisjointnessCP problem xi, yi ith character of x, y

Table 1: Key notations.

jointnessCP problem to disagree on the dynamic net-
work that they simulate, which is quite different from
reductions in other efforts [4, 6, 16, 20, 22].

Additional related work. For static networks, Kuhn et
al. [16] show that the time complexity of the Hear-from-N-
nodes problem is sensitive to unknown diameter in directed
static networks. Specifically, they prove that Hear-from-
N-nodes needs Ω̃(

√
N) flooding rounds under unknown di-

ameter, even though it takes only a single flooding round
under known diameter. Their proof uses a reduction from
the classic Disjointness problem, and critically relies on
the directed edges to avoid “leaking” one party’s input to
the other party. In comparison, our setting is undirected
dynamic networks. Neither setting can be reduced to the
other. Our reductions face different challenges and are per-
haps more complex than the one in [16]: Our reductions
need to i) reduce from a more complex and recently pro-
posed DisjointnessCP problem, ii) allow the two parties
to disagree on the dynamic network that they simulate, iii)
continuously change the topology (e.g., cascading edge re-
movals), and iv) give up simulating certain nodes as the
simulation progresses.

Some researchers have obtained various lower bounds un-
der unknown diameter, for other settings such as
asynchronous networks with edge failures [1, 10] and anony-
mous static networks without congestion [8]. These proofs
all critically rely on the specifics of their settings, and have
little relevance to this work. Ghaffari et al. [9] have proved
that broadcasting needs Ω(N/ logN) rounds under some
constant-diameter dual graph. This lower bound is, how-
ever, not due to the lack of knowledge of the diameter.
Finally, this paper builds upon our own previous work [4]
on the communication complexity of computing aggregate
functions, and we adopt the DisjointnessCP problem from
there. But the actual reductions in this paper are quite dif-
ferent from and are more complex than those in [4]. In
particular, this paper relies on multiple unique techniques
as mentioned earlier.

Roadmap. The next section formalizes our model and def-
initions. Section 3 gives an overview of our lower bounds
under unknown diameter, with details in Section 4 through
6. Section 7 presents upper bounds showing that having a
good estimate of N makes some problems no longer sensitive
to unknown diameter.

2. MODEL AND DEFINITIONS
Dynamic network. The dynamic network has N nodes
(see Table 1 for the notation summary), each with a unique
id of Θ(logN) bits. The timing model is synchronous, and
all nodes start executing the protocol from round 1 simul-
taneously. For convenience, we also discuss round 0, where

the protocol does nothing. The set of N nodes is always
fixed, but the (undirected) edges among the N nodes may
change arbitrarily from round to round, subject to the con-
straint that the topology at any specific point of time must
be connected.

For convenience, we say that the topology is determined
by an adversary. In each round, the nodes first flip their
coins (for the randomized protocol). The adversary then
determines the topology for the current round, based on
the randomized protocol, all the coin flip outcomes so far,
and the states of the nodes. (The adversary cannot predict
future coin flip outcomes.) Next each node does some local
processing, and then either sends or receives, as decided by
the randomized protocol.4

In a round, a node that chooses to send can send a single
message of O(logN) bits. All neighboring nodes that choose
to receive in that round will receive that message. A node
may receive multiple messages from multiple neighbors in a
round. The topology in each round is unknown to each node,
and a node does not know its neighbors unless it receives
messages from them.

Following [15], given any round r ≥ 0 and any two nodes
U and V , we say that (U, r) → (V, r + 1) if either (U, V) is
an edge in the dynamic network in round r + 1 or U = V .
We define “;” as the transitive closure of “→”: Intuitively,
(U, r) ; (V, r+z) means that U ’s behavior/state in round r
may potentially influence V ’s behavior/state in round r+ z.
The (dynamic) diameter of the dynamic network is defined
as the minimum D such that for any round r ≥ 0 and any
two nodes U and V , (U, r) ; (V, r +D).

Time complexity. Since this paper mainly focuses on
lower bounds, we consider Monte Carlo protocols with δ er-
ror probability (or simply called δ-error protocols) for solv-
ing various distributed computing problems, and we define
time complexity over average coin flips and worst-case in-
put. For lower bounds, the coins will be public, while for
upper bounds the coins will be private. This enables all

4Such an adversary model and send/receive model have been
used in prior work on dynamic networks as well (e.g., [3, 9,
13]). There have also been alternative prior models (e.g. [7,
14]) that allow a node to both send and receive in a round
(e.g., if the rounds are sufficiently long to accommodate both
a send and a receive). All our results continue to hold under
such an alternative model, as long as the dynamic network’s
topology may potentially change in the middle of a round.
In fact, when a round contains multiple operations, it is
perhaps more realistic not to rule out potential topology
changes in the middle of a round. As an analogy, for classic
fault-tolerant distributed consensus in synchronous systems,
researchers have always considered the possibility of a node
failing in the middle of a round, where the node has com-
pleted some but not all of the operations it intended to do
in that round.

our lower bounds to trivially extend to worst-case coin flips,
Las Vegas protocols, and private coin protocols. To dis-
cuss the time complexities of these protocols under different
topologies with different diameters in a consistent way, we
will often describe the time complexity under a given dy-
namic network in terms of flooding rounds, with each flood-
ing rounds being exactly D rounds. Given a dynamic net-
work G, a protocol’s time complexity over G is defined as
the number of flooding rounds needed for the protocol to
terminate, over average coin flips and worst-case input over
G. The protocol’s time complexity is defined as the largest
time complexity over all possible G’s with no more than N
nodes.

Communication complexity. For positive integer n and
positive odd integer q ≥ 3, DisjointnessCPn,q [4] is a
two-party communication complexity problem where Alice
and Bob have input strings x and y, respectively. Here x
and y each have n characters, with each character being
an integer in [0, q − 1]. Let xi (yi) denote the ith char-
acter in x (y), for 1 ≤ i ≤ n. Alice and Bob aim to
compute DisjointnessCP(x,y), which is defined to be 0
if there exists any i such that xi = yi = 0, and 1 other-
wise. The inputs x and y must satisfy the cycle promise [4]
in the sense that for any i ∈ [1, n], we must have either i)
yi = xi − 1, or ii) yi = xi + 1, or iii) (xi, yi) = (0, 0), or iv)
(xi, yi) = (q − 1, q − 1). Chen et al. [4] have shown that the
cycle promise is not an ad hoc promise — for a wide class
of reductions, the cycle promise can in some sense be “de-
rived” from the reduction. Larger q in DisjointnessCPn,q

means that some character will have a small number of oc-
currences in x and y, and this can be exploited by the up-
per bound protocol [4] to solve DisjointnessCPn,q more
efficiently. The following lower bound is from [4]:

Theorem 1. (From [4].) A 1
5

-error public coin Monte
Carlo protocol for DisjointnessCPn,q must incur at least
Ω(n

q2
) − O(logn) bits of communication between Alice and

Bob, over worst-case x, y, and worst-case coin flips.

For this paper, we will need the following corollary (see
the full version [21] of this paper for the simple proof):

Corollary 2. For any 1
6

-error public coin Monte Carlo
protocol for DisjointnessCPn,q, there exist x0 and y0 such
that DisjointnessCPn,q(x0,y0) = 1 and the protocol incurs
at least Ω(n

q2
)−O(logn) bits over x0, y0, and average coin

flips.

3. OVERVIEW OF OUR LOWER BOUNDS
This section provides an overview of our lower bound

proofs for CFlood and Consensus. Consensus can be
easily reduced to LeaderElect (see the full version [21] of
this paper), so we do not need to separately prove a lower
bound for LeaderElect.

3.1 High-level Structure of Our Proof
Our lower bound proofs for CFlood and Consensus have

similar high-level structures, and we use CFLood as an ex-
ample. Our lower bound for CFlood is based on a reduc-
tion from DisjointnessCP. Putting it another way, given a
(black-box) oracle protocol for solving CFlood, Alice and

Bob will solve DisjointnessCP(x,y) by simulating the ex-
ecution of that oracle protocol under a certain dynamic net-
work.

The specifics of this dynamic network depend on the val-
ues of both x and y: The dynamic network is constructed in
such a way that it has O(1) diameter if
DisjointnessCP(x,y) = 1, and Ω(q) diameter if
DisjointnessCP(x,y) = 0. Assume that the CFlood ora-
cle protocol promises to terminate within s flooding rounds.
We can then show that i) if DisjointnessCP(x,y) = 1,
then the CFlood protocol under the corresponding network
should terminate within O(s) rounds, and ii) if
DisjointnessCP(x,y) = 0, then the CFlood protocol un-
der the corresponding network takes Ω(q) rounds to termi-
nate. (Note that it is not Ω(qs) rounds since the protocol
may terminate in less than s flooding rounds.)

We will choose a proper value of q to ensure a gap between
O(s) and Ω(q). Alice and Bob will simulate the execution of
the CFlood oracle protocol for O(s) rounds. If the CFlood
protocol terminates within these O(s) rounds, then Alice
and Bob claim DisjointnessCP(x,y) = 1. Otherwise they
claim DisjointnessCP(x,y) = 0. In such a way, Alice and
Bob successfully solve DisjointnessCP after simulating the
CFlood oracle protocol for O(s) rounds.

Alice and Bob will need to incur communication during
this simulation, as following. There are two special nodes AΓ

and AΛ in the dynamic network. During each round of the
simulation, to enable the simulation to later continue onto
the next round, Alice needs to forward to Bob all messages
sent by AΓ and AΛ in the CFlood oracle protocol in that
round. Under the CONGEST model, AΓ and AΛ will alto-
gether send at most O(logN) bits in one round. Hence Alice
will send at most O(logN) bits to Bob in one round of the
simulation, and O(s logN) bits throughout the simulation.
Similarly, there are two additional special nodes BΓ and BΛ

in the dynamic network, and Bob will forward to Alice all
messages sent by BΓ and BΛ. Altogether, the number of bits
exchanged between Alice and Bob during the simulation is
O(s logN) bits. (This is where the time complexity upper
bound of s gets connected to the communication complexity
upper bound of O(s logN).)

Finally, by the communication complexity lower bound on
DisjointnessCP, Alice and Bob need to exchange at least
Ω(n

q2
)−O(logn) bits to solve DisjointnessCP. This gives

us the equation O(s logN) = Ω(n
q2

)−O(logn). Solving this

equation gives us a lower bound on s.

3.2 Adversaries and Subnetworks
The 3 adversaries. As explained above, the specifics of
the dynamic network used in the reduction depends on the
value of both x and y. More precisely, we say that the
dynamic network’s topology in each round is determined
by a reference adversary, whose behavior is a function of
x and y. Since Alice does not see y, Alice does not know
the reference adversary. Hence the crux in the reduction
is to enable Alice to still properly simulate without seeing
y. Putting it another way, we want the dynamic network
to be “indistinguishable” from Alice’s perspective, as long
as x remains fixed and regardless of y. Such discussions
symmetrically apply to Bob as well.

To this end, we will exploit the properties of the cycle
promise in the DisjointnessCP problem. Furthermore, our

reduction will let Alice simulate her own adversary based on
x, and Bob simulate his own adversary based on y. We will
allow the 3 adversaries (i.e., the reference adversary, Alice’s
simulated adversary, and Bob’s simulated adversary) to be
pairwise slightly different. We will nevertheless ensure that
the entire simulation is still “meaningful”.

The subnetworks. The dynamic networks we use to prove
our lower bounds are obtained by composing various novel
types of subnetworks (type-Γ, type-Λ, and type-Υ). Each
type of subnetwork is itself a dynamic network uniquely de-
termined by the given x and y. We will also describe the
3 adversaries for each subnetwork. Unless otherwise stated,
each subnetwork has Θ(nq) nodes, and by itself does not
need to be connected in each round. Section 4 and Sec-
tion 5 will the present the details of these subnetworks. The
following provides an overview:

• Type-Γ subnetwork: If DisjointnessCP(x,y) = 0,
then there exist Ω(q) nodes in the type-Γ subnetwork
that are disconnected from the rest of the type-Γ sub-
network, starting from the beginning of round 1. These
Ω(q) nodes are arranged into a line, and will connect to
some other subnetwork. If DisjointnessCP(x,y) =
1, then the type-Γ subnetwork is always connected
with O(1) diameter.

• Type-Λ subnetwork: If DisjointnessCP(x,y) = 0,
then the type-Λ subnetwork will contain at least one
node as a mounting point. It takes Ω(q) rounds for
a mounting point to causally affect all other nodes in
the subnetwork. If DisjointnessCP (x,y) = 1, then
there is no mounting point and the diameter of the
type-Λ subnetwork is O(1).

• Type-Υ subnetwork: If DisjointnessCP(x,y) = 0,
the type-Υ subnetwork is the same as the type-Λ sub-
network. If DisjointnessCP (x,y) = 1, the type-Υ
subnetwork is empty and has no nodes.

3.3 Composing Subnetworks to Obtain Lower
Bounds for CFlood and Consensus

To prove the lower bound on CFlood (details in Sec-
tion 6), we will compose the type-Γ subnetwork with the
type-Λ subnetwork together:

• When DisjointnessCP(x,y) = 1, our composition
will connect the type-Γ subnetwork with the type-Λ
subnetwork together using one edge. Since each of
these subnetworks is itself connected and has a diame-
ter of O(1), doing so will result in a dynamic network
with O(1) diameter.

• When DisjointnessCP(x,y) = 0, there will be Ω(q)
nodes disconnected from the rest of the type-Γ sub-
network. Our composition will arrange them into a
line and then connect them to a mounting point in
the type-Λ subnetwork. (We still connect the rest of
the type-Γ subnetwork with the type-Λ subnetwork to-
gether using one edge as earlier.) This leads to a dy-
namic network over which the CFlood protocol needs
to take Ω(q) rounds to terminate.

To prove the lower bound on Consensus, one way is to
reduce from CFlood. Specifically, Kuhn et al. describe a

reduction from Hear-from-N-nodes to Consensus [15],
while CFlood reduces to Hear-from-N-nodes (see the
full version [21] of this paper). But Kuhn et al.’s reduc-
tion does not directly capture our model — for example, we
consider Monte Carlo protocols. While we could adapt that
reduction, since we already have the composition lemma,
we will conveniently prove a lower bound on Consensus by
composing the type-Λ subnetwork with the type-Υ subnet-
work (details in Section 6):

• When DisjointnessCP(x,y) = 1, the type-Υ subnet-
work is empty. The dynamic network resulted from
our composition will simply be the type-Λ subnetwork
with O(1) diameter.

• When DisjointnessCP(x,y) = 0, both the type-Λ
subnetwork and the type-Υ subnetwork have a mount-
ing point. Our composition connects some arbitrary
mounting point in the type-Λ subnetwork with some
arbitrary mounting point in the type-Υ subnetwork.
Recall that in the Consensus problem, each node has
a binary initial value. We set the initial values so that
all nodes in the type-Λ subnetwork have the same ini-
tial values, while all nodes in the type-Υ subnetwork
have the opposite initial values. We will prove that
over such a dynamic network, the Consensus proto-
col takes Ω(q) rounds to terminate on all nodes.

Finally, note that the number of nodes in the type-Υ sub-
network is not fixed, and depends on x and y. Hence Alice
and Bob, without knowing the other party’s input, cannot
determine the number of nodes in the type-Υ subnetwork.
Thus the Consensus lower bound here does not hold when
N is known. But Alice and Bob can nevertheless produce

an N ′ with limited accuracy (i.e., |N
′−N
N
| ≤ 1

3
) to feed into

the oracle protocol if needed.

4. TYPE-Γ SUBNETWORK
The reference adversary. Given x and y, Figure 1 illus-
trates the type-Γ subnetwork. In round 0, it has n groups
of vertical chains, where each group has q−1

2
vertical chains.

Each chain has three nodes and two edges. We call the edge
adjacent to the top node (bottom node) as the top edge
(bottom edge). We connect the top node on every chain to
a special node AΓ, and the bottom node on every chain to
a special node BΓ. For 1 ≤ i ≤ n, all the q−1

2
top nodes

(bottom nodes) in the ith group are labeled xi (yi). We use
|xy to denote a chain whose top node is labeled x and whose
bottom node is labeled y.

Let t be any non-negative integer. The reference adver-
sary for the type-Γ subnetwork manipulates certain chains
according to the following rules:

1. For every chain in the form of |2t2t−1, the adversary
removes the top edge at the beginning of round t+ 1.

2. For every chain in the form of |2t−1
2t , the adversary

removes the bottom edge at the beginning of round
t+ 1.

3. For every chain in the form of |2t2t+1, the adversary
removes the top edge at the beginning of either round
t + 2 (if the middle node on the chain is receiving in
round t+ 1) or round t+ 1 (otherwise).

2 2 2 2 0 0 0 02 2 2 2 0 0 0 0

2 2 2 2 0 0 0 0

Alice’s simulated
adversary

A

B

Γ

Γ

A

B

Γ

Γ

A

B

Γ

Γ

A

B

Γ

Γ

A

B

Γ

Γ

A

B

Γ

Γ

A

B

Γ

Γ

A

B

Γ

Γ

A

B

Γ

Γ

000222

Round 1 Round 2Round 0

2

0

3 3 1 1 1 1 0 0

0

3 3 1 1 1 1 0 0

0

3 3 1 1 1 1 0 0

3 3 1 1 1 1 0 0 3 3 1 1 1 1 0 03 3 1 1 1 1 0 0

0

Bob’s simulated

adversary

Reference
adversary

2 2 2 2 2 0 0 0 02 2 2

0

inconsistentinconsistent

? ?

? ?

Figure 1: The three adversaries of the type-Γ subnetwork, for n = 4, q = 5, x = 3110, and y = 2200. The
numbers beside the nodes are labels. This example assumes that the middle nodes on all the chains are
receiving.

4. For every chain in the form of |2t+1
2t , the adversary

removes the bottom edge at the beginning of either
round t+2 (if the middle node on the chain is receiving
in round t+ 1) or round t+ 1 (otherwise).

5. For all chains in the form of |00, the adversary removes
both the top edges and the bottoms edges at the be-
ginning of round 1, hence disconnecting all the middle
nodes on these chains. The adversary connects all such
middle nodes into a line. Obviously, we will have at
least q−1

2
chains in the form of |00 if

DisjointnessCP(x,y) = 0. In such a case, we will
have a line of Ω(q) nodes which can be connected to
some other subnetwork to boost the diameter.

Finally, the adversary does not manipulate |q−1
q−1 chains, which

are the only remaining kind of chains.

Adversaries simulated by Alice and Bob. Alice will
not be able to simulate this reference adversary, because
Alice does not know y and hence does not know the labels of
the bottom nodes. Overcoming this issue is a key challenge
in the reduction. Let “*” be a wildcard label and let t be
any non-negative integer. Based on only x, Alice simulates
the following adversary (called Alice’s simulated adversary)
instead:

• For every chain in the form of |2t∗ , the adversary re-
moves the top edge at the beginning of round t+ 1.

• For every chain in the form of |2t+1
∗ , the adversary

removes the bottom edge at the beginning of round
t+ 2.

Our simulation will only last for q−1
2

rounds, and hence Al-

ice’s adversary will not have removed any edges from |q−1
∗

chains and |q−2
∗ chains by the end of the simulation.

Similarly, Bob simulates the following adversary (called
Bob’s simulated adversary):

• For every chain in the form of |∗2t, the adversary re-
moves the bottom edge at the beginning of round t+1.

• For every chain in the form of |∗2t+1, the adversary
removes the top edge at the beginning of round t+ 2.

Note that Alice’s simulated adversary and Bob’s simulated
adversary diverge. For example, for a |2t2t+1 chain, Alice’s
simulated adversary removes the top edge in round t + 1,
while Bob’s simulated adversary does so in round t+ 2.

Communication between Alice and Bob. To allow the
simulation to continue properly, during every round of the
simulation, Alice will always forward to Bob the message
sent by the node AΓ (if any). We will later show that Al-
ice can always generate those messages. Similarly, Bob will
forward to Alice all messages sent by BΓ.

A concrete example. Part of our proof will need to show
that even though the three adversaries (i.e., the reference
adversary, Alice’s simulated adversary, and Bob’s simulated
adversary) can be pairwise different and inconsistent, the
behavior of the oracle protocol under the three different ad-
versaries will nevertheless be “consistent enough” to enable
simulation.

To get some intuition, Figure 1 illustrates the three adver-
saries. In round 0, the topology is the same under all three
adversaries. Next in round 1, under the reference adversary,

all the edges in the two |00 chains are removed. Under Al-
ice’s simulated adversary, the top edges of the two |0∗ chains
are removed. Alice cannot infer (as indicated by “?” in the
figure) whether the bottom edges are removed under the
reference adversary. But since the top edges on these two
chains have already been removed, the behavior of the nodes
in the “?” region cannot causally affect other nodes, without
passing through BΓ first. Since Bob will forward to Alice all
the messages sent by BΓ, Alice can afford to simply give up
simulating those nodes in the “?” region. Similar arguments
apply to Bob.

Next consider the |10 chains in round 1 and |32 chains in
round 2. In Figure 1, Bob’s simulated adversary removes
the bottom edge of every |10 chain at the beginning of round
1, while the reference adversary will not remove those edges
until round 2. Here this edge removal will causally affect
BΓ, preventing Bob from properly simulating BΓ. We will
leverage the following observation to address this issue. Let
the three nodes on a |10 chain be U , V , and W , from the top
to the bottom. If V is receiving in round 1 (as in Figure 1),
then W cannot tell whether the bottom edge is removed in
round 1 or round 2. Hence even though Bob simulates edge
removal in round 1, so far as the protocol is concerned, it
is equivalent to removing the bottom edge in round 2. The
case for V sending in round 1 is similar.

Correctness arguments. We next formalize the correct-
ness arguments. In any round, a node is defined to be either
spoiled or non-spoiled with respect to Alice. Intuitively, the
behavior of a non-spoiled node for Alice depends only on Al-
ice’s input x and messages sent by BΓ. We will eventually
aim to prove that Alice can properly simulate the execution
of the oracle protocol on a node in a round r (r ≤ q−1

2
),

if it is non-spoiled for Alice in that round. Let t be any
non-negative integer. Consider any given chain and let the
three nodes on the chain be U , V , and W , from the top to
the bottom:

• If the chain is in the form of |2t∗ , then V and W become
spoiled since the beginning of round t+ 1.

• If the chain is in the form of |2t+1
∗ , then W becomes

spoiled since the beginning of round t+ 1.

We define BΓ to be spoiled for Alice from the beginning of
round 1. A node is non-spoiled for Alice unless it is spoiled
for Alice. In particular, AΓ is always non-spoiled for Alice.

We similarly define these concepts for Bob:

• If the chain is in the form of |∗2t, then V and U become
spoiled since the beginning of round t+ 1.

• If the chain is in the form of |∗2t+1, then U becomes
spoiled since the beginning of round t+ 1.

We define AΓ to be spoiled for Bob from the beginning of
round 1. A node is non-spoiled to Bob unless it is spoiled
for Bob. BΓ is always non-spoiled for Bob.

The following lemma claims that for any node Z that is
non-spoiled for Alice in a round and is receiving in that
round, Alice is able to determine which nodes can poten-
tially send messages to Z in that round under the reference
adversary, by simply simulating her own adversary based on
x. The lemma further claims that any node that is sending
messages to Z must be either non-spoiled for Alice or the

node BΓ. All these will allow us to later prove in Section 6,
via an induction, that Alice can simulate all her non-spoiled
nodes.

Lemma 3. Consider any round r where 1 ≤ r ≤ q−1
2

in
the type-Γ subnetwork. For any non-spoiled node Z for Alice
(Bob) in round r that is receiving in round r, let S be the
set of Z’s neighbors under the reference adversary in round
r, and S ′ be the set of Z’s neighbors under the adversary
simulated by Alice (Bob) in round r. Then i) all nodes in
(S \ S ′) ∪ (S ′ \ S) are receiving in round r, and ii) a node
in S ′ is either the node BΓ (AΓ) or a non-spoiled node for
Alice (Bob) in round r − 1.

Proof. It suffices to prove the lemma for Alice. In the
following, the notions of spoiled and non-spoiled nodes are
always with respect to Alice. First, BΓ is always spoiled in
all rounds, and AΓ is always non-spoiled. For AΓ, we have
S = S ′ and they contain all the top nodes on all the chains.
None of these top nodes are ever spoiled for Alice. Next we
consider the non-spoiled nodes on all the chains. Consider
any given chain, and let U , V , and W be the nodes on the
chain from the top to the bottom. We will enumerate all 6
kinds of chains. Let t be any non-negative integer.

For a |2t2t+1 chain, U is always non-spoiled, and V and W
are non-spoiled iff r ≤ t:

• For node U , we exhaustively enumerate all scenarios:
i) If r ≤ t, then S = S ′ = {AΓ, V }. By definition,
both AΓ and V are non-spoiled in round r − 1. ii) If
r ≥ t + 2, then S = S ′ = {AΓ}. By definition, AΓ

is non-spoiled in round r − 1. iii) If r = t + 1 and V
is sending in round t + 1, then S = S ′ = {AΓ} and
AΓ is non-spoiled in round r − 1. iv) If r = t+ 1 and
V is receiving in round t + 1, then S = {AΓ, V } and
S ′ = {AΓ}. Again, AΓ is non-spoiled in round r − 1.

• For node V and r ≤ t, we have S = S ′ = {U,W}, and
both nodes are non-spoiled in round r − 1.

• For node W and r ≤ t, we have S = S ′ = {V,BΓ},
where V is non-spoiled in round r − 1.

For a |2t2t−1 chain, U is always non-spoiled, and V and W are
non-spoiled iff r ≤ t:

• For node U , we exhaustively enumerate all scenarios:
i) If r ≤ t, then S = S ′ = {AΓ, V }. By definition,
both AΓ and V are non-spoiled in round r − 1. ii) If
r ≥ t + 1, then S = S ′ = {AΓ}. By definition, AΓ is
non-spoiled in round r − 1.

• For node V and r ≤ t, we have S = S ′ = {U,W}, and
both nodes are non-spoiled in round r − 1.

• For node W and r ≤ t, we have S = S ′ = {V,BΓ},
where V is non-spoiled in round r − 1.

For a |2t+1
2t chain, U and V are always non-spoiled, and W

is non-spoiled iff r ≤ t:

• For node U , S = S ′ = {AΓ, V }. By definition, both
AΓ and V are non-spoiled in round r − 1.

• For node V , we exhaustively enumerate all scenarios:
i) If r ≤ t, we have S = S ′ = {U,W}, and both
nodes are non-spoiled in round r − 1. ii) If r ≥ t + 2,

.....

A

B

Λ

Λ

A

B

Λ

Λ

A

B

Λ

Λ

A

B

Λ

Λ

Round 0

.....
2 4

0 2 4 6

0 6

Round 1

2 4

0 2 4 6

0 6

Round 3

2 4

0 2 4 6

0 6

Round 2

2 4

0 2 4 6

0 6

.....

centipede

structures

for other

indices

Figure 2: The ith centipede structure in the type-Λ subnetwork under the reference adversary, for xi = yi = 0
and q = 7.

.....

A

B

Λ

Λ

A

B

Λ

Λ

A

B

Λ

Λ

A

B

Λ

Λ

Round 0

.....

Round 1 Round 3Round 2

4 6

3 5 6 6

2 64 6

3 5 6 6

2 6

.....
4 6

3 5 6 6

2 6 4 6

3 5 6 6

2 6

centipede

structures

for other

indices

Figure 3: The ith centipede structure in the type-Λ subnetwork under the reference adversary, for xi = 2,
yi = 3, and q = 7, assuming all middle nodes on all chains are sending.

then S = S ′ = {U}. By definition, U is non-spoiled in
round r−1. iii) If r = t+1, recall that we only need to
consider the case where V is receiving in round t+ 1.
We have S = S ′ = {U,W}, and both U and W are
non-spoiled in round r − 1.

• For node W and r ≤ t, we have S = S ′ = {V,BΓ},
where V is non-spoiled in round r − 1.

For a |2t−1
2t chain, U and V are always non-spoiled, and W

is non-spoiled iff r ≤ t− 1:

• For node U , S = S ′ = {AΓ, V }. By definition, both
AΓ and V are non-spoiled in round r − 1.

• For node V , we enumerate all scenarios: i) If r ≤ t,
we have S = S ′ = {U,W}, and both nodes are non-
spoiled in round r − 1. ii) If r ≥ t+ 1, then S = S ′ =
{U}. By definition, U is non-spoiled in round r − 1.

• For node W and r ≤ t− 1, we have S = S ′ = {V,BΓ},
where V is non-spoiled in round r − 1.

For a |q−1
q−1 chain, U , V , and W are always non-spoiled for

all r ≤ q−1
2

:

• For node U , we have S = S ′ = {AΓ, V }. By definition,
both AΓ and V are non-spoiled in round r − 1.

• For node V , we have S = S ′ = {U,W}. By definition,
both U and W are non-spoiled in round r − 1.

• For node W , we have S = S ′ = {BΓ,W}. By defini-
tion, W is non-spoiled in round r − 1.

Finally, for a |00 chain, only U can be non-spoiled for r ≥
1. We have S = S ′ = {AΓ}, where AΓ is always non-
spoiled.

5. TYPE-Λ AND TYPE-Υ SUBNETWORKS
We describe type-Λ subnetwork first and type-Υ subnet-

work next.

Mounting points. Recall from Section 3 that the type-Λ
subnetwork should contain at least one node as a mount-
ing point when DisjointnessCP(x,y) = 0. This allows
us to later attach nodes to a mounting point when needed.
Whether a mounting point exists depends on both x and
y. Hence if a mounting point exists, without seeing both x
and y, neither Alice nor Bob can properly simulate it. Intu-
itively, a mounting point is always spoiled for both Alice and
Bob. We need to prevent a mounting point from quickly af-
fecting all other nodes, since any nodes causally affected by
a mounting point intuitively become spoiled as well. We will
carefully remove edges to achieve this. On the other hand,
the type-Λ subnetwork needs to have O(1) diameter when
DisjointnessCP(x,y) = 1. Thus the crux here is that such
edge removals should not increase the diameter of the type-
Λ subnetwork when DisjointnessCP(x,y) = 1. While we
will still use the trick of having three different adversaries,
that trick by itself no longer suffices here. We will need an
additional technique of cascading edge removals over novel
centipede structures.

The 3 adversaries and the spoiled nodes. Given x and
y, Figure 2 and 3 illustrate the type-Λ subnetwork. In round
0, the topology has n centipede structures, one for each index
i ∈ [1, n]. Each centipede structure has q+1

2
vertical chains,

and each chain has three nodes. The middle nodes on all
chains in a centipede structure are connected and form a
horizontal line. The top (bottom) nodes on all chains of
all centipede structures connect to a special node AΛ (BΛ).
Consider the jth chain in the ith centipede structure for
1 ≤ j ≤ q+1

2
and 1 ≤ i ≤ n, and let the three nodes on the

chain be U , V , and W , from the top to the bottom. We label
U and W as min(xi+2j−2, q−1) and min(yi+2j−2, q−1),
respectively. The middle nodes of all |00 chains are defined
as mounting points. The reference adversary for the type-Λ

subnetwork follows the same rules as the reference adversary
for the type-Γ subnetwork in Section 4, except that the 5th
rule is replaced by:

5. Let t be any integer in [0, q−3
2

]. For all chains in the

form of |2t2t, the adversary removes both the top edges
and the bottom edges at the beginning of round t+ 1.

Note that cascading edge removals are implicit here — edge
removals following all the rules will be cascading.

Finally, the adversary simulated by Alice (Bob) in the
type-Λ subnetwork follows the exact same rules (but now
based on the labels in the type-Λ subnetwork) as earlier in
the type-Γ subnetwork in Section 4. Spoiled/non-spoiled
nodes are also defined according to exactly the same rules
as in Section 4 (after replacing AΓ with AΛ, and replacing
BΓ with BΛ). In the simulation, Alice will always forward
to Bob all messages sent by AΛ. (We will later show that
Alice can always generate those messages.) Similarly, Bob
will forward all messages sent by BΛ.

A concrete example. We aim to highlight here the role
of cascading edge removals, while focusing on the reference
adversary. Figure 2 illustrates the ith centipede structure
when xi = yi = 0. This structure has a mounting point,
which is the middle node of the |00 chain. A mounting point
is spoiled from the beginning of round 1 for both Alice and
Bob. To prevent it from causally affecting AΛ and BΛ, we
remove the two edges on the |00 chain at the beginning of
round 1, remove the edges on the |22 chain at the beginning
of round 2, and so on.

One may wonder why we cannot simply remove the edges
on all these chains at the same time. To understand, imagine
that the two edges on the |44 chain in Figure 2 are removed
in round 1 instead of in round 3. Once we do this in the
reference adversary, Alice (Bob) will no longer be able to
simulate the middle node V on this chain, since based on x
(y), Alice (Bob) cannot tell whether both edges on the chain
have been removed. Intuitively, V becomes spoiled. V may
now causally affect AΛ and BΛ, via the |66 chain. This can
happen rather quickly since V is just next to the |66 chain.

Finally, we will also need to remove edges in the ith cen-
tipede structure when xi + yi > 0, as illustrated in Figure 3
where xi = 2 and yi = 3. While not immediately obvious,
cascading edge removals play a critical role here as well: The
middle node V on the |23 chain becomes spoiled for Alice at
the beginning of round 2, and cascading edge removals pre-
vent V from causally affecting AΛ via the |45 chain.

Correctness arguments. The following lemma (whose
proof is in the full version [21] of this paper) is the same as
Lemma 3 except that it is now for the type-Λ subnetwork:

Lemma 4. Consider any round r where 1 ≤ r ≤ q−1
2

in
the type-Λ subnetwork. For any non-spoiled node Z for Alice
(Bob) in round r that is receiving in round r, let S be the
set of Z’s neighbors under the reference adversary in round
r, and S ′ be the set of Z’s neighbors under the adversary
simulated by Alice (Bob) in round r. Then i) all nodes in
(S \S ′)∪ (S ′ \S) are receiving in round r, and ii) a node in
S ′ is either BΛ (AΛ) or a non-spoiled node for Alice (Bob)
in round r − 1.

Type-Υ subnetwork. So far we have only described the
type-Λ subnetwork, and we now move on to the type-Υ

subnetwork.. Under the reference adversary, the type-Υ
subnetwork is the same as the type-Λ subnetwork when
DisjointnessCP(x,y) = 0. To avoid confusion, we re-
name AΛ (BΛ) to be AΥ (BΥ) in the type-Υ subnetwork.
When DisjointnessCP(x,y) = 1, the type-Υ subnetwork
is an empty network with no nodes. Under Alice’s and
Bob’s simulated adversary, the type-Υ subnetwork is always
empty (even when DisjointnessCP(x,y) = 0). We define
all nodes (if any) in the type-Υ subnetwork as always spoiled
for both Alice and Bob. In the simulation, Alice (Bob) does
not need to forward messages sent by AΥ (BΥ) to the other
party.

6. LOWER BOUNDS FOR CFlood AND
Consensus

The composition lemma. We first present a lemma to
enable the composition of multiple subnetworks. While this
lemma can be extremely general, to simplify discussion, we
only present a restricted form. Given a dynamic network
G and a round, we use GN and GE to denote the set of
vertices and edges in that round, respectively. A dynamic
network G is the composition network of two dynamic net-
works G1 and G2 via bridging edge set E if for every round,
GN = GN1 ∪ GN2 and GE = GE1 ∪ GE2 ∪ E . All edges (called
bridging edges) in the bridging edge set E are required to
span G1 and G2. Note that E does not change from round
to round. A mapping from DisjointnessCP instances to
dynamic networks is called a composition mapping of type-
ϕ1 and type-ϕ2 subnetworks (ϕ1, ϕ2 ∈ {Γ,Λ,Υ}), if the
mapped dynamic network G is always a composition net-
work of the corresponding type-ϕ1 subnetwork and type-ϕ2

subnetwork for the given DisjointnessCP instance. Note
that the bridging edge set is allowed to differ under different
DisjointnessCP instances. A bridging edge in a dynamic
network appeared in a composition mapping is sensitive for
Alice (Bob) if at least one of its end points is a non-spoiled
node for Alice (Bob) in that dynamic network in the first
round. A composition mapping is called a simple composi-
tion mapping if i) both end points of every sensitive bridging
edge for Alice (Bob) are always non-spoiled for Alice (Bob)
up to round q−1

2
, and ii) every sensitive bridging edge for

Alice (Bob) appears in every dynamic network in the com-
position mapping.

Lemma 5. Consider any given simple composition map-
ping of type-ϕ1 and type-ϕ2 subnetworks (ϕ1, ϕ2 ∈ {Γ,Λ,Υ}),
and any given inputs x and y to the DisjointnessCP prob-
lem. Let G be the dynamic network corresponding to x and
y, under this simple composition mapping. Consider the ex-
ecution of any given oracle protocol over G, under certain
inputs to the nodes and certain public coin flip outcomes.
Then for all round r where 0 ≤ r ≤ q−1

2
, Alice (Bob) can

determine both the incoming and the outgoing messages of
a node V in round r of that execution, based on only x (y),
if:

• V is non-spoiled for Alice (Bob) in round r.

• Alice (Bob) knows the oracle protocol and the public
coin flip outcomes.

• Alice (Bob) knows the inputs to all her (his) corre-
sponding non-spoiled nodes in the first round.

• Bob (Alice) always forwards to the other party all mes-
sages sent by BΓ and BΛ (AΓ and AΛ) in all rounds, as
long as those nodes exist and if he (she) can determine
those messages.

Proof. We prove via an induction on r. The lemma triv-
ially holds for round 0. Assume that the lemma holds for all
rounds before round r, and we prove the lemma for round r.
It suffices to prove for Alice. Consider any non-spoiled node
V for Alice in round r. Since knowing a node’s initial input
and its incoming messages up to a certain round immedi-
ately allows Alice to generate all its outgoing messages by
simulating the oracle protocol, it suffices to prove that Alice
can determine the incoming messages for V in round r if V
is receiving in that round. By definition of a composition
mapping, we know that V ’s incoming messages are either
from V ’s neighbors in V ’s subnetwork or from nodes in the
other subnetwork via bridging edges.

We first consider V ’s incoming messages from V ’s own
subnetwork. Note that V must not be in a type-Υ subnet-
work since V is non-spoiled. Lemma 3 and 4 tell us that
if V is receiving in a round, then Alice can determine a set
S ′ (by simulating her adversary) such that all the messages
sent in that round by nodes in S ′ will exactly be those in-
coming messages to V in its subnetwork in that round. Also
by Lemma 3 and 4, a node W in S ′ is either node BΓ or
BΛ, or a non-spoiled node for Alice in the previous round.
If W is BΓ or BΛ, note that BΓ and BΛ are non-spoiled for
Bob. By inductive hypothesis, Bob can determine all the
incoming messages to BΓ and BΛ up to and including round
r − 1. Hence Bob can generate the outgoing message from
BΓ and BΛ in round r, if BΓ and BΛ are sending in round r.
By condition in the lemma, Bob will have already forwarded
these messages to Alice, so Alice knows these messages (as
incoming messages to V). Second, if W is a non-spoiled
node for Alice in the previous round, by inductive hypothe-
sis, Alice can determine all incoming messages to W up to
and including round r−1. Alice hence can also generate the
message sent by W in round r if W is sending.

We next consider V ’s incoming messages via the bridging
edges. Since V is non-spoiled in round r, it must be non-
spoiled in the first round. Thus any bridging edge incidental
to V must be sensitive for Alice. Let the other end of the
bridging edge be W . By definition of a simple composition
mapping, we know that W must be V ’s neighbor regard-
less of the DisjointnessCP instance, and W must always
be non-spoiled for Alice. By inductive hypothesis, Alice can
determine all the incoming messages to W up to and includ-
ing round r − 1. Based on these messages and W ’s input,
Alice can determine whether W is sending in round r, by
simulating the oracle protocol on W . If W is sending, Alice
can further determine W ’s outgoing message. Thus Alice
can determine the incoming messages (if any) to V via the
bridging edges.

Lower bounds for CFLood and Consensus. Using
Lemma 5 and following the intuition described in Section 3,
we can eventually obtain the following two main theorems.

Theorem 6. If the diameter D is unknown to the pro-
tocol beforehand, then a 1

6
-error Monte Carlo protocol for

CFlood must have a time complexity of Ω(4
√
N/ logN) flood-

ing rounds. Furthermore, this holds even if the protocol
knows N and the nodes’ ids are from 1 to N .

Proof. Consider any 1
6
-error CFlood protocol that

promises to terminate within s flooding rounds over aver-
age coin flips and over every dynamic network with no more
thanN nodes. Let q = 120s+1 and n = N−4

3q
. Alice and Bob

in the two-party DisjointnessCPn,q(x,y) problem will use
this oracle CFlood protocol to solve DisjointnessCP with
error probability of at most 1

6
, which will eventually lead to

the lower bound. The proof is obtained via the following
steps:

• Constructing a simple composition mapping. We first
construct a mapping from DisjointnessCP instances
to dynamic networks, and then show that this map-
ping is a simple composition mapping. Given x and
y, we start from the corresponding type-Γ subnetwork
and type-Λ subnetwork. It is easy to verify that the
type-Γ subnetwork and the type-Λ subnetwork have
3
2
n(q − 1) + 2 and 3

2
n(q + 1) + 2 nodes, respectively.

Hence the total number of nodes is N . If
DisjointnessCPn,q(x,y) = 1, we let the bridging edge
set be {(AΓ, AΛ), (BΓ, BΛ)}. Here AΓ and BΓ (AΛ and
BΛ) are the two special nodes in the type-Γ subnet-
work (type-Λ subnetwork), as described in Section 4
(Section 5). If DisjointnessCPn,q(x,y) = 0, then
the type-Γ subnetwork must have Ω(q) disconnected
nodes that are arranged into a line. Let one end of
this line be node LΓ. The type-Λ subnetwork must
have at least one |00 chain. Let LΛ be the middle node
of an arbitrary |00 chain in the type-Λ subnetwork. We
connect the two subnetworks using the bridging edge
set {(AΓ, AΛ), (BΓ, BΛ), (LΓ, LΛ)}.
It is obvious that this mapping is a composition map-
ping. We next show that it is a simple composition
mapping. For Alice, the bridging edge (AΓ, AΛ) is
sensitive, and both end points of this edge are always
non-spoiled for Alice up to round q−1

2
. Furthermore,

this edge is present in every dynamic network that ap-
peared in the mapping. The other two bridging edges,
(BΓ, BΛ) and (LΓ, LΛ), are not sensitive to Alice. Sim-
ilar arguments apply to Bob.

• Simulating the CFlood oracle protocol. Given x and
y, Alice and Bob will simulate the execution of the
given CFlood protocol over the dynamic network ob-
tained from the above simple composition mapping,
while feeding public coin flips into this oracle protocol.
The nodes in the dynamic network will have ids from
1 to N , and AΓ will be the special node that needs
to flood the token in the CFlood problem. Since the
ids do not depend on x and y, Alice and Bob know
all such information. Alice (Bob) will always forward
to the other party all messages sent by AΓ and AΛ

(BΓ and BΛ) in all rounds, as long as she (he) can
determine those messages.

Based on these conditions, Lemma 5 tells us that Alice
will be able to determine the incoming and outgoing
messages of all her non-spoiled nodes in all round r
where 0 ≤ r ≤ q−1

2
. Since AΓ is always non-spoiled for

Alice, Alice can determine all the incoming messages
to AΓ. Using all these incoming messages and by sim-
ulating the CFlood protocol on AΓ, Alice monitors
whether AΓ outputs by round q−1

2
(which would indi-

cate that the CFlood protocol has terminated). If yes,

Alice claims that DisjointnessCPn,q(x,y) = 1. Oth-
erwise Alice claims that DisjointnessCPn,q(x,y) =
0.

• Correctness of Alice’s output. We next prove that Al-
ice’s claim is correct with probability at least 5

6
, mak-

ing the above a valid reduction. If
DisjointnessCP(x,y) = 1, then there are no |00 chains
in the two subnetworks, and one can easily verify that
the diameter of the entire dynamic network is at most
10. Since the oracle CFlood protocol promises to
terminate (over average coin flips) within s flooding
rounds, it should terminate (over average coin flips)
within 10s rounds on this dynamic network. By
Markov’s inequality, with probability at least 5

6
, it ter-

minates by round 60s = q−1
2

, making Alice claim that
DisjointnessCP(x,y) = 1.

If DisjointnessCP(x,y) = 0, then the type-Γ sub-
network has at least q−1

2
chains in the form of |00. The

middle nodes of all these chains are arranged into a
line, and the line is connected to the type-Λ subnet-
work via the (LΓ, LΛ) edge. It is impossible for the
farthest node on the line to receive AΓ’s token in the
CFlood protocol within q−1

2
= 60s rounds. Since the

CFlood protocol has an error probability at most 1
6
,

with probability at least 5
6
, the CFlood oracle proto-

col cannot terminate within 60s rounds. Hence Alice’s
claim is correct with probability at least 5

6
.

• From communication complexity to time complexity.
We have shown above that by simulating the CFlood
oracle protocol, Alice and Bob can solve any
DisjointnessCPn,q instance. During such simulation,
Alice (Bob) only needs to forward to the other party all
messages sent by AΓ and AΛ (BΓ and BΛ). By Corol-
lary 2, there exist x0 and y0 such that i)
DisjointnessCPn,q(x0,y0) = 1, and ii) Alice and Bob
incur Ω(n

q2
) − O(logn) bits over x0, y0, and aver-

age coin flips. Hence under such x0 and y0, at least
one node out of AΓ, AΛ, BΓ, and BΛ must have sent
Ω(n

q2
) − O(logn) bit. The dynamic network corre-

sponding to x0 and y0 has O(1) diameter. This means
that under this dynamic network and under the
CONGEST model, the oracle protocol must take
Ω(n

q2 log N
) rounds and also Ω(n

q2 log N
) flooding rounds

to terminate over average coin flips. Since the ora-
cle protocol promised to terminate within s flooding
rounds, we have s = Ω(n

q2 log N
) = Ω(N

s3 log N
), imply-

ing s = Ω(4
√
N/ logN).

Theorem 7. If the diameter D is unknown to the pro-
tocol beforehand, then a 1

18
-error Monte Carlo protocol for

Consensus must have a time complexity of Ω(4
√
N/ logN)

flooding rounds. Furthermore, this holds even if the protocol

knows an estimate N ′ for N that guarantees |N
′−N
N
| ≤ 1

3
.

Proof. See the full version [21] of this paper.

7. UPPER BOUND FOR Consensus AND
LeaderElect — EFFECT OF A GOOD
ESTIMATE OF N

Our lower bounds on Consensus and LeaderElect no
longer hold when N ′ promises to satisfy |N

′−N
N
| ≤ 1

3
− c, for

any positive constant c. For such N ′, this section presents
a novel LeaderElect protocol that does not require any
prior knowledge of D and yet has a time complexity of only
O(logN) flooding rounds.5 Since Consensus can be triv-
ially reduced to LeaderElect (see the full version [21] of
this paper), such an upper bound applies to Consensus as
well. The following provides the intuition for the protocol,
with the pseudo-code and the proofs deferred to the full
version [21] of this paper. At the high level, the protocol
proceeds in phases and keeps a guess D′ for D, with D′

doubling in each phase.

Majority counting. Our LeaderElect protocol needs
the following majority counting subroutine. Imagine that
each node holds some input value. The subroutine uses well-
known techniques [18] to count the total number of nodes
holding a given node’s input, and determines whether it is a
majority of all the nodes in the system, within O(D′ logN)
rounds. There may be many distinct input values in the
system, in which case the subroutine counts all these input
values in parallel, while still having O(logN) message sizes.
When D′ < D or when there are multiple distinct input
values, the subroutine may under-count. With high proba-
bility, the subroutine does not over-count. If D′ ≥ D and if
there is a unique input value in the system, the subroutine
will claim a majority with high probability. In other words,
the subroutine is rather conservative in claiming a majority,
and has one-sided error (with high probability). When de-
termining the majority, we will need to use the condition of

|N
′−N
N
| ≤ 1

3
− c.

Locking a majority. Given a D′, our LeaderElect pro-
tocol tries to elect the node with the largest id as the leader.
Conceptually, it does so by simply flooding the ids of all the
nodes for D′ rounds, with only the largest id seen so far
surviving in the flooding. If a node V finds that its id is the
largest id it has seen after D′ rounds, it tries to become a
leader. (There can be multiple such V ’s when D′ < D.) To
do so, V will try to lock at least a majority of all the nodes,
by flooding V ’s lock message for D′ rounds. Whoever re-
ceives this message will get locked, unless it has already been
locked by someone else. Next, V uses majority counting to
see whether it has locked a majority. If so, V declares itself
as the leader, and floods its id in future phases to notify all
other nodes of the leader’s id. Otherwise V floods an unlock
message in future phases to roll back.

Avoid excessive lock roll back. If there are many such
V ’s that fail to lock a majority, there will be many unlock
messages to be propagated, which would result in excessive
communication overhead and hence time complexity. Our
key technique to overcome this is to have a separate stage
before V actually acquires locks. Specifically, if V finds that

5Kuhn et al. [15] also notice that their reduction from
Hear-from-N-nodes to Consensus no longer works when

|N
′−N
N
| ≤ 1

3
− c, but their claim does not rule out the pos-

sibility of obtaining a good lower bound on Consensus via
other means.

its id is the largest id it has seen after the D′ rounds of initial
flooding, before V acquires locks, V uses majority counting
to check whether a majority of nodes have seen V ’s id. V will
only acquire the locks if it finds a majority. This separate
stage ensures (with high probability) that in a given phase,
there is only at most one node that tries to acquire locks
and hence may potentially need to unlock later.

It is worth noting that our protocol invokes majority count-
ing twice — once for counting the nodes seeing V ’s id, and
once for counting the nodes locked by V . These two invo-
cations cannot be replaced by one: The largest id seen by a
node may change from phase to phase. But once a node is
locked, it will remain locked in all future phases unless it is
explicitly unlocked.

Correctness. Intuitively, the correctness of the protocol
comes from two facts. First, once a node declares itself as
the leader, it must have locked a majority of the nodes (with
high probability). This prevents other nodes from becoming
leaders later. Second, once D′ reaches D, all unsuccessful
lockings done in previous phases will be fully rolled back,
and also all nodes will now see the largest id in the system.
The node with the largest id will then get the majority (with
high probability) in both steps, and become the leader. For
space limitations, we leave the pseudo-code and the proof of
the following theorem to the full version [21] of this paper:

Theorem 8. Let c ∈ (0, 1
3
] be any given constant and N ′

be any value such that |N
′−N
N
| ≤ 1

3
− c. Consider the Lead-

erElect problem where c and N ′ are known to the proto-
col. Then even if the diameter D is unknown to the protocol
beforehand, there exists a 1

N
-error Monte Carlo Leader-

Elect protocol with a time complexity of O(logN) flooding
rounds.

8. ACKNOWLEDGMENTS
We thank Kartik Sankaran and the SPAA anonymous

reviewers for their helpful feedbacks. This work is partly
supported by the research grant MOE2014-T2-2-030 from
Singapore Ministry of Education Academic Research Fund
Tier-2.

9. REFERENCES
[1] Y. Afek and D. Hendler. On the complexity of global

computation in the presence of link failures: the
general case. Distributed Computing, 8(3):115–120,
1995.

[2] C. Avin, M. Kouckỳ, and Z. Lotker. How to explore a
fast-changing world (cover time of a simple random
walk on evolving graphs). In ICALP, July 2008.

[3] K. Censor-Hillel, S. Gilbert, F. Kuhn, N. Lynch, and
C. Newport. Structuring unreliable radio networks. In
PODC, June 2011.

[4] B. Chen, H. Yu, Y. Zhao, and P. B. Gibbons. The cost
of fault tolerance in multi-party communication
complexity. Journal of the ACM, 61(3), May 2014.

[5] A. Cornejo, S. Gilbert, and C. Newport. Aggregation
in dynamic networks. In PODC, July 2012.

[6] A. Drucker, F. Kuhn, and R. Oshman. The
communication complexity of distributed task
allocation. In PODC, July 2012.

[7] C. Dutta, G. Pandurangan, R. Rajaraman, Z. Sun,
and E. Viola. On the complexity of information
spreading in dynamic networks. In SODA, Jan. 2013.

[8] E. Fusco and A. Pelc. Knowledge, level of symmetry,
and time of leader election. In ESA, Sept. 2012.

[9] M. Ghaffari, N. Lynch, and C. Newport. The cost of
radio network broadcast for different models of
unreliable links. In PODC, July 2013.

[10] O. Goldreich and L. Shrira. On the complexity of
computation in the presence of link failures: the case
of a ring. Distributed Computing, 5(3), 1991.

[11] B. Haeupler and D. Karger. Faster information
dissemination in dynamic networks via network
coding. In PODC, June 2011.

[12] B. Haeupler and F. Kuhn. Lower bounds on
information dissemination in dynamic networks. In
DISC, Oct. 2012.

[13] F. Kuhn, N. Lynch, C. Newport, R. Oshman, and
A. Richa. Broadcasting in unreliable radio networks.
In PODC, July 2010.

[14] F. Kuhn, N. Lynch, and R. Oshman. Distributed
computation in dynamic networks. In STOC, June
2010.

[15] F. Kuhn, Y. Moses, and R. Oshman. Coordinated
consensus in dynamic networks. In PODC, June 2011.

[16] F. Kuhn and R. Oshman. The complexity of data
aggregation in directed networks. In DISC, Sept. 2011.

[17] F. Kuhn and R. Oshman. Dynamic networks: models
and algorithms. SIGACT News, 42(1):82–96, Mar.
2011.

[18] D. Mosk-Aoyama and D. Shah. Fast distributed
algorithms for computing separable functions. IEEE
Transactions on Information Theory, 54(7):2997–3007,
2008.

[19] D. Peleg. Distributed computing: a locality-sensitive
approach. Society for Industrial and Applied
Mathematics, 1987.

[20] A. Sarma, S. Holzer, L. Kor, A. Korman,
D. Nanongkai, G. Pandurangan, D. Peleg, and
R. Wattenhofer. Distributed verification and hardness
of distributed approximation. In STOC, 2011.

[21] H. Yu, Y. Zhao, and I. Jahja. The Cost of Unknown
Diameter in Dynamic Networks. Technical Report
TRA4/16, School of Computing, National University
of Singapore, April 2016. Also available at
http://www.comp.nus.edu.sg/%7Eyuhf/TRA4-16.pdf.

[22] Y. Zhao, H. Yu, and B. Chen. Near-optimal
communication-time tradeoff in fault-tolerant
computation of aggregate functions. Distributed
Computing, 29(1):17–38, Feb 2016.

