
E�cient Numerical Error Bounding for Replicated

Network Services

Haifeng Yu
Computer Science Department

Duke University
Durham, NC 27708-0129, USA

yhf@cs.duke.edu

Amin Vahdat�

Computer Science Department
Duke University

Durham, NC 27708-0129, USA
vahdat@cs.duke.edu

Abstract

The goal of this work is to support replicated
network services that accept updates to nu-
merical records from multiple wide-area loca-
tions. Given the high overhead of maintaining
strong consistency, many replicated services
can tolerate divergence of their shared data, as
long as the numerical error is bounded. Tar-
get distributed services include replicated stock
quotes services, online auctions, distributed
sensor systems, wide-area resource accounting
and load balancing for replicated servers.

We present two algorithms to e�ciently bound
absolute error using only local information.
Split-Weight AE separately bounds increases
and decreases, while Compound-Weight AE
bounds them together. The two algorithms can
be combined to provide good performance and
low space overhead. Our Inductive RE al-
gorithm transforms relative error to absolute
error solely based on local knowledge, taking
advantage of the fact that the divergence was
properly bounded prior to each invocation of
the algorithm. We also discuss two optimiza-
tions that reduce the space and computational
overheads in the algorithms.

�This work is supported in part by the National Science
Foundation (EIA-99772879). Vahdat is also supported by an
NSF CAREER award (CCR-9984328).

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 26th VLDB Conference,

Cairo, Egypt, 2000.

1 Introduction

Many network services store and update numerical
records at multiple wide-area sites, which introduces
issues of consistency among replicas. Given the high
overhead of maintaining strong consistency, many of
these services can tolerate divergence from the consis-
tent data, as long as the divergence is bounded. Con-
sider the following replicated services:

Stock Quotes Services Users retrieve stock quotes
from replicated stock quotes servers. Each server
may also accept updates to the current quotes.
Users are concerned with the amount of \error" in
the quotes they observe. For example, a user may
prefer to see quotes within only �1 cent/share
(absolute error) or �1% (relative error) of the ac-
curate quotes.

Online Auctions Each online auction server main-
tains the highest current bid for a number of
items. A user accessing a replica desires guaran-
tees regarding the maximum di�erence between
the highest bid stored locally and the largest
global bid.

Distributed Sensor Systems The sensor system
takes the average temperature (pollution level,
etc.) of an area. Each sensor periodically takes a
sample at a �xed point in the area, and updates
the average value according to the new sample
value taken. User may retrieve the average value
at any sensor location. Although users can tol-
erate approximate value, they may still want an
upper bound on the \inaccuracy".

Wide-area Resource Accounting As we move to-
ward global distributed computing, one goal is to
account for aggregate consumed resources across
multiple providers on a per-user basis[9, 24, 25].
Given the scale of this problem, maintaining ac-
curate resource usage information will incur pro-
hibitive overhead. Allowing bounded error in us-
age information is a promising approach to solving
this problem.

Load Balancing for Replicated Servers For
many replicated services, client programs do not
directly choose which replica to contact. Instead,
a front end forwards requests to the server judged
to deliver the highest quality of service for that
request. A front end uses its forwarding history
to estimate the load of each server. When there
are multiple front ends[19, 24], each sees a subset
of the request stream, and uses this information
to update its estimated load information. Once
again, the load information is updated from mul-
tiple locations, and it is bene�cial to bound the
maximum error on load information observed by
each front end.

One approach for guaranteeing accurate numerical
information is to utilize standard techniques for main-
taining strong consistency across wide-area networks.
However, the communication costs and latency asso-
ciated with such techniques often have prohibitively
high overhead. We observe that many replicated ser-
vices, including the ones described above, can tolerate
some level of inconsistency in exchange for improved
performance and availability, as long as they are pro-
vided guarantees regarding the maximum allowable er-
ror. In this context, the goal of this work is to develop
techniques to e�ciently bound numerical inaccuracy
by reducing the amount of required wide-area commu-
nication.

Despite the importance of bounding numerical er-
ror for replicated network services, this topic has not
been well studied in the literature. In the context of
data caching, [3] proposes the concept of bounded nu-
merical error. However, the authors do not general-
ize the concept to replicated databases. E�orts ex-
ploiting weak consistency [16, 17, 18, 21, 22, 23] con-
centrate on aspects other than numerical error, such
as the number of conicting transactions. Integrity
constraint management algorithms[4, 5, 6, 7, 13, 14]
for distributed databases are related to error bound-
ing but are typically ine�cient when applied to the
special case of bounding numerical error. The demar-
cation protocol[4] allows easy maintenance of linear
inequalities for distributed databases. Error bounding
is closely related to enforcing linear inequalities but
has three important properties not present in general
linear inequalities: i) The copies of a data item are
inter-related, ii) servers have approximate information
about what writes other servers have seen, iii) during
write propagation, writes on all data items are prop-
agated. Because the demarcation protocol addresses
a more general problem, it is unable to exploit these
properties, resulting in signi�cantly higher communi-
cation and space overhead.

In this paper, we present algorithms to e�ciently
bound numerical error for replicated network ser-
vices. They are developed in the TACT[26, 27]
project, which is a toolkit for building replicated In-

ternet services. Two algorithms Split-Weight AE and
Compound-Weight AE are proposed to bound abso-
lute error. They bound error by limiting the \total
weighted writes" accepted by one server but not seen
by others. All decisions are based on local information
and the algorithms do not incur overhead to acquire
global knowledge. Split-Weight AE makes conserva-
tive decisions but is amenable to space optimizations,
while Compound-Weight AE makes optimal decisions
at the cost of higher space overhead. Our Inductive RE
bounds relative error by transforming it into absolute
error and then using Split-Weight AE or Compound-
Weight AE to bound the absolute error. By taking
advantage of the fact that the divergence was properly
bounded prior to each invocation of the algorithm, In-
ductive RE is able to perform the transformation solely
based on local knowledge. We also study the perfor-
mance of our algorithms through both analysis and
simulation.

In summary, this paper makes the following contri-
butions:

� We describe the importance of bounding numer-
ical error to support replicated network services.

� We propose practical algorithms to bound abso-
lute error and relative error using only local in-
formation, without incurring the overhead of ob-
taining global knowledge.

� We explore two optimizations that reduce the
space and computational overheads in the algo-
rithms.

The next section describes our replicated database
model. We present our error bounding algorithms in
Section 3. Section 4 discusses two important optimiza-
tions to reduce space and computational overhead for
our algorithms. In Section 5, we study the perfor-
mance of the algorithms. Related work is described in
Section 6. In Section 7, we present our conclusions.

2 System Model

The database maintaining the data shared by the net-
work servers is replicated across n servers, server1,
server2, . . . , servern. The replicated database is com-
posed of multiple data items. Each data item has a
numerical value for which the service desires to bound
error. The allowed error for a data item is indepen-
dent of other data items. We �rst focus on the case of
a single data item and then discuss scalability issues
for multiple data items in later sections.

Every server can accept reads (inquires) and writes
(updates) from users. Reads return the current value
of the data item on the server. A write W increases
or decreases the value of a data item by the weight
(W:weight) of the write. W:weight is positive for in-
creases and negative for decreases. While beyond the
scope of this paper, our algorithms can be extended to

transactions that consist of multiple read/write oper-
ations in a straightforward manner.

The server that accepts a write W from a client is
the originating server of the write, and is denoted by
W:server. A server updates other servers by propa-
gating writes. The database image itself is never com-
municated to other servers. Upon accepting a write, a
server does not have to update other servers immedi-
ately and divergence among replicas is allowed. Writes
with the same originating server are always propa-
gated according to the order they are accepted by that
server. Write propagation can be done in the form
of gossip messages[18], anti-entropy sessions[10, 20],
broadcast or even unicast. To reduce communication
overhead, some write propagation methods allow mul-
tiple writes to be merged into one write during prop-
agation. Our algorithms are orthogonal to the write
propagation method used by the database, although
the freshness of views (de�ned later in this section)
may be a�ected.

A server may propagate writes to other servers at
any time, and such write propagation is called volun-
tary write propagation or background write propaga-
tion. The error bounding algorithms may require a
server to propagate writes, which is called compulsory
write propagation. Compulsory write propagation is
necessary for the correctness of the algorithms, while
voluntary write propagation only a�ects performance.

Each server maintains a write log, which is an or-
dered list of the writes the server accepts from clients
or sees from other servers. Write log recycling can be
done using various techniques[10, 18, 20]. We de�ne
the functions twn(i; j) and twp(i; j) as:

twn(i; j) =
X

fW:weight j W:weight < 0 and W:server

= serverj and W 2 write log of serverig

twp(i; j) =
X

fW:weight j W:weight > 0 and W:server

= serverj and W 2 write log of serverig

Intuitively, twn(i; j) is the total negative weight of
the writes serveri sees originated from serverj , while
twp(i; j) is the total positive weight. Distinguishing
negative weight and positive weight is necessary be-
cause we allow weight on di�erent data items to be
totaled in our optimizations. Thus, negative weight
on one data item should not o�set the positive weight
on another data item (see Sections 4.1 and 4.2).

We use Vi to denote the value of the data item
on serveri, and Vinit to denote its initial (consistent)
value. We use Vfinal to denote the value of the data
item if all writes accepted by the system by time t has
been applied. Note that as new writes are injected
into the system, Vfinal evolves. The following equali-
ties hold for Vi, Vinit and Vfinal:

Vi = Vinit +

nX

k=1

(twn(i; k) + twp(i; k))

Vfinal = Vinit +

nX

k=1

(twn(k; k) + twp(k; k))

For serveri, a data item's absolute error(AE) is
bounded within [�i; �i] (�i � 0 and �i � 0) if and
only if at all times, the following inequality holds:

�i � Vfinal � Vi � �i (1)

Similarly, we say the relative error(RE) is bounded
within [i; �i] (i � 0 and 0 � �i � 1) if and only if:

i � 1�
Vi

Vfinal
� �i (2)

For relative error, we assume Vi > 0; 1 � i � n.
Each server in the system has approximate knowl-

edge of what writes other servers have seen. We say
that each server has its view of twn(i; j) and twp(i; j),
for 1 � i � n; 1 � j � n. The views are either updated
during write propagation or updated with explicit view
update messages. The actual view update fashion
and view freshness depend on the write propagation
method. For example, if we use unicast, then dur-
ing each write propagation, the two parties can inform
each other of the writes they see. For anti-entropy
sessions, more e�cient view update mechanism can be
used and details can be found in [10]. The correctness
of our algorithms does not depend on the freshness
of the views, but performance is a�ected. We denote
serverk 's view of twn(i; j) and twp(i; j) as twnk(i; j)
and twpk(i; j). Intuitively, twnk(i; j) is the total neg-
ative weight of the writes that serverk believes that
serveri sees from serverj . During a view advance,
serverk updates twnk(i; j) and twpk(i; j). Views are
conservative in that serverk will never assume that
serveri sees a write that serveri actually does not see.

3 Bounding Numerical Error Using
Local Information

This section describes two di�erent algorithms for
bounding AE and one algorithm for bounding RE. The
idea of the AE bounding algorithms is to bound the to-
tal weight of writes accepted by one server but not seen
by other servers. The �rst algorithm, Split-Weight AE,
bounds positive weight and negative weight separately.
The second algorithm, Compound-Weight AE, keeps
track of the possible range of values on other servers
and allows negative weight and positive weight to o�-
set. The basic idea of our relative error bounding algo-
rithm, Inductive RE, is to transform the relative error
into absolute error. The decisions made in the algo-
rithms are all based only on local information, with-
out incurring the overhead of obtaining global knowl-
edge. All three algorithms require cooperation of other
servers in the system to enforce local bounds. For each
algorithm, we discuss how serverj acts to bound the
error for a single data item on serveri. Due to space
limitations, correctness proofs for the three algorithms
are omitted, but can be found in [28].

3.1 Split-Weight AE

In this algorithm, each serverj maintains two local
variables x and y for each serveri; i 6= j. They are used
to record the total negative and positive weight of the
writes accepted by serverj but not seen by serveri.
serverj uses its view to compute x and y. However,
since the view is conservative, x and y are also conser-
vative.

Both variables x and y are initially set to zero and
are updated in the following fashion:

1. When serverj accepts a new write W , if
W:weight < 0, x = x + W:weight, else y =
y +W:weight.

2. When serverj advances its view, if twnj(i; j) and
twpj(i; j) are updated to twn0

j(i; j) and twp
0

j(i; j)

respectively, then x = x� (twn0

j(i; j)� twnj(i; j))

and y = y � (twp0

j(i; j) � twpj(i; j)). This sub-
tracts weight of the newly propagated writes from
x and y.

When serverj receives a write W from a client, it
checks the conditions:

x+W:weight � �i=(n� 1); if W:weight < 0 (3)

y +W:weight � �i=(n� 1); if W:weight > 0 (4)

If the conditions do not hold, serverj must advance
its view for serveri (potentially propagating writes to
serveri) before the new write may return.

Split-Weight AE is pessimistic, in the sense that
serverj may propagate writes to serveri that are un-
necessary for bounding the error. For example, the
algorithm does not consider the case where negative
weight and positive weight may o�set each other. In
our simulation study, we will quantify how pessimistic
Split-Weight AE is under di�erent workloads. How-
ever, this simple design enables several optimizations
not applicable to Compound-Weight AE (see Section
3.2). For example, in order to optimize the space over-
head, several data items may share the same x and y
variables (see section 4.1).

3.2 Compound-Weight AE

In Compound-Weight AE, each serverj maintains
three local variables z, min and max for each
serveri; i 6= j. Intuitively, z is the total weight of the
writes accepted by serverj but not seen by serveri in
serverj 's view. However, since a view can be stale,
serveri may actually see more writes than serverj is
aware of. So we use min/max to record the mini-
mum/maximum possible total weight of those writes
that serveri may see but are not in serverj 's view
twnj(i; j) or twpj(i; j).

All variables z, min and max are initially set to
zero and are updated in the following fashion:

1. When serverj accepts a new write W , z = z +
W:weight. If z < min, then min = z. If z >

z = −3; min = −3; max = 4

z = −6; min = −6; max = 1

1 (server : 5)1 (server : 1)1 (server : −7)1

Before view advance −− The view covers no writes:

After view advance −− The view includes the first two writes:

1(server : −2) 1 (server : 1)1 1(server : 5) (server : −7)

(server : −2)

Figure 1: View Advance in Compound-Weight AE

max, then max = z. Note that since we assume
writes from the same originating server are always
propagated and applied according to the accept
order, min and max are properly maintained in
this way.

2. When serverj advances its view for serveri,
serverj �rst resets all three variables. Next for
each writeW in serverj 's write log, ifW:server =
serverj and in serverj 's new view, serveri has
not seenW , then z, min and max are updated as
ifW were newly accepted. In this way, z,min and
max are re-established for this new view. Rescan-
ning the write log whenever serverj advances its
view appears redundant, but is actually necessary
for correctness.

Figure 1 illustrates how the three variables on
server1 are updated during a view advance. Each
write is denoted by the pair (W:server: W:weight).
For simplicity, only writes with W:server = server1
are depicted in the �gure. Before the view advance,
server1 is not aware of any writes seen by another
server, say server2. After the view advance, server1
knows that server2 has seen writes (server1: �2) and
(server1: 5). Besides how to update z, min, and max,
Figure 1 also explains why rescanning the write log
is necessary. Suppose we want to ensure condition
z + W:weight � min � 10 (see inequalities (5) and
(6)). Before the view advance, min is �3. If we con-
tinue to use this min after the view advance, the algo-
rithm may make incorrect decisions, since min should
actually be �6, which makes the condition tighter.

When serverj receives a write W from a client, it
checks the following conditions:

z +W:weight�max � �i=(n� 1) (5)

z +W:weight�min � �i=(n� 1) (6)

If the conditions do not hold, serverj must advance
its view for serveri (potentially propagating writes to
serveri) before the new write may return. According
to these two conditions, it is possible that serverj may
need to propagate writes to serveri when its view for
serveri advances. To avoid this, serverj can be lazy
in advancing its view for serveri. That is, the need
for view advance is not checked until the above two

conditions are violated. At that time, serverj can deal
with view advance and potentially propagate writes to
serveri.

As opposed to Split-Weight AE, Compound-Weight
AE is optimal given only local information. In other
words,

�i=(n � 1) �

(twn(j; j) + twp(j; j))� (twn(i; j) + twp(i; j))

� �i=(n� 1)

holds if and only if conditions (5) and (6) hold. Please
see [28] for the proof.

3.3 Inductive RE

Inductive RE transforms relative error to absolute er-
ror using only local information. Recall from de�nition
(2) that relative error is bounded within [i; �i] if an
only if:

i � 1�
Vi

Vfinal
� �i

This de�nition requires that Vfinal be a parameter
of the transformation. However, knowing Vfinal ac-
curately itself requires strong consistency. Since our
goal is to avoid the overhead of strong consistency, the
system must be able to bound relative error without
knowing Vfinal.

One naive way to overcome this is to transform def-
inition (2) to:

i=(1 � i)� Vi � Vfinal � Vi � �i=(1� �i)� Vi

By setting:

�i = i=(1� i)� Vi

�i = �i=(1� �i)� Vi

we can apply either of the previous AE algorithms to
enforce the inequality. However, since Vi changes over
time, serveri must constantly update �i and �i and
inform other servers in the system of this change. This
requires that a consensus algorithm be run among all
servers whenever Vi decreases. As a result, the perfor-
mance could degrade signi�cantly.

Inductive RE is based on the observation that for
any j, Vj was properly bounded before the invocation
of the algorithm and is an approximation of Vfinal. So
serverj may use Vj as an approximate norm to bound
i and �i. Transforming the de�nition of RE, we have
the following two inequalities:

Vfinal � Vi � i � Vfinal (7)

Vfinal � Vi � �i � Vfinal (8)

On the other hand, on serverj , we know that j � 1�
Vj=Vfinal, so Vfinal � Vj=(1� j). Figure 2 illustrates
the relationship between Vj and Vfinal.

Thus the following two inequalities are su�cient
conditions for inequality (7) and (8):

Vfinal � Vi � i � Vj=(1� j)

Vfinal � Vi � �i � Vj=(1� j)

Figure 2: How to Use Vj as an Approximate Norm to
Bound RE

The right-hand side expressions can be evaluated using
only local information. So in order to bound relative
error for serveri, serverj only needs to apply Split-
Weight AE or Compound-Weight AE and use:

�i = i � Vj=(1� j)

�i = �i � Vj=(1� j)

Note that since the computed �i and �i change with
Vj , whenever Vj changes, the limits should be recom-
puted and re-checked. However, no consensus algo-
rithms are necessary because Vj is known locally.

4 Optimizing for Scalability

With the algorithms described in the last section, nu-
merical error can be e�ciently bounded for small scale
replicated network services. However, since we are in-
terested in extensive replication, in this section we dis-
cuss two optimizations that reduce the space and com-
putational overheads in the algorithms.

4.1 Reducing Space Overhead

We have discussed how to bound AE and RE for a
single data item. The algorithms incur a per data
item space overhead of O(n), where n is the number
of servers. If we simply use multiple instances of the al-
gorithms, the size of the data structure maintained by
the algorithms can be n times the size of the database
itself in the worst case. If a database maintains tens
of thousands of data items, this high space overhead
can be prohibitive.

To reduce space overhead, we assume that for all
data items, serveri has the same �i and �i (or i
and �i), otherwise the space needed simply for storing
�i and �i will grow linearly with the number of data
items. The application may still use several di�erent
�is(�is) for di�erent data items by using multiple in-
stances of our algorithm. We reduce space overhead
by exploiting the fact that during write propagation,
writes to all data items on a server are propagated to
another server. So we only need to maintain informa-
tion for those data items accessed between two write
propagations. We also take advantage of the locality
among the writes accepted by a server. For \hot" data
items, we maintain accurate information needed by the
algorithms. For data items seldom accessed, we allow
them to share the same data structure and maintain
conservative information.

We use a hashtable to store the variables needed by
our algorithms. Each server maintains one hashtable
for every other server in the system. The hashtables
are used to maintain the information on \hot" data
items. Whenever serverj receives a write on data item
D, it uses D as a key to create or update variables in
the hashtables. The total space used by a hashtable
is bounded. In the case where a hashtable becomes
full, a shared entry is created for all other data items
without a hashtable entry. On each write propagation,
the hashtable and the shared entry corresponding to
the receiving server are cleared and the space is freed.

Care must be taken when maintaining the shared
entry. For Split-Weight AE, the shared entry sim-
ply consists of two variables x and y, which are up-
dated in the same way as normal hashtable entries.
For Compound-Weight AE, it is di�cult to maintain
a shared entry for multiple data items, so we use
Split-Weight AE for the shared entry and Compound-
Weight AE for hashtable entries. In Inductive RE, the
shared entry must also record the smallest Vj of the
data items using that entry, so that the computed �i

and �i values are tight. Using a shared entry may
result in conservative behavior, since weight accumu-
lated on multiple items is coalesced to a single item.
However, a server can improve performance at the cost
of larger hashtables and higher space overhead.

4.2 Reducing Computational Overhead

While less of a concern than memory overhead, in this
section we describe techniques for reducing our algo-
rithms' computational overhead. In our algorithms, a
server needs to update one hashtable for every other
server in the system when accepting a write. These
updates are on the critical path for accepting writes.
Thus, if there are a large number of servers, the over-
head of updating n hashtables on each write can be
high. In this section, we discuss how to reduce this
computational overhead.

The �rst possible optimization is to combine the
hashtables for multiple servers. We can group together
servers with similar bounds, and enforce the tightest
bounds for a group of servers. The servers in the group
can then share a single hashtable. A server can trade
space for performance by using smaller groups. Note
that this optimization also reduces space overhead.

Another optimization is to use a cache, so that in
most cases, we only need to update the cache rather
than n hashtables. We only discuss how to use a cache
for bounding error with Split-Weight AE, because the
data structures in Compound-Weight AE make it dif-
�cult to utilize a cache.

Table 1 describes the information maintained by
each cache entry. To create a cache entry for data
item D, suppose xi and yi are the values in serveri's
hashtable entry for D, we scan all hashtables, and set:

item database item

x total negative weight of newly accepted
writes since entry creation

y total positive weight of newly accepted
writes since entry creation

limitx the limit for x
limity the limit for y
serverx the server whose limit we use for this

entry's limitx
servery the server whose limit we use for this

entry's limity

Table 1: Information Maintained by a Cache Entry
for Reducing Computational Overhead in Split-Weight
AE

limitx = maxf�i=(n� 1)� xi j 1 � i � n i 6= jg

limity = minf�i=(n� 1)� yi j 1 � i � n i 6= jg

The variables x and y in the cache entry are set to zero.
On each cache hit, we check x +W:weight � limitx
(if W:weight < 0) or y + W:weight � limity (if
W:weight > 0). As long as the condition holds,
we only need to update x or y in the cache entry,
rather than updating all hashtables. If the condition
does not hold, we writeback the cache entry to the
hashtables, and potentially perform compulsory write
propagation. After that, a new cache entry can be
established for the data item with new limitx and
limity values. The cache must be ushed whenever
serveri; 1 � i � n changes �i or �i. We consider this
an infrequent operation, so the performance penalty
will not be excessive.

A further optimization is to use a linked list for
each cache entry. The �rst node in the list has the
tightest limitx and limity, the second node has the
second tightest values and so on. When x or y reaches
limitx or limity, we remove the �rst node and update
the hashtable corresponding to serverx and servery.
In this way, we can avoid scanning all hashtables to
�nd the next tightest limits. However, after updating
the hashtables for serverx and servery, we still need
to go through the linked list to see whether serverx or
servery now has tighter limits than nodes in the list.

A cache \snapshot" must be made on write propa-
gation. This snapshot is used in the future to create a
\di�" when a cache entry is written back. The x and
y in the snapshot are subtracted from the cache entry
being written back, before the cache entry is added to
the hashtable entry.

Applying the cache idea to bounding relative error
is subtle. Since the computed �i and �i changes with
Vj , in order to choose safe limitx and limity for all
servers, we must decouple the limits from Vj . Recall
the conditions we want to enforce are:

xi � i=(1� j)� Vj = si � Vj (9)

yi � �i=(1� j)� Vj = ti � Vj (10)

Notation Meaning Case 1 Case 2

n number of servers 10 20

tapply CPU time to apply a write to database 3ms 3ms

tcheck time to check limits and update n hashtables in error bounding algorithms 2ms 4ms

tdelay round-trip message delay in write propagation 200ms 500ms

tsetup CPU time on one replica for TCP connection setup 10ms 10ms

tsend CPU time to send one write 1ms 1ms
trecv CPU time to receive one write 1ms 1ms

E(Li) expectation of Li N/A N/A

E(Qi) expectation of Qi 100ms 100ms

Table 2: Symbols and Default Values Used in Performance Analysis

Let the value of xi, yi and Vj be x
c
i , y

c
i and V

c
j , respec-

tively, at the time when the cache entry is established.
We have Vj = (V c

j � xci � yci) + xi + yi, 1 � i � n and

i 6= j. By using this equation to substitute Vj in (9)
and (10), we have:

xi � si � ((V c
j � xci � yci) + xi + yi)

yi � ti � ((V c
j � xci � yci) + xi + yi)

Next, by solving these two inequalities and choosing a
rectangular solution area, we have su�cient conditions
for (9) and (10) as:

xi � si=(1� si)� (V c
j � xci � yci)

yi � ti=((1� ti)(1� si))� (V c
j � xci � yci)

Using these two conditions, we can now set:

limitx = maxfsi=(1� si)� (V c
j � xci � yci)� xci j

1 � i � n and i 6= jg

limity = minfti=((1� ti)(1� si))� (V c
j � xci � yci)

�yci j 1 � i � n and i 6= jg

V c
j only changes when serverj accepts writes from

other servers. In that case, the cache should be
ushed.

5 Performance Study

In this section, we �rst build an analytical model to
study the performance of the numerical error bound-
ing algorithms. Next through simulation, we gain fur-
ther understanding on the applicability of the model.
We have also implemented a TACT prototype using
the algorithms and studied the performance of three
applications (Airline Reservation, Bulletin Board and
Load Distribution) running across the wide-area net-
work on top of the prototype. Detailed performance
results for these applications are available in [27].

5.1 Performance Analysis

We compare our approach to a conventional one-phase
protocol in terms of throughput and latency. The one-
phase protocol is a variant of a read one, write all quo-
rum system. It achieves strong consistency for most of
our target applications by propagating a new write to

all other servers before the write may return. For other
applications, writes are more complicated than simply
increasing or decreasing a numerical value, for exam-
ple, a write may check the value and decide whether to
continue updating or not. In that case, a stronger two-
phase update protocol is needed to achieve strong con-
sistency. However, comparing our algorithms against
the better performing one-phase protocol understates
the potential performance bene�ts of our algorithms.

Our algorithms and the one-phase protocol treat
reads in the same way, so we are mainly interested
in the performance for writes and we only consider
write workloads. We assume the database consists of a
single data item. To simplify discussion, all servers are
assumed to have the same error bounds, i.e. �i and �i.
We also assume that the workload is evenly distributed
among the n servers. We do not consider background
write propagation or indirect view advance, both of
which will improve the performance of our algorithms.

We �rst describe the terms and notations used in
our analysis, as summarized in Table 2. We consider
two sets of parameters. Case 1 corresponds to a repli-
cated network service distributed across the United
States, while Case 2 models an international replicated
network service. An epoch on serveri for serverj is
the period on serveri between two write propagations
to serverj . We de�ne the length of an epoch as the
number of writes accepted by a server directly from
clients during that epoch.

The performance of the algorithms is dependent on
the characteristics of the workload, such as the weight
of each write and the inter-arrival time between writes.
To make our analysis generally applicable, we abstract
the workload characteristics with two high-level ran-
dom variables Li and Qi, where Li is the length of
an epoch on serveri and Qi is the queuing delay for
a write accepted by serveri before the write gets pro-
cessed by serveri. Our goal is to cover the workload
spectrum by choosing di�erent distributions for Li and
Qi. To gain understanding of what E(Li) and E(Qi)
we can expect in real world cases, we perform simula-
tions for several workloads (see Section 5.2).

We now present the analytical throughput of our
algorithms. A detailed analysis is available in [28]. If

40
60
80
100
120
140
160
180
200

1 1.5 2 2.5 3 3.5 4 4.5 5

Throughput(writes/sec) in Case 1 (Domestic)

E(Li)

No WM
WM
SC

40
60
80
100
120
140
160
180
200

1 1.5 2 2.5 3 3.5 4 4.5 5

Throughput(writes/sec) in Case 2 (International)

E(Li)

No WM
WM
SC

Figure 3: Throughput of Error Bounding Algorithms
vs. Strong Consistency Protocol

writes cannot be merged, we have:

Throughput = n=(tcheck + ntapply + 2(n� 1)tsetup=E(Li)

+(n� 1)tsend + (n� 1)trecv)

As mentioned in Section 2, in many cases, it is possible
to merge multiple writes into one write in order to save
communication overhead. If writes can be merged and
in the extreme case where all writes accepted by a
server during an epoch can be merged together:

Throughput = n�E(Li)=(E(Li)(tcheck + tapply) +

2(n � 1)tsetup + (n� 1)(tsend + trecv + tapply))

The throughput of the conventional one-phase proto-
col is:

Throughput = n=(ntapply + 2(n� 1)tsetup +

(n� 1)tsend + (n� 1)trecv)

Figure 3 shows the throughput of our algorithms ver-
sus the one-phase protocol as a function of E(Li).
The key \No WM" stands for error bounding algo-
rithms without write merging, \WM" stands for error
bounding algorithms with write merging, and \SC"
stands for the strong consistency achieved by the one-
phase protocol. We plot the graphs for E(Li) 2
[1; 5]. By de�nition, E(Li) is greater than 1. Since
our algorithms perform better as E(Li) increases,
the graphs are conservative by not considering larger
E(Li), which we expect to be common for many appli-
cations. As expected, the error bounding algorithms
have considerably higher throughput than a strong

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 1.5 2 2.5 3 3.5 4 4.5 5

Latency(sec) in Case 1 (Domestic)

E(Li)

No WM
WM
SC

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 1.5 2 2.5 3 3.5 4 4.5 5

Latency(sec) in Case 2 (International)

E(Li)

No WM
WM
SC

Figure 4: Latency of Error Bounding Algorithms vs.
Strong Consistency Protocol

consistency protocol by reducing wide-area communi-
cation. As E(Li) increases, the throughput of the error
bounding algorithms also increases, and in the write
merging case, the increase is almost linear. The per-
formance improvement, however, does not come with-
out cost. Larger E(Li) can sometimes only be gained
by tolerating larger numerical error (see Section 5.2).
Thus, the gains available to a network service depends
upon the magnitude of the numerical error it is willing
to tolerate.

Having compared the throughput, we now discuss
the latency of the system. For numerical error bound-
ing algorithms, the latency with no write merging is:

Latency = E(Qi) + tcheck + tapply + (n� 1)tsend +

((n� 1)tsetup + tdelay)=E(Li)

Again, if we consider the possibility of writes merg-
ing and in the extreme case where all writes can be
merged, the latency will be:

Latency = E(Qi) + tcheck + tapply + ((n� 1)tsetup +

(n� 1)tsend + tdelay)=E(Li)

The average latency in the one-phase protocol is:

Latency = E(Qi) + (n� 1)tsetup + (n� 1)tsend +

tdelay + tapply

Figure 4 shows the latency of the error bounding al-
gorithms versus the one-phase protocol as a function of
E(Li). The keys have the same meaning as in Figure
3. We can see that the error bounding algorithms have

1
1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

0 1 2 3 4 5

E(Li)

�i=(n� 1)

Split-Weight

3333
33
3
3

3

3

3

33

Compound-Weight

+++++
++

+

+

+

+

+

+

Figure 5: Split-Weight AE vs. Compound-Weight AE
(Weight � U(-1, 3))

0
2
4
6
8
10
12
14
16

0 1 2 3 4 5

E(Li)

�i=(n� 1)

Split-Weight

3333333
3

3
3

3

3

3

Compound-Weight

++++++++

+

+

+

+
+

Figure 6: Split-Weight AE vs. Compound-Weight AE
(Weight � U(-2, 2))

smaller latency than the strong consistency protocol.
Furthermore, the latency in our algorithms decreases
rapidly as E(Li) increases. However, as with through-
put, the performance improvement can come at the
cost of data accuracy.

5.2 Simulation Results

In this section, we use simulation to determine a range
of typical values for E(Li) based on the distribution
of the weight of individual writes. Although numer-
ous factors a�ect E(Qi), it is determined by E(Li)
to a large extent. Thus we believe studying E(Li)
can give us insight into E(Qi) as well. The simula-
tion results on E(Li) also quantify the performance
di�erence between Split-Weight AE and Compound-
Weight AE. As mentioned earlier, the latter is optimal
while the former is better suited for space and compu-
tational optimizations. The resulting di�erent E(Li)
and E(Qi) values for the two algorithms directly a�ect
system performance.

E(Li) is uniquely determined by the distribution of
the weight of writes. We consider two di�erent distri-
butions for the weight: uniform distribution and nor-
mal distribution. The weight in the �rst workload is
uniformly distributed within [�1; 3], while those in the
second are uniformly distributed within [�2; 2]. We
denote the distributions by U(�1; 3) and U(�2; 2), re-

1
1.5
2

2.5
3

3.5
4

4.5
5

5.5

0 1 2 3 4 5

E(Li)

�i=(n� 1)

Split-Weight

33333
33
3

3

3

3

3

3

Compound-Weight

+++++
+++

+

+

+

+
+

Figure 7: Split-Weight AE vs. Compound-Weight AE
(Weight � N(1, 2))

1

2

3

4

5

6

7

0 1 2 3 4 5

E(Li)

�i=(n� 1)

Split-Weight

33333
33
3

3

3

3

3

3

Compound-Weight

++++++
++

+

+

+

+

+

Figure 8: Split-Weight AE vs. Compound-Weight AE
(Weight � N(0, 2))

spectively. For normal distribution, we consider weight
conforming to N(1; 2) and N(0; 2). Each workload
consists of one million writes and we measure the av-
erage epoch length as a function of �i=(n � 1). The
bound �i is set to ��i in our experiments. Figures 5,
6, 7 and 8 summarize the simulation results.

The �gures show that in most cases, E(Li) increases
roughly linearly with �i=(n � 1). For Compound-
Weight AE in Figures 6 and 8, E(Li) increases faster
than linearly. As we expect, E(Li) in Compound-
Weight AE is always bigger than that in Split-Weight
AE. The conservativeness of Split-Weight AE is quan-
ti�ed here by the di�erence between the two curves
in each �gure. The di�erence is not so obvious when
the distribution is biased toward positive weight and
becomes clearer when the distribution is symmetric.
Note that we do not consider space overhead in the
simulations and that the better performance of Split-
Weight AE comes at the cost of increased space over-
head.

6 Related Work

Alonso et. al.[3] propose four coherency conditions
in the context of \quasi-copy" caching. One of the
four conditions is \arithmetic condition," which spec-
i�es the allowed numerical error. Since in quasi-copy
caching only the master database may accept updates,

maintaining arithmetic condition is a trivial problem.
Relative to this e�ort, we de�ne numerical error for
replicated databases and discuss algorithms for bound-
ing the error when updates are accepted by multiple
replicas.

Bounding numerical error in a replicated database
is closely related to maintaining integrity constraints
in distributed databases. In [7], strong theoretical con-
clusions are made on how to decompose an arbitrary
global constraint into a number of local constraints
and communication constraints. The conclusions form
the basis of the demarcation protocol[4], which applies
a number of optimizations to the special case of lin-
ear arithmetic inequalities. Bounding numerical error
is intrinsically enforcing an inequality. However, we
exploit three special properties in this problem, which
makes our algorithms practical and e�cient for nu-
merical error bounding. First, in the error bounding
problem, the copies of a data item are inter-related.
For example, if we want to bound the AE on server1,
it is not necessary to limit V1. However, the demarca-
tion protocol will have to put a limit on every variable
present in the inequality. Second, in our algorithms,
view advance is automatically incorporated and there
is no need to explicitly re-adjust limits. On the other
hand, the demarcation protocol does not exploit the
fact that servers may have knowledge of what writes
other servers have seen and limit re-adjustments are
always done explicitly. Also, because the demarca-
tion protocol cannot exploit the fact that copies are
brought to consistency through write propagation, it
is di�cult to design e�cient limit re-adjustment poli-
cies for it. The third property we utilize is that dur-
ing a write propagation, all writes are propagated and
all limits can be reset. This allows us to optimize
the space overhead using hashtables. The demarca-
tion protocol incurs O(n) space overhead for each data
item, where n is the total number of servers, limiting
scalability. A direct performance comparison between
our algorithms and the demarcation protocol would be
di�cult. Using the general limit re-negotiation policies
discussed in [4] would result in poor performance and
would be unfair to the demarcation protocol, while
designing special policies for bounding numerical er-
ror is essentially as hard as designing numerical error
bounding algorithms from scratch.

Gupta et.al. [13] describe an algorithm to verify
a global constraint using only local information. In
the case of a tuple insertion, the algorithm uses other
\covering tuples" already in the tuple space to prove
that the constraint is not a�ected by the new tuple.
The technique cannot be applied to bounding numer-
ical error, since no \covering tuple" can be obtained
when users update a numerical data item.

Maintenance of materialized views[1, 8, 12] is closely
related to our work. In fact, if the views are approxi-
mations of numerical base data, view maintenance can

be an application of our error bounding algorithms.
Various view maintenance algorithms have been pro-
posed, see [12] for a survey on view maintenance. Rela-
tive to our work, view maintenance algorithms usually
assume that only the base database can accept up-
dates. In this aspect, our algorithms are more general
than view maintenance algorithms.

In Section 4.2, we discussed how to e�ciently check
n conditions given a new write. This is a special case
of how to e�ciently check local integrity constraints
given an update to the database. The general prob-
lem has been well studied[5, 6, 14]. However, most of
the studies[6, 14] concentrate on how to �lter those
local constraints that are una�ected by the update.
Others[5] only consider a particular class of local con-
straints and updates. Thus, none of the techniques
is applicable to our case. The n conditions we in-
tend to check are all linear conditions, making related
techniques[2, 15, 11] developed in computation geom-
etry also applicable. However, in our case, the linear
conditions change frequently, making the cost of re-
constructing the data structures [2, 11] outweigh the
bene�ts.

7 Conclusion

In this paper, we argue for e�ciently bounding numer-
ical error to support replicated network services. Two
algorithms, Split-Weight AE and Compound-Weight
AE, are proposed to bound absolute error. They can
be combined to achieve good performance and low
space overhead. Inductive RE bounds relative error
by transforming it into absolute error and applying
Split-Weight/Compound-Weight AE. Exploiting the
fact that Vj is an approximation of Vfinal, we are able
to perform the transformation based on local informa-
tion. We propose two optimizations to improve the
scalability of the error bounding algorithms. Through
performance analysis and simulation, we show that a
replicated network service using our error bounding al-
gorithms has superior performance in terms of latency
and throughput compared to a network service using
a traditional strong consistency protocol.

8 Acknowledgments

We thank Misha Rabinovich and the anonymous ref-
erees for their careful reviews of this paper.

References

[1] Brad Adelberg, Ben Kao, and Hector Garcia-Molina.
Database Support for E�cient Maintaining Derived
Data. In International Conference on Extending
Database Technology, 1996.

[2] Pankaj K. Agarwal, Lars Arge, Je� Erickson Paolo G.
Fanciosa, and Je�rey Scott Vitter. E�cient Searching
with Linear Constraints. In Proceedings of the 17th

ACM Symposium on Principles of Database Systems,
1998.

[3] Rafael Alonso, Daniel Barbara, and Hector Garcia-
Molina. Data Caching Issues in an Information Re-
trieval System. ACM Transactions on Database Sys-

tems, September 1990.

[4] Daniel Barbara and Hector Garcia-Molina. The
Demarcation Protocol: A Technique for Maintain-
ing Linear Arithmetic Constraints in Distributed
Database Systems. In Proceedings of the International
Conference on Extending Database Technology, 1992.

[5] Philip Bernstein, Barbara Blaustein, and Edmund
Clarke. Fast Maintenance of Semantic Integrity Asser-
tions Using Redundant Aggregate Data. In Proceed-

ings of the 6th Conference on Very Large Data Bases,
1980.

[6] Peter O. Buneman and Eric K. Clemons. E�ciently
Monitoring Relational Databases. ACM Transactions
on Database Systems, September 1979.

[7] O.S.F. Carvalho and G. Roucairol. On the Distri-
bution of an Assertion. In Proceedings of the ACM

Symposium on Principles of Distributed Computing,
1982.

[8] Latha S. Colby, Akira Kawaguchi, Daniel F. Lieuwen,
and Inderpal Singh Mumick. Supporting Multiple
View Maintenance Policies. In Proceedings of the
ACM SIGMOD Conference on Management of Data,
1997.

[9] Ian Foster and Carl Kesselman. Globus: A Meta-
computing Infrastructure Toolkit. In International

Journal of Supercomputer Applications, volume 11(2),
pages 115{128, 1997.

[10] Richard Golding. Weak-Consistency Group Commu-

nication and Membership. PhD thesis, University of
California, Santa Cruz, December 1992.

[11] Jonathan Goldstein, Raghu Ramakrishnan, Uri Shaft,
and Jie-Bing Yu. Processing Queries by Linear Con-
straints. In Proceedings of the Sixteenth ACM Sympo-

sium on Principles of Distributed Computing, 1997.

[12] Ashish Gupta and Inderpal Singh Mumick. Mainte-
nance of Materialized Views: Problems, Techniques,
and Applications. IEEE Data Engineering Bulletin,
June 1995.

[13] Ashish Gupta and Jennifer Widom. Local Veri�ca-
tion of Global Constraints in Distributed Databases.
In Proceedings of the ACM SIGMOD Conference on

Management of Data, 1993.

[14] Robert Kowalshi, Fariba Sadri, and Paul Soper. In-
tegrity Checking in Deductive Databases. In Proceed-

ings of the 13th Conference on Very Large Data Bases,
1987.

[15] Norbert Beckmannand Hans-Peter Kriegel, Ralf
Schneider, and Bernhard Seeger. The R*-tree: An
E�cient and Robust Access Method for Points and
Rectangles. In Proceedings of the ACM SIGMOD

Conference on Management of Data, 1990.

[16] Narayanan Krishnakumar and Arthur Bernstein.
Bounded Ignorance in Replicated Systems. In Pro-

ceedings of the 10th ACM Symposium on Principles

of Database Systems, May 1991.

[17] Narayanan Krishnakumar and Arthur Bernstein.
Bounded Ignorance: A Technique for Increasing Con-
currency in a Replicated System. ACM Transactions

on Database Systems, 19(4), December 1994.

[18] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat.
Providing High Availability Using Lazy Replication.
ACM Transactions on Computer Systems, November
1992.

[19] Vivek Pai, Mohit Aron, Gaurav Banga, Michael
Svendsen, Peter Druschel, Willy Zwaenepoel, and
Erich Nahum. Locality-aware Request Distribution in
Cluster-based Network Servers. In Proceedings of the

Eighth International Conference on Architectural Sup-

port for Programming Languages and Operating Sys-

tems (ASPLOS-VIII), 1998.

[20] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M.
Theimer, and A. J. Demers. Flexible Update Prop-
agation for Weakly Consistent Replication. In Pro-

ceedings of the 16th ACM Symposium on Operating

Systems Principles, 1997.

[21] Calton Pu and Avraham Le�. Epsilon-Serializability.
Technical Report CUCS-054-90, Columbia University,
1991.

[22] Calton Pu and Avraham Le�. Replication Control
in Distributed Systems: An Asynchronous Approach.
Technical Report CUCS-053-90, Columbia University,
January 1991.

[23] D. Terry, K. Petersen, M. Spreitzer, and M. Theimer.
The Case for Non-transparent Replication: Examples
from Bayou. In IEEE Data Engineering, pages 12{20,
December 1998.

[24] Amin Vahdat, Thomas Anderson, Michael Dahlin, Es-
hwar Belani, David Culler, Paul Eastham, and Chad
Yoshikawa. WebOS: Operating System Services for
Wide-Area Applications. In Proceedings of the Sev-

enth IEEE Symposium on High Performance Dis-
tributed Systems, Chicago, Illinois, July 1998.

[25] David Wetherall. Active Network Vision and Reality:
Lessions from a Capsule-based System. In Proceedings
of the 17th ACM Symposium on Operating Systems

Principles, 1999.

[26] Haifeng Yu and Amin Vahdat. Building Replicated
Internet Services using TACT: A Toolkit for Tun-
able Availability and Consistency Tradeo�s. In Sec-

ond International Workshop on Advanced Issues of E-

Commerce and Web-based Information Systems, June
2000.

[27] Haifeng Yu and Amin Vahdat. Design and Evalu-
ation of a Continuous Consistency Model for Repli-
cated Services. Technical Report CS-2000-07, Com-
puter Science Department, Duke University, 2000. See
http://www.cs.duke.edu/~yhf/tr2.pdf.

[28] Haifeng Yu and Amin Vahdat. E�cient Numerical Er-
ror Bounding for Replicated Network Services. Tech-
nical Report CS-2000-08, Computer Science Depart-
ment, Duke University, 2000. See http://www.cs.

duke.edu/~yhf/vldbtr.pdf.

