Anvil: A General-Purpose Timing-Safe Hardware
Description Language

Jason Zhijingcheng Yu*
yu.z@u.nus.edu
Department of Computer Science
National University of Singapore
Singapore

Trevor E. Carlson
tcarlson@comp.nus.edu.sg
Department of Computer Science
National University of Singapore
Singapore

Abstract

Expressing hardware designs using hardware description
languages (HDLs) routinely involves using stateless signals
whose values change according to their underlying registers.
Unintended behaviours can arise when the stored values in
these underlying registers are mutated while their depen-
dent signals are expected to remain constant across multiple
cycles. Such timing hazards are common because, with a few
exceptions, existing HDLs lack abstractions for values that
remain unchanged over multiple clock cycles, delegating
this responsibility to hardware designers. Designers must
then carefully decide whether a value should remain un-
changed, sometimes even across hardware modules. This
paper proposes Anvil, an HDL which statically prevents tim-
ing hazards with a novel type system. Anvil is the only HDL
we know of that guarantees timing safety, i.e., absence of
timing hazards, without sacrificing expressiveness for cycle-
level timing control or dynamic timing behaviours. Unlike
many HLS languages that abstract away the differences be-
tween registers and signals, Anvil’s type system exposes
them fully while capturing the timing relationships between
register value mutations and signal usages to enforce timing
safety. This, in turn, enables safe composition of communi-
cating hardware modules by static enforcement of timing
contracts that encode timing constraints on shared signals.
Such timing contracts can be specified parametric on abstract
time points that can vary during run-time, allowing the type
system to statically express dynamic timing behaviour. We

“Equal contribution.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

ASPLOS 26, Pittsburgh, PA, USA.

© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2359-9/2026/03
https://doi.org/10.1145/3779212.3790125

Aditya Ranjan Jha"
adityajha@u.nus.edu
Department of Computer Science
National University of Singapore
Singapore

Umang Mathur
umathur@nus.edu.sg
Department of Computer Science
National University of Singapore
Singapore

Prateek Saxena
prateeks@comp.nus.edu.sg
Department of Computer Science
National University of Singapore
Singapore

have implemented Anvil and successfully used it to imple-
ment key timing-sensitive modules, comparing them against
open-source SystemVerilog counterparts to demonstrate the
practicality and expressiveness of the generated hardware.

CCS Concepts: - Hardware — Hardware description lan-
guages and compilation; - Software and its engineering
— Context specific languages; » Computing methodologies
— Parallel programming languages.

Keywords: Hardware description languages; Type systems;
Concurrency safety

ACM Reference Format:

Jason Zhijingcheng Yu, Aditya Ranjan Jha, Umang Mathur, Trevor
E. Carlson, and Prateek Saxena. 2026. Anvil: A General-Purpose
Timing-Safe Hardware Description Language. In Proceedings of
the 30th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2 (ASPLOS
’26), March 21-26, 2026, Pittsburgh, PA, USA. ACM, New York, NY,
USA, 27 pages. https://doi.org/10.1145/3779212.3790125

1 Introduction

Hardware description languages (HDLs) shape the way peo-
ple think about and describe hardware designs. Ideally, an
HDL should provide easy-to-use abstractions for hardware
designers to express their intention precisely and correctly.
The concurrent and continuous behaviour of hardware makes
this goal challenging to achieve.

Unlike software programs, where values are all persistent
(stored either in registers or in memory), hardware designs
involve separate notions of signals and registers. While a reg-
ister can store persistent values and be assigned new values
every cycle, signals are stateless, with their values changing
with the registers they depend on. If the hardware designer
expects a signal to remain unchanged across multiple cy-
cles, they must explicitly ensure the stored values of their
underlying registers do not change. The incorrect timing of
register mutation (i.e., change of the stored value in a regis-
ter) and signal use thus easily introduces invalid or wrong

https://orcid.org/0000-0001-6013-157X
https://orcid.org/0009-0005-3553-0903
https://orcid.org/0000-0002-7610-0660
https://orcid.org/0000-0001-8742-134X
https://orcid.org/0000-0002-1875-8675
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3779212.3790125
https://doi.org/10.1145/3779212.3790125

ASPLOS 26, March 21-26, 2026, Pittsburgh, PA, USA. Jason Zhijingcheng Yu, Aditya Ranjan Jha, Umang Mathur, Trevor E. Carlson, and Prateek Saxena

values during run-time, and may even expose the hardware
design to time-of-check-to-time-of-use (TOCTOU) attacks.
We call such problems timing hazards. The problem of timing
hazards is further exacerbated by the concurrent nature of
hardware designs: A hardware design commonly consists of
large numbers of modules which are executing in parallel
and communicating with each other via shared signals.

Most existing HDLs such as SystemVerilog [22], VHDL [21],
and Chisel [3] do not catch timing hazards at compile time,
leaving designers to discover these issues only during simu-
lation. Designers frequently seek help on discussion forums
simply to pinpoint the origins of the errors [9, 13, 47]. Tim-
ing hazards are prevalent even among experienced designers
and in widely used open-source hardware components, as is
shown by several real-world examples given in Appendix C.

A principled way to eliminate timing hazards is to forbid
them in the HDL itself. We call such an HDL that only allows
designs without timing hazards timing-safe. The key chal-
lenge to achieve timing safety while also providing enough
expressiveness for writing general-purpose hardware de-
signs. Some existing HDLs can provide timing safety but only
at a significant cost of expressiveness, making them only
suitable for specific applications. For example, high-level
synthesis (HLS) languages [2, 24, 49] offer software-like pro-
gramming models for hardware design. In these languages,
timing hazards are not a concern because they abstract away
both cycle latencies and the distinction between wires and
registers, effectively treating all values as persistent, sim-
ilar to variables in software programming. Constructs for
expressing cycle-level control and wires are, unfortunately,
absent in such languages. Such expressiveness is essential in
general-purpose hardware designs, especially where perfor-
mance is a priority. Consequently, the applicability of HLS
languages is commonly limited to speeding up algorithms
with programmable hardware (e.g., FPGA). Other timing-safe
languages focus only on specific types of hardware designs,
such as CPU stages [51] and static pipelines [34, 44].

We present Anvil, the first HDL we know of that guaran-
tees timing safety while maintaining expressiveness
for general-purpose hardware design use cases. Anvil
is general-purpose in the sense that the designer retains full
control of the cycle-level timing and register states in RTL,
unlike HLS languages, and is not limited to design use cases
such as CPU-level abstractions and static pipelines. In par-
ticular, it allows hardware designers to seamlessly specify
cycle-level delays and to express whether a value is stored
in a register. It also supports expressing hardware designs
with dynamic timing behaviours easily.

Anvil achieves timing safety statically with a novel type
system which captures the timing relationships between
register mutations and use of signals. It performs type check-
ing that reasons about whether each use of signal takes
place in a time window throughout which it carries an un-
changing and meaningful value, and rejects code that is not

module Memory (Module Top req Memory
address = 0x00 P»{ 0x00 Val0
: .) every clock cycle: inp | ox01 vali
input [7:0] inp, ;:qr;qtiql. > 0x02 val2
input req, inp = (address++)| 0x03 Val3
else: Sioral ok | e
output [7:0] out print(out) sigl8] out | | or Vaass
);
| Clock : A A
o 1 2 3 4 5 6 7 8 9 o 1 2 3
clk clk
req \ [\ [\ [\ / req \
mput 0x00) oxor N oxo2 X ox03 J ox04 input 0x00 —
ouwput 2 A Val 0 X valz output ————(Valo
expected 7 valo__f__vali__J_ valz__)_ val3 [T1e2)
el ez e3 e e e el [T+2, T+3)

Figure 1. Module Top interfaced with Memory.

timing-safe. Designs written in Anvil can thus specify precise
cycle-level behaviour and register updates. This is in contrast
to HLS languages [49] that hide wires and cycles beneath
their abstractions. Across hardware modules, Anvil’s type
system guarantees safe composition by statically checking
against timing contracts, which specify constraints regarding
communicated signals, including constraints about when
such signals must be kept unchanged. Although Anvil’s type
checking is entirely static, it explicitly allows dynamic timing
behaviours, i.e., the number of cycles for a behaviour of the
hardware design can vary during run-time (e.g., caches). The
type system achieves this by capturing time not in terms of
an absolute (fixed) number of cycles, but instead as abstract
time points that correspond to events that may occur arbitrar-
ily late, for example, the event corresponding to the receipt of
data from another module. This is in sharp contrast to recent
work [34] in which the proposed type system only allows
expressing designs with fixed static timing behaviours.

We have implemented the Anvil compiler (Section 6) which
performs type checking and compiles Anvil code to Sys-
temVerilog. Our evaluations highlight the expressiveness
and practicality of Anvil (Section 7). Designs written in Anvil
can be integrated in existing SystemVerilog code bases, thus
allowing incremental adoption and making Anvil immedi-
ately useful. We have successfully used Anvil to implement a
diverse set of 10 latency-sensitive components ranging from
an AES accelerator [38] to a page table walker in a RISC-V
CPU [52]. Despite the Anvil compiler being an early-stage
prototype, when compared with open-source SystemVerilog
implementations, the Anvil implementations show practi-
cal overhead averaging 4.50% for area and 3.75% for power.
Anvil is open-source at https://github.com/kisp-nus/anvil.
Our Contributions. We introduce Anvil, an HDL with a
novel type system that guarantees timing safety without
sacrificing expressiveness, e.g., for cycle-level control and dy-
namic timing behaviours. Anvil allows for general-purpose
hardware design use cases and integration with existing
SystemVerilog projects.

https://github.com/kisp-nus/anvil

Anvil: A General-Purpose Timing-Safe Hardware Description Language

2 Motivation

The motivation of our work stems from the susceptibility of
RTL designs to timing hazards due to limitations of de facto
standard HDL abstractions.

2.1 Example of a Timing Hazard

Consider the interface of a memory module in SystemVerilog
in Figure 1 top left. Unlike software, hardware modules com-
municate using signals that can be continuously read and
updated. Consider an interfacing hardware module (Figure 1,
top right), Top, which reads a value from a memory module
with the same interface. The implementation of Top sends
an address as a request and expects to read the output in the
following cycle. However, the circuit outputs are incorrect,
as evident when the system is simulated (Figure 1, bottom
left). The culprit is an unexpected timing delay. The mod-
ule Top is written under the assumption that the memory
subsystem responds precisely one clock cycle after the req
signal is set. However, it takes the memory subsystem two
cycles to process the lookup request and return the output.

In more detail, the module Top requests address 9x00 by
setting the req signal high during cycle [0, 1). It expects the
output in the next cycle, but the memory has not finished
dereferencing the input address. The memory stops pro-
cessing since the req signal is unset in [1,2). When req is
set again in [2,3) with address 0x@1, the memory is still
resolving 0x09, returning Val 0 in [3,4). Meanwhile, the
input address changes from 0x01 to 0x02. When req is set
again in [4, 5), the memory starts processing 0x02, skipping
0x@1. As a result, unexpected outputs are observed, and only
half of the requested addresses are dereferenced.

The above example illustrates a classic case of a timing
hazard, where unintended values are used or values in use
are changed unexpectedly. Here, the module Top modifies
its input while the memory is still processing a request. It
also reads the output before it is ready.

2.2 Timing Hazards in Existing HDLs

Timing hazards arise in SystemVerilog and VHDL, two stan-
dard and most widely used HDLs, as they lack an abstraction
for the designer to express values that are sustained across
multiple cycles. These languages also do not provide a mech-
anism to encode timing constraints pertaining to register as-
signments and use of signals shared between communicating
modules. The abstraction that SystemVerilog and VHDL pro-
vide over registers and signals specifies their relationships
within a single, non-specific cycle. The designer defines how
each register is updated based on the existing register state,
and during run-time the signal values are updated accord-
ingly. In other words, signals are essentially pure functions
of the current register state; when they are referenced in the
code, they simply carry the values of the current moment.
Such an abstraction makes it difficult to express intended

ASPLOS 26, March 21-26, 2026, Pittsburgh, PA, USA.

relationships between signal values across multiple cycles.
For example, a SystemVerilog implementation of the Top
module in Figure 1 does not convey the intent that req and
inp should remain steady for two consecutive cycles, or that
out should be meaningful only in the following cycle. Other
HDLs—including many newer ones that aim to raise the
abstraction level for hardware design (e.g., Chisel [3] and
SpinalHDL [45])—follow the same fundamental paradigm
for describing RTL designs as SystemVerilog and VHDL, and
are therefore similarly susceptible to timing hazards.

Some popular HDLs provide different abstractions than
SystemVerilog and VHDL but are still unable to avoid tim-
ing hazards. Bluespec SystemVerilog (BSV) [4], for example,
provides the abstractions of rules and methods. Rules are bun-
dled hardware behaviours that execute atomically. Modules
can communicate through invoking each other’s exposed
methods, which add to the behaviours to be executed. The
BSV compiler generates hardware logic to choose rules to
execute in each cycle. For example, consider Figure 2. If Top
reads a value from a cache and enqueues it into a FIFO that
only accepts requests when it is not full, the design would
typically use two rules: one to invoke the read method of
the cache, and another to enqueue the retrieved value into
the FIFO. BSV’s scheduler ensures that, in each cycle, rules
that execute do not conflict (i.e., they do not mutate the same
registers), and each rule executes atomically. However, rules
only specify operations for the current cycle, and scheduling
is performed independently for each cycle. BSV does not
reason about behaviours that span multiple cycles [4].

In the example, if the module Top retrieves a value from

a cache and sends it to a FIFO, Anvil enforces the timing
contract by detecting violations and guiding the designer
towards a timing-safe implementation, as shown in Figure 2
(top). BSV, on the other hand, may still generate a conflict-
free schedule that is timing-unsafe because it does not cap-
ture inter-cycle constraints in its scheduling model.
Root Cause: HDL Abstractions. In summary, the root
cause behind the susceptibility of many popular HDLs to
timing hazards lies in the abstractions they provide. In par-
ticular, their abstractions do not express the designer’s intent
concerning when a signal is expected to carry a meaningful
value and in which time window the value is expected to
remain steady. As such, we provide a novel solution in a new
HDL design rather than basing it on existing ones.

2.3 Need for Timing-Safe HDL Abstractions

In this paper, we tackle the problem of timing hazards by cre-
ating timing-safe HDL abstractions to capture the designer’s
intent regarding register and signal uses across cycles and in
turn prevent timing hazards. An alternative approach is to
apply verification techniques to designs expressed in exist-
ing HDLs [16, 26, 33, 48]. Such techniques attempt to verify
that certain properties about a design (e.g., user-specified

ASPLOS 26, March 21-26, 2026, Pittsburgh, PA, USA.

Jason Zhijingcheng Yu, Aditya Ranjan Jha, Umang Mathur, Trevor E. Carlson, and Prateek Saxena

cache channel definition

Top => address: [req, reg->res)

Error: Attempted assignment to loaned register

send cache.req (address) >> W

. -~ 0
send cache.req (address) let data= recv cache.res() >>

Cache => data : [res, res->res+1) send cache.req/(address) >>

let data = recv cache.res() >>

FIFO channel definition send f£ifo.eng req(data) >>

::>set address := address + 1; 0 0

let data = recv cache.res() >>
set address := address + 1;
—>send fifo.enq reqg(data) >>

t address := address + 1;
set eng data := data >>
send fifo.eng reg(data) >>

Top => data: [enq_req, eng_req+l)

Error: Value does not live long enough in message send

Possible Schedule 1:
rule send_cache_req(address) >>
rule change_address() >>

[BSV Defined Rules:

rule send cache_req(address)

rule change_address ()

rule let data = rule get cache_ res()
rule send fifo_enqueu_req(data)

Anvil vs BSV for Timing Hazards

rule send_fifo_enqueu_req(data) >>

oo

rule let data = rule get cache_res() >>

Possible Schedule 2:
rule change_address() >> o
rule send cache_req(address) >>

rule let data = rule get cache res() >>
rule send fifo_enqueu_req(data) >>

Possible Schedule 3:
rule send cache_reg(address) >> a
rule let data = rule get cache_res() >>
rule change address() >>

rule send_fifo_enqueu_req(data) >>

Figure 2. Top: Anvil guiding designer through timing-safe design. Bottom: BSV timing-unsafe schedules.

‘ Revise design and specifications
T T T T T T T T 4 : Assertions
Specifications | X | violated
j— R =Cn 1
(e.g., SystemVerilog —_— | !
- | Q
I

| Verifi;kor\
I Tools \

| (e.g., JasperGold) JI

assertions)

RTL Design
(SystemVerilog)

‘ Revise design I :
o _ Typeerrors Timing-Safe
| RTL
I
o) mp I
I
I

Anvil Compiler

RTL Design
(Anvil)

Figure 3. High-level comparison between the flows en-
abled by verification- (top) and language-based (bottom)
approaches. Steps involving manual effort are marked with
the person icon. White and gray dashed boxes represent de-
sign and verification stages, respectively.

SystemVerilog assertions) hold, either statically through for-
mal verifications (e.g., model checking with Cadence Jasper-
Gold [7] or Yosys SMT-BMC [50]) or dynamically through
testing (e.g., simulation-based verification with UVM [23]
or cocotb [11]). This approach is general and may easily ex-
tend to other properties about an RTL design beyond timing
safety. It is also readily applicable to existing code bases and
does not require switching to a new language.

However, we have been motivated to focus on a language-
based approach because of its unique advantages. As illus-
trated in Figure 3, a language-based approach can preclude
designs with timing hazards during development. In con-
trast, verification detects timing hazards only after the fact,
in a separate verification stage. This allows a faster and
more integrated feedback loop. Through a language-based
approach, the language abstractions themselves directly ex-
press the properties to be checked, for example, as part of
a type system. A verification-based approach, on the other
hand, requires manually specified, implementation-specific
assertions to fill in missing information in the HDL abstrac-
tion. These assertions are error-prone and costly to maintain.
A language-based approach can also present a more abstract

model for reasoning about timing hazards efficiently. This
avoids the state explosion problem with verification [10].
For example, bounded model checking may fail to report
a violation even at large depths because of the prohibitive
size of the model generated from SystemVerilog code. In Ap-
pendix B, we present a concrete example comparing Anvil
—the language-based solution proposed in this paper—with
verification-based methods to illustrate these points further.

2.4 Goal: a Timing-Safe and Expressive HDL

Some existing HDLs do provide timing safety. However, they
face challenges in maintaining expressiveness. Some high-
level synthesis (HLS) languages [49] provide abstractions of
persistent values similar to variables in software programs.
They abstract away certain aspects of hardware design such
as register placements and cycle latencies. While their ab-
stractions directly prevent timing hazards, they lack the pre-
cise timing and register control desired in general-purpose
hardware design use cases, especially when the design needs
to be latency-sensitive or efficient.

The closest prior work to ours is the Filament HDL [34].
Filament exposes cycle latencies and registers to the designer,
and prevents timing hazards through its type system centred
around timeline types. A timeline type encodes constraints
regarding the time window in which each signal carries an
unchanging value that can be used. Timeline types also serve
to define contracts at module interfaces, allowing for safe
composition of modules. Our example memory module can
be augmented with such a contract which requires input
and req to remain constant during [T, T + 2), and the out-
put to remain constant in [T + 2, T + 3). Figure 1 (bottom,
right) illustrates the output waveform for a system using
this contract. However, the timeline type and the contract it
represents only capture timing intervals whose duration is
fixed to be a statically determined, constant number of cycles.
Correspondingly, Filament only aims to support pipelined
designs with static timing. This prevents Filament from ex-
pressing common hardware designs such as caches and page
table walkers that exhibit dynamic timing behaviour.

To see why this is the case, consider a memory subsystem
with a cache. Its timing behaviour varies significantly be-
tween a cache hit and a cache miss. If the designer chooses a

Anvil: A General-Purpose Timing-Safe Hardware Description Language

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6

input 0x00 0x01 ellel €2 e0fel €2
output {valo YValo > Val 1 input 0x00
cache hit Hit > Miss output

O
[T, T+3) [T+3, Te4) eache it (i >— (S
Figure 4. Cache output waveform expressed safely with

static (left) and dynamic (right) timing contract.

conservative upper bound statically on the response time to
accommodate both cases, the static timing contract would
prevent timing hazards but nullify the advantage of caching.
Figure 4 (left) illustrates the output waveform for such a sys-
tem, where the contract uses the worst-case delay. In such
cases, one must trade off the flexibility of dynamic latencies
for the static guarantee of timing safety.

3 Timing Safety with Anvil

We present Anvil, an HDL with a novel type system that
statically guarantees timing safety while retaining the level
of expressiveness required for a general-purpose HDL. Un-
like HLS languages that abstract away registers and cycle
latencies, Anvil gives the designer full control over regis-
ter mutations and cycle latencies. And unlike Filament [34],
Anvil’s type system can capture and reason about timing
that varies during run-time. Anvil is thus able to enforce dy-
namic timing contracts across modules and precisely express
hardware designs with dynamic timing behaviours.
Channels. Anvil models hardware modules as communicat-
ing processes [19]. It allows specifying modules with a pro-
cess abstraction, using the keyword proc. A pair of commu-
nicating processes can share a bidirectional channel, through
which they send and receive values. Channels are stateless
and both sending and receiving are blocking. Channels are
the only way for processes to communicate.

Events. A central concept that enables Anvil to reason about
dynamic timing is events. Events are abstractions of time
which may or may not statically map to a fixed cycle. The
start of every clock cycle is an event that is statically known
(constant). An example of a dynamic event is when two pro-
cesses exchange a value through the channel. As described
above, sending and receiving values on a channel are block-
ing. The exchange of the value thus completes at a time both
sides agree on: when the sender signals the value is valid
and the receiver acknowledges. The completion of this value
exchange defines a dynamic event that may correspond to
varying clock cycles during run-time. Note that both events
and channel-based communication are only abstractions that
Anvil provides, and under the hood, do not imply overhead
in the resulting RTL design (see Section 6).

Event Graphs. A key observation enables Anvil to reason
about events: even though we cannot statically know which

ASPLOS 26, March 21-26, 2026, Pittsburgh, PA, USA.

exact cycle an event may correspond to, we know of the
relationships among events. For example, we can statically
obtain that event e; corresponds to exactly two cycles after
the cycle e; corresponds to, and event e; corresponds to the
first time a specific value is exchanged on a channel after
the cycle e; corresponds to. Such relationships form an event
graph (Section 5.3) which serves as the basis for Anvil’s type
system (Section 5.4 and Appendix D).

Lifetimes and Dynamic Timing Contracts. Anvil’s type
system uses events to encode the lifetime of a value carried
by a signal. The lifetime of a value is identified by a start
and an end event, between which the value is expected to
remain steady. Channel definitions in Anvil specify the tim-
ing contracts for the exchanged values. Since events can
be bound to varying concrete clock cycles at runtime, such
timing contracts can capture dynamic timing characteristics.
Enforcement of timing contracts ensures timing-safe com-
position of two processes when the events mentioned in the
timing contract are known to both processes, e.g., when they
correspond to value exchanges on the same shared channel.
Example: Anvil in Action. Figure 5 illustrates how Anvil’s
type system distinguishes between safe and unsafe process
descriptions. The description proc Top_Unsafe is Anvil’s rep-
resentation (simplified for understanding) of the same circuit
Top shown in Figure 1. In contrast, proc Top_Safe captures
the timing characteristics of the memory subsystem with
a cache, as depicted in Figure 4 (right). Anvil first derives
the action sequence and then verifies whether the process
description adheres to the constraints specified by the timing
contracts. In our examples, req marks the clock cycle when
address sent by Top_Unsafe or Top_Safe is acknowledged on
the channel. The event res marks the clock cycle when data
sent by the memory subsystem is acknowledged.

For memory without a cache, the expected behaviour is
specified in a timing contract, encapsulated in the memory
channel definition. This contract requires that address re-
main unchanging and available for two clock cycles after
req is sent. It also specifies that data sent by memory must
be available for one clock cycle after res is received.

The timing contract is not satisfied by Top_Unsafe, and
Anvil detects this at compile time. In the HDL code for
Top_Unsafe, address is sent during [ep, g + 1), but the tim-
ing of acknowledgement is uncertain. The output value is
used during [e + 1, ey + 2), but when res will be received
is unknown, as it depends on when the memory system re-
sponds. As a result, it is unclear whether the next address was
sent before the previous output was received and acknowl-
edged. Furthermore, the input address is modified during
[eo + 1, €0 + 2), violating the requirement that the address
remain unchanging for two cycles after acknowledgement.

The contract for memory with a cache is specified in the
cache channel definition. It requires that the address sent by
Top_Safe remain available from the req event until the next

ASPLOS 26, March 21-26, 2026, Pittsburgh, PA, USA. Jason Zhijingcheng Yu, Aditya Ranjan Jha, Umang Mathur, Trevor E. Carlson, and Prateek Saxena

occurrence of res, written as the lifetime (req, req->res).
Similarly, the data sent by the memory subsystem has the life-
time (res, res->res+1).As shown in Figure 5 (right), Top_safe
satisfies this contract and is therefore deemed safe.
Summary. Anvil is a general-purpose HDL that eliminates
timing hazards. It allows designers to specify timing con-
tracts and provides higher-level abstractions to enforce these
contracts. The type system ensures that these contracts are
respected. Anvil achieves this without sacrificing expres-
siveness. Dynamic contract definitions make it possible to
design circuits with varying timing characteristics. It can
capture timing characteristics precisely without introducing
performance trade-offs such as additional latency.

Figure 4 shows the simulation output for Anvil’s dynamic
contracts (right) and static contracts (left). No extra clock-
cycle overhead is introduced in either case. In addition, Anvil
prevents the generation of unnecessary interface signals
through sync modes, which specify the frequency at which a
sender or receiver exchanges messages. We discuss this in
more detail in Section 4.1.

4 Anvil HDL

In this section, we give a tour of novel language primitives
in Anvil that are relevant to timing safety.

4.1 Channel

Anvil components communicate by message passing through
bidirectional channels, which are akin to unbuffered channels
in Go [14], where a send and its corresponding receive opera-
tions take place simultaneously. Each channel type definition
in Anvil describes a template for channels, for example:

chan mem_ch {
left rd_req :
left wr_req :
right rd_res :
right wr_res :

}

(logic[8]@#1) @#2-@dyn,
(addr_data_pair@#1),
(logic[8]@rd_req) @#rd_req+1-@#rd_req+1,
(logic[1]@#1) @#wr_req+1-@#wr_req+]

Messages. The definition specifies the different types of
messages that can be sent and received over a channel with
two endpoints, referred to as left and right, respectively. Each
type of message is identified by a unique message identifier
and annotated with its direction, which is left (travelling
left, i.e., from the right endpoint to the left endpoint) or
right (travelling right).

Message Contracts. Each message is also associated with
a message contract. This contract specifies the data type of
the message and indicates the event after which the message
content is no longer guaranteed to remain unchanging and
should, therefore, be considered expired. Depending on the
specified event of expiry, a message contract can be either
static or dynamic. For example, message rd_req in the chan-
nel definition earlier has a static contract: It carries 8 bits

of data, which expires 1 cycle after the synchronization on
the message takes place. In contrast, message rd_res has a
dynamic contract: It carries 8 bits of data which expires the
next time message rd_req is sent or received.

Sync Mode. Each message has a synchronization mode (sync
mode for short) for each side of the communication. The sync
mode specifies the timing pattern for sending or receiving
the message. In a message contract, the sync modes of both
endpoints are specified in the format:

[<left—endpoint—sync—mode>—<right—endpoint—sync—mode>]

The default sync mode, edyn, specifies that a one-bit signal
is used for run-time synchronization. For example, in the
channel definition, the message wr_req uses this dynamic
sync mode on both endpoints. When static knowledge is
available about when sending or receiving can occur, the
sync mode can encode that information. The left side of the
message rd_req has the static sync mode e#2. This specifies
that it must be ready to receive the message within at most
two cycles after the last time the message was received. For
the left endpoint, Anvil statically checks that this constraint
holds. For the right endpoint, Anvil uses this knowledge to
check that whenever rd_req is sent, the receiver will be ready.
A sync mode can also be dependent. For example, both sides
of wr_res use e#wr_req + 1, meaning the message is sent and
received exactly one cycle after wr_req.

4.2 Process

Each Anvil component is represented as a process defined
with the keyword proc. A process signature specifies a list
of endpoints to be supplied externally when the process
is spawned. The process body includes register definitions,
channel instantiations, (sub-)process spawning, and threads.

[proc memory(epl: left mem_ch, ep2: left mem_ch) {/*» ... */}]

4.3 Thread

Each process contains one or more threads that execute
concurrently. Two types of threads exist: loops and recursives.
Loops. Aloop is defined with loop { t 3}, where t is an Anvil
term (see Section 4.4). This term can represent the parallel
and sequential composition of multiple expressions. Each
time t completes execution, the loop recurses back to the
same behaviour. For example, the code below increments a
counter every two cycles.

[loop { set counter := *counter + 1 >> cycle 1 }]

Recursives. A recursive, defined with recursive { t } gen-
eralizes loops to allow recursion before t completes. Instead,
recusion is controlled with recurse. As t can restart before it
completes, multiple threads may execute in an interleaving
manner. Such constructs are therefore particularly useful

Anvil: A General-Purpose Timing-Safe Hardware Description Language

for expressing simple pipelined behaviours. For example, the
code below pipelines the logic for handling requests. Specifi-
cally, it first waits to receive a request message, then performs
two things in parallel: 1) handling the request, and 2) recurs-
ing (repeating the process from the beginning, where it starts
waiting for the next request) in the next cycle. The direct
pipelining support enabled by recursives is comparable to
the pipelining support in Filament [34].

recursive {
let r = recv ep.rd_req >>
{ /* handle request */ };
{ cycle 1 >> recurse }

3

4.4 Term

Terms are the building block for describing computation and
timing control of threads in Anvil. Each term evaluates to a
value (potentially empty) and the evaluation process poten-
tially takes multiple cycles. In addition to literals and basic
operators for computing (e.g., addition, xor, etc), notable
categories of terms include the following.

Message Sending/Receiving. The terms send e.m (t) and
recv e.m send or receive a specified message. The evaluation
completes when the message is sent or received.

Cycle Delay. The term cycle N evaluates to an empty value
after N cycles and is used entirely for timing control.
Timing Control Operators. The >> and ; operators are
used for controlling timing. See Section 4.5.

4.5 Wait Operator

The wait operator is a novel construct that enables sequential
execution by advancing to a time point. In t1 >> t2, the eval-
uation of the first term t1 must be completed before the eval-
uation of the second term begins. In contrast, t1; t2 initiates
both term evaluations in parallel. For example, set r := t
and set r := t; cycle 1 are equivalent, since register assign-
ment takes one cycle to complete.

This design not only provides a way to advance time by
explicitly specified numbers of cycles (e.g., cycle 2 >> ...).
It also serves as an abstraction for managing and composing
concurrent computations, in a way similar to the async-await
paradigm for asynchronous programming. A term may rep-
resent computation that has not completed. Multiple terms
can be evaluated in parallel. When the evaluation result of a
term is needed, one can use >> to wait for it to complete. For
example, the code below waits for messages from endpoints
ep1 and ep2 and processes the data concurrently.

loop {
let vl = { let r = recv epl.rd_req >> /* process r */ };
let v2 = { let r = recv ep2.rd_req >> /* process r */ };
vl >> v2 >> ... /* now vl and v2 are available */

ASPLOS 26, March 21-26, 2026, Pittsburgh, PA, USA.

4.6 Revisiting the Running Example

Figure 5 includes snippets of Anvil code for the running
example introduced in Section 2. The code demonstrates how
Anvil exposes cycle-level control and supports expressing
dynamic timing behaviours. The code uses the wait operator
to control when and how time is advanced. It is clear from
the source code when each operation takes place relative to
others. In the bottom right timing-safe Anvil code snippet, for
example, incrementing address and updating enq_data take
place at the same time (connected with ;), and sending of
fifo.enq_req starts one cycle afterwards, when both register
updates complete. Such timing control does not have to rely
on fixed numbers of cycles. For example, the two register
updates discussed above take place after cache.res is received,
which in turn takes place after cache.req. The exact numbers
of cycles those operations vary during run-time depending
on the interaction between Top and Cache.

Despite those dynamic timing behaviours that Anvil code
can express, Anvil is able to reason about them and ensure
timing safety statically, as we will discuss in detail next.

5 Safety of Anvil Programs

Anvil’s type system ensures that each process adheres to the
contracts defined by the channels it uses. The guarantee the
type system provides is as follows: any well-typed process
in Anvil can be composed with other well-typed processes
without timing hazards at run-time. To provide such guaran-
tees, the type system associates each term with an abstract
notion of a lifetime, which, intuitively, captures the time
window in which its value is unchanging and meaningful.
Each register, likewise, is associated with a loan time, which
describes when it is loaned, i.e., needs to remain unchanged.
The abstractions of lifetime and loan time form the founda-
tion for ensuring safety in Anvil. Based on them, the type
system checks for the following properties for a process —

1. Valid Value Use: Every use of a value falls in its asso-
ciated lifetime.

2. Valid Register Mutation: A register mutation does
not take place during its loan time.

3. Valid Message Send: The time window for which the
data sent needs to be live (based on the timing contract)
is covered by its associated lifetime. Additionally, such
time windows do not overlap for two send operations
of the same message type.

A formal presentation of the type system and the safety
guarantees of Anvil is available in Section 5.5. We first ex-
plain the intuition behind them in this section.

5.1 Events and Event Patterns

Anvil reasons about events which correspond to the times
specific terms complete evaluation. Note that such interest-
ing events as sending and receiving of messages and elapse
of a number of cycles are naturally included, as the those

ASPLOS 26, March 21-26, 2026, Pittsburgh, PA, USA.

Jason Zhijingcheng Yu, Aditya Ranjan Jha, Umang Mathur, Trevor E. Carlson, and Prateek Saxena

Unsafe Description (Memory without cache) " —
£ Timing Contract Checks
proc Top_Unsafe(ep: ...) { L Derived Action Sequence
loop { 2 9 address constant between [eg, eo+2)
memory definition €o-> send ep.req(address) >> 5 @ :hEO +1 inleo, ?) @ output used [eg+1,e0+2) when available [?,?)
. le 1 5> « req happens in [eg, ?
Top => address: [req, req+2) €o0-> iyc et => 8 « res happens in [e1, ?) —> 98 address is mutated [eg+1, e+2), when not being used
Memory => data : [res, res+1) e1-> let out = recv ep.res >> pt : v X X
1> dprint (out); S |- output used in [e+, eq+1) (@ nextreq happens [eg+2, ?) before previous req expires
e-> set address := address + 1 5| address is mutated in [e4, e1+1)
} .c=> Final Decision: UNSAFE
} (5]
Safe Description (Memory with cache
p (y) .qg’ Timing Contract Checks
=
proc Top_safe(ep: ...) { o Derived Action Sequence
Toop { 2 4 constant between [eq, e2)
cache channel definition ep-> send ep.req(address) >> g] | ° e22er2eo & output used [e2, ep+1) when available [ep, ep+1)
Top => address: [req, req->res) eq-> let out = recv ep.res >> I:> 8 « req happens "” [eo, e1) :> & address is mutated [e2, e2+1), when not being used
Cache => data : [res, res->res+1) ey,> dprint (out); 5 « res happens in [ey, e) v h 1 % bef i i
s> set address i= address + 1 S |« output used in [ez, e2+1) next req happens [ex+1, ?) before previous req expires
} f, * address is mutated in [ep, ep+1)
} _d=.> Final Decision: SAFE
O

Figure 5. Anvil checking the unsafe version of Top interfacing with memory subsystem with and without cache.

operations are all represented as terms (Section 4.4). Event
patterns can then be defined based on such events. A basic
event pattern is of the form e » p, which consists of an exist-
ing event e and a duration p and specifies the time when a
condition specified in duration p is first satisfied after e. The
duration can be either static or dynamic. A static duration
specifies a fixed number of clock cycles, in the form of #N. A
dynamic duration specifies a certain operation w, in which
case e > p refers to when w is first performed after e. During
run-time, a dynamic duration can correspond to variable
numbers of cycles. The typical example of a dynamic dura-
tion is the sending or receiving of a specified message type
through a channel. In our discussion, this is represented as
z.m, where 7 is the endpoint name and m is the message
identifier. Multiple event patterns can be combined as a set of
event patterns {e; > p;}; to form a new event pattern, which
refers to the earliest event specified with each e; > p;.

5.2 Lifetime and Loan Time

Lifetime. The lifetime represents the interval during which
a value is expected to remain unchanging (constant). Anvil
infers a lifetime for each value, represented by an interval
[estarts Send), Where an event est,rt and an event pattern Send
mark the beginning and end of the interval. During run-time,
the events esiat and Seng will correspond to specific clock
cycles. Since each signal carries a value, it inherently has an
associated lifetime. At any given instant, a signal is live if it
falls within its defined lifetime. Conversely, it is dead.

Loan Time. Since signals and messages may source values
from registers, Anvil tracks the intervals during which a reg-
ister is loaned to a signal by associating each register with a
loan time. The loan time of a register r is a collection of in-
tervals. For each interval included in the loan time, r should
not be mutated. Anvil infers the lifetime for all associated
values and the loan time for all registers. Consider the exam-
ple in Figure 6 (left) of a component named Encrypt. This

component performs encryption on the plaintext received
through the endpoint ch1 using random noise obtained via
the endpoint ch2. The following are examples of the lifetimes
and loan times that Anvil infers:

e The signal ptext is bound to a message identified by
enc_req received on the endpoint ch1. Its lifetime is
inferred from the channel type definition as [e;, e; »
chl.enc_res), where e; is the event of the message
being received.

e The signal r1_key is a constant literal and therefore
has an eternal lifetime, represented with oo as its end
event. i.e., it can always be used.

o The signal ctext_out is used as a value sent as a mes-
sage from the endpoint ch1. Its inferred lifetime begins
at the evaluation of the term, represented as es, and
extends until the message on ch1 expires, which is
eg>chl.enc_req, where eg is the event corresponding
to the assignment completion. Therefore, the lifetime
is [es, e9 > ch1.enc_req).

e The signal (ptext * ri_key) + noise has a lifetime that
is the intersection of the lifetimes of ptext, r1_key, and
noise, [e3, {ex > #1,e; > chl.enc_res}).

o The register rd2_key is loaned by a message sent through
the endpoint ch2 and the signal ctext_out. Based on
the specified timing in the channel type definition
rng_ch, the lifetime of the message is [es, eg>#2), where
es is the event of the message sending completion.
Therefore, rd2_key has an inferred loan time [es, eg >
chl.enc_req) U [es, eg > #2).

See Figure 6 (left) for more examples of inferred lifetimes.

5.3 Event Graph

Events are related to one another by their associated opera-
tions. For example, an event e, may be precisely two cycles
after another event e,. As another example, e, can refer to the
completion of a specific message that starts at ep,. In general,

Anvil: A General-Purpose Timing-Safe Hardware Description Language

ASPLOS 26, March 21-26, 2026, Pittsburgh, PA, USA.

chan encrypt_ch {
left enc_req : (logic[8l@enc_res), right enc_res : (logic[8]@enc_req)

3

chan rng_ch { \
left rng_req : (logic[8]@#1), right rng_res : (logic[8]@#2) \

} \

proc Encrypt(chl : left encrypt_ch, ch2 : left rng_ch) { \
/* ... register definitions ... %/ ShiEencEzed chZurnglred)
loop { \\
ey let (ptext][e;,e;>chl.enc_res) = recv chl.enc_req; |
ey let (hoise)[ey, e > #1) = recv ch2.rng_req; toop |
eo let (r1_key][ep,) = 25; |
ey (ptext)[er, e; > chl.enc_res) >> |
e if ptext !=0 { /
e; (noise)[es, ey > #1) >> /

ch2.rng_res #1

es set rdl_ctext := ((ptext ~ ri_key) + noise|[es, {ez>#1,e;>chl.enc_res}) B /
e } else { rdi_ctext := (ptext)[es,e;>chl.enc_res) }; /
e; cycle 1 >> //
e; set r2_key = [e6,e2>#1); chl.enc_res /
es let ctext_out = (xrdi_ctext ~ *r2_key)[es, eo > chl.enc_req) ; /
es send ch2.rng_res((*r2_keyl[es, es > #2)) >> /
es send chl.enc_res((ctext_out)[es, e > chl.enc_req)) >> /
es send chl.enc_res([r1_key)[es, o))
} chl.enc_res

3

Figure 6. Left: Encrypt in Anvil, annotated with timing information. Each blue-shaded annotation marks the event corre-
sponding to the time a term evaluation starts. Each yellow-shaded annotation marks the inferred lifetime associated with
the red-circled term next to it. Right: Event graph corresponding to Encrypt. Branch-related constructs which exist in the
event graph actually used in the type system are omitted for brevity. The operations associated with some of the events are

presented in yellow labels.

events and their interrelationships form a directed acyclic
graph (DAG), with each node being an event labelled with
its associated operation. We call such a DAG an event graph.
Encrypt in Figure 6 (left), for example, has an event graph
as shown in Figure 6 (right). The event graph captures the
events in one loop iteration only, with event e, representing
the start of a loop iteration. The event e; corresponds to e,
of the next loop iteration.

An event graph encodes sufficient information to capture
all possible timing behaviours in run-time. Intuitively, once
we replace each non-cycle operation label (e.g., those associ-
ated with ey, ey, es, €9, and ej in Figure 6 (right)) with a cycle
number that represents the actual amount of time taken
to complete the message passing, we can deterministically
obtain the exact time (in cycles) each event occurs.

5.4 Safety Checks

Building Blocks: <g and Cg. Based on an event graph
G, Anvil compares pairs of events as to the order in which
they occur during run-time. In particular, Anvil decides if
an event e, always occurs no later than another event e,
denoted as e, <¢ ep. The simple scenario is when a path

exists from e, to ep in G and we directly have e, <¢ e,. More
complex scenarios involve events with no paths between
them, which Anvil handles by considering the “worst” cases
time gap between when the two events are reached. For ex-
ample, we have es < ey, as even in the worst case (receiving
ch2.rng_req takes 0 cycles), e4 and es still occur at the same
time. We naturally extend the definition of < to cover event
patterns and reuse the notation S, <¢ Sp.

With <g, the Anvil type system can decide that an inter-

val [eg, S,) is always fully within another interval [ep, Sp),
denoted [ey, Su) S len, Sp), if ey <G e, and S, <g Sp. It
then decides if the lifetimes and the loan times comply with
the three types of constraints. We use the example in Figure 6
to explain them below.
Valid Value Use. Anvil’s type system verifies that events at
which a signal is used are within its defined lifetime. A use
of ptext occurs at e; in the expression if ptext !'= 0 { ... },
where it has a a lifetime of [e;, e; >ch1.enc_res). It requires
ptext to be live for one cycle, i.e., in [ej, e;>#1). Anvil checks
that [e, e; > #1) Ci [e1, €1 > ch1.enc_res), which holds in
this case. Hence Anvil determines that ptext is guaranteed
to be live during this read.

ASPLOS 26, March 21-26, 2026, Pittsburgh, PA, USA. Jason Zhijingcheng Yu, Aditya Ranjan Jha, Umang Mathur, Trevor E. Carlson, and Prateek Saxena

However, in rd1_ctext := (ptext * r1_key) + noise, the sig-
nal (ptext * ri_key) + noise cannot be statically guaranteed
to be live. In this case, Anvil compares its lifetime, [es, {e; >
#1,e,>ch1.enc_res}) with the time when it is used, [es, e3>
#1) (the assignment starts at event e; and takes one cy-
cle to complete). It cannot obtain e3 » #1 <g {e; » #1,¢; >
ch1.enc_res}. Intuitively, if it takes more cycles to receive
chl.enc_req (61) than ch2.rng_req (62), noise will already be
dead at e; when the assignment happens.

Valid Register Mutation. Anvil ensures that each register
value remains constant during its loan time. For the example
in Figure 6, the loan time for r2_key is [es, eg>ch1.enc_req)u
[es, eg>#2). To determine if r2_key is still loaned when the as-
signment r2_key := ri_key * noise takes place, Anvil checks
if [es, e7 > #1) is guaranteed not to be fully covered by any
interval in its loan time, i.e., for every [e’, S") in the loan time,
either S <5 S’ or e’ <G e must hold. Here, e is the event that
corresponds to the assignment completion, exactly one cycle
after es, which corresponds to when the assignment starts.
In other words, es and e; are adjacent cycles in which the reg-
ister can carry different values. If an interval in the loan time
may contain both es and ey, at run-time during the interval
the register value may change. In the example, [es, eg > #2)
potentially (surely in this case) fully covers [es, e;>#1), hence
this assignment conflicts with the loan time of r2_key and is
disallowed by Anvil. Intuitively, a value sourced from r2_key

is sent through ch2.rng_res at es, which requires it to be live
until two cycles after the send completes. However, r2_key

already changes one cycle after es.

Valid Message Send. In the example in Figure 6, the term
send chl.enc_res(r1_key) attempts to send a new message be-
fore the previous enc_res message sent by the endpoint ch1

has expired. During run-time on the other end of channel,
this can lead to signals received through enc_res to change,
violating the message contract. Anvil detects such viola-
tions by examining whether the required lifetimes of the two
send operations are disjoint. The example violates such con-
straints as [eg, eg>Cch1.enc_req) and [eo, e;o>ch1.enc_req)
are overlapping. Anvil also checks that the lifetimes of sent
signals cover the required lifetime specified by the message
contract. For example, the send through chi.enc_res at ey
checks that the lifetime of r1_key covers the required life-
time [eg, 19 > ch1.enc_req). In this case, this check passes
as [eq, e;o > ch1.enc_req) Cg [eg,).

5.5 Formalization

Figure 7 presents the syntax of Anvil. Anvil’s type system
guarantees that any well-typed Anvil program is timing-
safe. Due to space limits, we leave the formal details of the
semantics, the type system of Anvil, the safety definitions,
and proofs to Appendices D and E.

process definition P :=procp(x,...){B}

process body B:=0|regr:8;B|chc(m,);B
| spawn p(7,...); B | loop {t} B
term t ==true | false | () | cycle N | x| »r

|t=t|letx=tint | ready (x.m)
| if x then t else t | send r.m(x)

|recvam | r:=t¢t|txt]| Ot

6 € data-types * € binary-operators (O € unary-operators
7 € endpoints x € identifiers r € registers m € messages

¢ € channels p € processes N € N

Figure 7. Anvil syntax.

6 Implementation

We have implemented Anvil in OCaml. The Anvil compiler
performs type checking on Anvil code and generates synthe-
sizable SystemVerilog code. We have publicly released the
compiler at https://github.com/kisp-nus/anvil.

The compiler uses the event graph as an intermediate
representation (IR) throughout the compilation process. It
constructs an event graph from the concrete syntax tree of
the Anvil source code, performs type checking on it, and
lowers it to SystemVerilog. Optimizations are applied to the
event graph both before and after type checking. Since event
graph construction and type checking follow the type system
in a straightforward manner, we focus on the optimization
and lowering strategies in this section.

6.1 Event Graph Optimizations

Optimizations aim to reduce the number of events in the
event graph while keeping its semantics unchanged. The
Anvil compiler performs optimizations in passes, with each
pass applying a specific optimization strategy. Figure 8 shows
examples of such optimization passes. The figure illustrates
simplified event graphs during optimization. Edge labels
(including their colours illustrated in the figure) describe the
timing relationships between events (nodes in the figure). A
blue edge from e, to e, represents that e, waits for a fixed
delay after e,, with the number of cycles indicated in #N).
When an event waits on multiple other events, i.e., with
multiple inbound blue edges, it occurs at the latest of the
specified time points. Red edges represent branching. When
e, has red edges to both e, and ey, either of them, but not
both, occurs in the same cycle as e,. Orange edges in turn
join branches: When e, and e;, both have orange edges to
ec, ec occurs in the same cycle when either of them occurs.
Triangles represent sets of edges. Recall that events represent
abstract time points. In a concrete run, they occur in specific
cycles (or are never reached). In general, two events can be
merged if they always occur at the same time. Many of the
optimization passes are based on identifying such cases.

https://github.com/kisp-nus/anvil

Anvil: A General-Purpose Timing-Safe Hardware Description Language
v v A B A B
33339

#N #N #N s o
O Owo |G A
ea <¢g €
B c BC\ a|b A
2220
PP OO |9 y
© O=9 |@ o=
#N A
() () @
/\

Figure 8. Examples of event graph optimizations. The event

graphs are simplified for illustration purposes. Edges de-

scribe timing relationships: blue for fixed cycle delays, red
for branching, and orange for joining branches. Triangles
represent sets of edges.

(a) Merging identical outbound edge labels. This opti-

mization pass merges outbound edges of an event e, that

share the same label. For example, edges labelled with #N

going to e, and e.. The events those edges connect to are

merged. A shared label implies that they occur at identical
delays from the parent event.

(b) Removing unbalanced joins. This optimization pass

removes an e, with two predecessors when either of its pre-

decessors (ep) always occurs no earlier than the other (e,),

ie., e, <G ep.In this case, e, is unnecessary, and its outbound

edges are migrated to ep.

(c) Shifting branch joins. When the ending events of the

two branches e; and e, are both derived with N cycles delay

after their predecessors eg, €, and have no associated actions

(e.g., register assignments or message sends/receives), the

event e, that joins the two can be shifted earlier. Instead of

delaying by N cycles and then joining, the branches can join
first into e/ and then delay by N cycles.

(d) Removing branch joins. If an event e, joins two branches

where the ending events e, and e;, are also the first events of

their branches, and both share the same predecessor e, then
ec can be merged into e,. This means that if two branches
take no delay, their joining event can be merged into the pre-

decessor. All actions of the joining event are then performed
in the predecessor event.

6.2 Code Generation

The Anvil compiler maps each Anvil process to a SystemVer-
ilog module. For each process, it generates module input/out-
put ports for channel communication and a finite state ma-
chine (FSM) for control flow based on the event graph. Note

ASPLOS 26, March 21-26, 2026, Pittsburgh, PA, USA.

that the compiler generates no extra code for maintaining life-
times or enforcing timing safety as it reasons about lifetimes
statically and guarantees timing safety through static type
checking. As such, they incur no overhead in the generated
hardware design.

Message Lowering. Each message in an endpoint maps to
up to three module ports: data, valid, and ack. The data
port carries the communicated data, while valid and ack are
handshake ports for synchronization. The compiler only gen-
erates both valid and ack when the specified sync mode is
dynamic for both the sender and the receiver (see Section 4.1).
If the sync mode for either side is static or dependent, the
compiler omits the corresponding port (valid for the sender
and ack for the receiver). In particular, both handshake ports
are omitted for a sync mode that is not dynamic on either
side, leaving data as the only port generated.

FSM Generation. The compiler generates the FSM based on
the event graph structure. For each event, it uses a one-bit
wire current to indicate if the event has been reached. For
some events, the compiler also generates registers to record
the current state. Such events include: (a) Joins: which prede-
cessors have been reached; (b) Cycle delays: cycle count; (c)
Send/receive events (only those with dynamic sync modes):
whether the message has been sent or received.

7 Evaluation
We aim to answer three questions through evaluation:

1. Expressiveness: Can Anvil express diverse hardware
designs, without incurring any latency' overhead?

2. Safety: Can Anvil assist the designer to express and
meet the implicit timing contracts?

3. Practicality: What overheads do Anvil-generated hard-
ware designs incur in synthesis?

Artefacts. We have released the evaluation artefacts publicly
for reproducibility. Refer to Appendix A for information.

7.1 Expressiveness

SystemVerilog supports describing circuits with arbitrary
latencies. To assess expressiveness, we evaluate designs cre-
ated in Anvil against open-source designs written in Sys-
temVerilog. We also compare Anvil with Filament [34], which
provides specialized abstractions for static pipelines.

Common Cells Benchmarks. Anvil is designed to be a
general-purpose HDL. To test this, we implemented various
hardware components with different behaviours. Specifically,
we implemented a first-in first-out (FIFO) buffer, a spill reg-
ister, and a passthrough stream FIFO (which allows read and
write in the same cycle). These are taken from the Common
Cells IP and are highly optimized designs for synthesis [41].
With Anvil, we replicated these designs while ensuring iden-
tical functional behaviour through unit tests. Importantly,

ILatency refers to clock cycle latency and not propagation delay.

ASPLOS 26, March 21-26, 2026, Pittsburgh, PA, USA.

Jason Zhijingcheng Yu, Aditya Ranjan Jha, Umang Mathur, Trevor E. Carlson, and Prateek Saxena

Table 1. Summary of area and power footprints of Anvil and baseline designs in SystemVerilog and Filament. SV stands for
SystemVerilog and dyn indicates dynamically varying cycle latencies.

. Area (um? Power (mW max (MHz, £50 Latency (cycles
Hardware Designs Baseline (Arivil Baseline (Anzlil]:{asel(ine Anvi)l Baseline T (O‘}:erhgad
FIFO Buffer (SV) 690 674 (—2%) | 1.434 1.403 (—2%) | 4062 4156 | dyn 0
Spill Register (SV) 165 171 (3%) 0.459 0.469 (2%) 5187 5375 dyn 0
Passthrough Stream FIFO (SV) 679 679 (0%) 1.239 1.264 (2%) 4093 3625 1 0
CVAG6 Translation Lookaside Buffer (SV) | 5561 5611 (0%) | 5.813 5.835 (0%) | 2468 2406 | dyn 0
CVAG Page Table Walker (SV) 499 561 (12%) | 0.649 0.676 (4%) | 3531 3281 | dyn 0
AES Cipher Core (SV) 9096 9090 (0%) | 0.793 0.972 (22%) | 781 1229 | dyn 0
AXI-Lite Demux Router (SV) 1318 1469 (11%) | 1.351 1.385 (2%) 2437 2125 dyn 0
AXI-Lite Mux Router (SV) 1448 1633 (12%) | 1.336 1.324 (0%) | 2406 2187 | dyn 0
Average overhead compared with SystemVerilog baselines: Area = 4.50%, Power = 3.75%
Pipelined ALU (Filament) 501 404 (=19%) | 0.658 0.678 (3%) | 3312 4675 |1
Systolic Array (Filament) 2522 2434 (—3%) | 2.533 2.808 (10%) | 2437 2862 | 1 0
Average overhead compared with Filament baselines: Area = —11.0%, Power = 6.5%

Anvil is able to express their dynamic behaviour without
introducing any latency overhead.

CVA6 MMU. We implemented the translation lookaside
buffer (TLB) and the page table walker (PTW), which to-
gether form the core of the memory management unit (MMU)
in the CVA6 RISC-V core [52]. These units are highly sen-
sitive to dynamic latencies, which static contracts cannot
capture. For example, the PTW incurs varying latencies per
request due to its dependency on the data cache for fetching
page table entries. Anvil replicates the same functional be-
haviour (verified with baseline RISC-V smoke tests) without
incurring any cycle-level latency overhead over the baselines.
OpenTitan AES Accelerator [38]. We implemented the un-
masked AES cipher core from OpenTitan. This core supports
encryption, decryption, and on-the-fly key generation for
AES-128 and AES-256. We verified its functional behaviour
using unit tests for encryption and decryption of plaintext.
The core has a clock-cycle latency proportional to the num-
ber of encryption rounds, and it flushes its state during oper-
ation. These characteristics make the latency dynamic, and
Anvil is able to replicate this behaviour. The original AES
core uses an S-box implementation intended for LUT map-
ping. To stay consistent with this design choice, we used the
baseline S-box IP optimized for LUT realization.

AXI-Lite Routers. Anvil abstracts communication inter-
faces using channels. To demonstrate the utility of this ab-
straction in real-world components, we implemented the
AXI-Lite demux router and AXI-Lite mux router with fair
arbitration. The AXI protocol itself is designed to provide
a channel-like interface between master and slave compo-
nents. We verified the correctness of our implementations
using unit tests with configurations of 8 slaves and 1 master,
and vice versa. These routers can be composed into an AXI
crossbar according to the desired configuration. With Anvil,
we replicated the same functional behaviour while abstract-
ing away the complexity of handling transaction requests

from the user. As in all our experiments, this design also
does not incur any additional latency overhead.

Pipelined Designs. Lastly, to demonstrate the ability of
Anvil recursives (Section 4.3) to express static pipelined de-
signs, we implemented a pipelined ALU and a pipelined
systolic array. We compared these implementations against
hardware designs generated by Filament. The evaluation
shows that Anvil allows for expressing such designs without
incurring any additional penalty.

Takeaway. Anvil provides cycle-level timing control and
precise expression of dynamic latency, with no additional
cycle latency or throughput overhead.

7.2 Safety

During our evaluation, we observed issues with the stream
FIFO. According to the IP documentation, the design goal is
clear: Reads are allowed only when the FIFO is not empty,
and writes only when it is not full. Additionally, if there is a
read and write request in the same cycle and the FIFO is full,
it should still allow the write.

However, we noticed that the original FIFO, even with
a handshake interface, does not actually prevent writes at
all. Instead, it relies on warning assertions (SVA) to alert
designers if they run into such cases. This means that unless
the design hits a specific overflow condition, no assertion
is raised. Moreover, once the overflow happens, there is no
further assertion until the FIFO again reaches its full depth.
This behaviour is ambiguous and is intended for revision as
confirmed with the maintainers [42].

This creates a gap between the documented contract and
the actual behaviour. The design does contain possible tim-
ing hazards and effectively pushes the responsibility onto
the designer to avoid them. In contrast, Anvil enforces these
contracts directly, and as we observe, does so without incur-
ring significant overhead. There are several such examples
of timing hazards in open-source IPs, where enforcement is

Anvil: A General-Purpose Timing-Safe Hardware Description Language

either left to the designer or sometimes not handled at all.
We discuss several such instances in Appendix C.

7.3 Practicality

To evaluate the practicality of the generated designs, we
synthesized all of them on a commercial 22 nm ASIC process.
This shows how well Anvil designs scale during synthesis
compared to SystemVerilog, which is widely regarded as
the most efficient option for practical hardware. We then
provide a detailed analysis of the sources of overhead and
efficiency in these designs. Table 1 summarizes the resource
consumption of circuits generated with Anvil.

Setup. We report the area, power, the maximum frequencies
(fmax) at which designs do not violate slack requirements,
and the clock cycle latency of the baseline. The area and
power are reported at min(fiax (Anvil), fin.x(baseline))/2.
Propogation Delay. The maximum frequency evaluation
shows that Anvil is able to synthesize circuits that are not
worse than the baseline in supporting higher frequencies.
This is primarily because the critical path is the same in both
designs. The additional propagation delay only comes from
the extra combinational logic introduced by code genera-
tion. For pipelined designs, Anvil achieves higher maximum
frequency than the baseline.

Area. Anvil provides constructs that implicitly generate state
machines as efficiently as handwritten ones. This is reflected
in the area overheads when compared against handwritten
baselines. The overhead in non-combinational area across
all designs is equivalent to, or in some cases even lower than,
the baseline implementations.

For example, in the case of the AXI router, the observed
overhead for the AXI demux (1469 vs. 1318) arises entirely
from the FIFO component. The FIFO is required to preserve
the ordering of transactions on the AW/AR channels relative
to their corresponding W/B/R channels. The router instan-
tiates three FIFOs in total. Each FIFO contributes roughly
45 units of area overhead, as the select signal width is only
3 bits. However, as the data width increases, the relative
overhead becomes demagnified. This trend is evident in the
32-bit FIFO buffer results reported in Table 1.

A similar observation holds for the PTW. Here, the non-
combinational area is comparable (330 vs. 352), while the
combinational area shows a modest gap (168 vs. 208). This
difference essentially reflects a fixed cost of Anvil’s code gen-
eration. As a result, the relative overhead is more pronounced
for small-area designs but negligible for larger ones.
Power. The power overhead in Anvil arises primarily from
bundling signals and flattening data structures. In this repre-
sentation, the synthesis toolchain may treat the entire bundle
as active, even when only a portion is in use. Consequently,
switching activity, and thus dynamic power, increases with
datapath width, as observed in the AES cipher core. At the
same time, the Anvil compiler can reduce leakage power

ASPLOS 26, March 21-26, 2026, Pittsburgh, PA, USA.

because all signals are explicitly connected, leaving none
floating. Additionally, register assignments for explicitly de-
clared registers occur only when the corresponding event
is triggered. This behaviour implicitly provides clock gating
for some register writes.

Summary. Overall, Table 1 shows that Anvil achieves area
efficiency on par with handwritten SystemVerilog, with over-
heads typically within 12% and averaging 4.50%. Power over-
heads are more noticeable in wide datapath designs (e.g., the
AES cipher core) due to increased switching activity, but
remain modest overall (averaging 3.5%). The maximum fre-
quencies are generally on par with handwritten SystemVer-
ilog, and in pipelined cases, even exceed the baseline. Im-
portantly, none of the designs introduce extra cycle latency.

Takeaway. Anvil is practical for creating real-world hard-
ware designs with minimal area/power overheads and
seamlessly integrates into existing SystemVerilog designs.

8 Related Work

Timing-Oblivious HDLs. The industry-standard HDLs,
SystemVerilog [22] and VHDL [21], describe hardware be-
haviours with dataflows involving registers and wires within
single cycles. This abstract model equips them with low-
level expressiveness but is not conducive to time-related
reasoning, causing such problems as timing hazards. Em-
bedded HDLs [3, 12, 43, 45] use software programming lan-
guages for hardware designs for their better parameteri-
zation and abstraction capabilities. They follow the same
single-cycle model as in SystemVerilog and VHDL. Bluespec
SystemVerilog [5, 35] provides an abstraction of hardware
behaviours with sequential firing of atomic rules. It is still
limited to describing single-cycle behaviours and does not
provide timing safety. Higher-level HDLs, high-level synthe-
sis (HLS) languages, and accelerator description languages
(ADLs) [20, 24, 44, 49, 51] specialize in specific applications
and abstracts away cycle-level timing and the distinction
between stateless signals and registers.

Timing-Aware HDLs. Filament [34] achieves timing safety
with timeline types which only support statically fixed de-
lays. As a result, it is limited to designs with static timing
behaviours. HIR [31] is an intermediate representation (IR)
for describing accelerator designs. It introduces time vari-
ables to specify timing, and allows specifying a static delay
for each function to indicate when it returns. HIR abstracts
away the distinction between signals and registers and does
not capture the notion of lifetimes and only supports static
timing behaviours. Piezo [27] is an IR that supports specify-
ing both static and dynamic timing through timing guards.
Hazard Prevention. BaseJump [46] and Wire Sorts [8] are
type systems deigned to identify combinational loops, a sep-
arate concern than timing hazards. ShakeFlow [17] proposes
a dynamic control interface to prevent structural hazards

ASPLOS 26, March 21-26, 2026, Pittsburgh, PA, USA.

in pipelined designs. Hazard Interfaces [25] generalizes it
further to cover data and control hazards as well. Both focus
on higher-level notions of hazards than timing hazards on
high-level abstractions specialized for pipelined designs.
RTL Verification. Verification techniques focus on more
general specifications for RTL designs, e.g., those based on
temporal logics [6, 16, 33, 39]. In practice, desired properties
are typically specified as assertions in source code, which
are verified either through testing [11, 23] or through for-
mal methods such as model checking [7, 48, 50]. Compared
with Anvil, verification-based techniques cover more general
properties, but suffer from a long feedback loop resulting
from a separate verification stage, the extra burden of main-
taining implementation-specific specifications, and tractabil-
ity issues such as state explosion. Section 2.4 compares Anvil
with verification-based methods in more detail.

9 Conclusions

In this work, we formalize the problem of timing hazards
and present Anvil, a hardware description language that
provides timing safety by capturing and enforcing timing
requirements on shared values in timing contracts. Anvil
ensures safe use of values, guaranteeing that they remain
unchanged throughout their lifetimes. Meanwhile, it pro-
vides the expressiveness for cycle-level timing control and
for describing designs with dynamic timing characteristics.

Acknowledgments

We thank NUS KISP Lab members and anonymous reviewers
for their feedback, and Yaswanth Tavva and Sai Dhawal
Phaye for their help with infrastructure setup. This research
is funded, in part, by Singapore Ministry of Education Tier 2
grants MOE-T2EP20124-0007 and MOE-T2EP20222-0007.

References

[1] Alexforencich. 2022. Tx signals for raw ethernet frame Issue 121
alexforencich/verilog-ethernet. https://github.com/alexforencich/
verilog-ethernet/issues/121 Accessed: 2024-11-12.

[2] C.Baay. 2015. Digital Circuits in ClaSH. Ph. D. Dissertation. University
of Twente. doi:10.3990/1.9789036538039

[3] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew
Waterman, Rimas Avizienis, John Wawrzynek, and Krste Asanovic.
2012. Chisel: Constructing Hardware in a Scala Embedded Language.
In Proceedings of the 49th Annual Design Automation Conference (DAC).
1216-1225. doi:10.1145/2228360.2228584

[4] Bluespec, Inc. 2008. Bluespec SystemVerilog Reference Guide.

Thomas Bourgeat, Clément Pit-Claudel, Adam Chlipala, and Arvind.

2020. The Essence of Bluespec: A Core Language for Rule-Based

Hardware Design. In Proceedings of the 41st ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI). 243-257.

doi:10.1145/3385412.3385965

[6] P. Camurati and P. Prinetto. 1988. Formal Verification of Hardware
Correctness: Introduction and Survey of Current Research. Computer
21,7 (1988), 8-19. doi:10.1109/2.65

[7] Candence [n.d.]. Jasper
https://www.cadence.com/en_US/home/tools/system-design-

—
w
[

Formal Verification Platform.

[8

—

[9

—

[10]

[11]
[12]
[13]

[14]

[15]

[16]

[17]

(18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Jason Zhijingcheng Yu, Aditya Ranjan Jha, Umang Mathur, Trevor E. Carlson, and Prateek Saxena

and-verification/formal-and-static-verification.html Accessed:
2025-08-21.

Michael Christensen, Timothy Sherwood, Jonathan Balkind, and Ben
Hardekopf. 2021. Wire Sorts: a Language Abstraction for Safe Hard-
ware Composition. In Proceedings of the 42nd ACM SIGPLAN Interna-
tional Conference on Programming Language Design and Implementa-
tion (PLDI). 175-189. doi:10.1145/3453483.3454037

Abhishek Chunduri. 2020. 1011 Overlapping (Mealy) Sequence De-
tector in Verilog. https://electronics.stackexchange.com/questions/
505795/1011-overlapping-mealy-sequence-detector-in-verilog Ac-
cessed: 2024-11-14.

Edmund M. Clarke, William Klieber, Milo§ Novacek, and Paolo Zuliani.
2012. Model Checking and the State Explosion Problem. In Tools for
Practical Software Verification, LASER 2011, Lecture Notes in Computer
Science, Bertrand Meyer and Martin Nordio (Eds.). 1-30. doi:10.1007/
978-3-642-35746-6_1

Cocotb [n.d.]. Cocotb. https://www.cocotb.org/ Accessed: 2025-08-21.
Jan Decaluwe. 2004. MyHDL: a Python-Based Hardware Description
Language. Linux J. 2004, 127 (2004), 5.

Dimitras-Vtool. 2024. Alu_full fifo in_test - Issue #1 - Dimitras-
Vtool/ALU. https://github.com/dimitras-vtool/ALU/issues/1. Ac-
cessed: 2024-11-14.

Alan A.A. Donovan and Brian W. Kernighan. 2015. The Go Program-
ming Language (1st ed.).

fpgasystems. 2024. Each completion queue contains 2-cycle burst
valid signal | Issue 78 | fpgasystems/Coyote. https://github.com/
fpgasystems/Coyote/issues/78 Accessed: 2024-11-12.

Aarti Gupta. 1992. Formal Hardware Verification Methods: A Survey.
(1992).

Sungsoo Han, Minseong Jang, and Jeehoon Kang. 2023. ShakeFlow:
Functional Hardware Description with Latency-Insensitive Interface
Combinators. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 2. 702-717. doi:10.1145/3575693.3575701

C. A. R Hoare. 1978. Communicating Sequential Processes. Commun.
ACM 21, 8 (1978), 666—677. doi:10.1145/359576.359585

Charles A. R. Hoare. 2000. Communicating Sequential Processes
(reprinted ed.).

Steven Hoover and Ahmed Salman. 2018. Top-Down Transaction-
Level Design with TL-Verilog. arXiv:1811.01780 [cs.AR] https://arxiv.
org/abs/1811.01780

2009. IEEE Standard VHDL Language Reference Manual. IEEE Std
1076-2008 (Revision of IEEE Std 1076-2002) (2009), 1-640. doi:10.1109/
IEEESTD.2009.4772740

2018. 1800-2017 - IEEE Standard for SystemVerilog—Unified Hardware
Design, Specification, and Verification Language.

2020. IEEE Standard for Universal Verification Methodology Language
Reference Manual. IEEE Std 1800.2-2020 (Revision of IEEE Std 1800.2-
2017) (2020), 1-458. doi:10.1109/IEEESTD.2020.9195920

2023. IEEE Standard for Standard SystemC® Language Reference
Manual. IEEE Std 1666-2023 (Revision of IEEE Std 1666-2011) (2023),
1-618. doi:10.1109/IEEESTD.2023.10246125

Minseong Jang, Jungin Rhee, Woojin Lee, Shuangshuang Zhao, and
Jeehoon Kang. 2024. Modular Hardware Design of Pipelined Circuits
with Hazards. Proc. ACM Program. Lang. 8, PLDI, Article 148 (2024),
24 pages. doi:10.1145/3656378

Christoph Kern and Mark R. Greenstreet. 1999. Formal Verification in
Hardware Design: A Survey. ACM Transactions on Design Automation
of Electronic Systems 4, 2 (1999), 123-193. doi:10.1145/307988.307989
Caleb Kim, Pai Li, Anshuman Mohan, Andrew Butt, Adrian Sampson,
and Rachit Nigam. 2024. Unifying Static and Dynamic Intermediate
Languages for Accelerator Generators. Proceedings of the ACM on
Programming Languages 8, OOPSLA2 (2024), 2242-2267. doi:10.1145/
3689790

https://github.com/alexforencich/verilog-ethernet/issues/121
https://github.com/alexforencich/verilog-ethernet/issues/121
https://doi.org/10.3990/1.9789036538039
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/3385412.3385965
https://doi.org/10.1109/2.65
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification.html
https://doi.org/10.1145/3453483.3454037
https://electronics.stackexchange.com/questions/505795/1011-overlapping-mealy-sequence-detector-in-verilog
https://electronics.stackexchange.com/questions/505795/1011-overlapping-mealy-sequence-detector-in-verilog
https://doi.org/10.1007/978-3-642-35746-6_1
https://doi.org/10.1007/978-3-642-35746-6_1
https://www.cocotb.org/
https://github.com/dimitras-vtool/ALU/issues/1
https://github.com/fpgasystems/Coyote/issues/78
https://github.com/fpgasystems/Coyote/issues/78
https://doi.org/10.1145/3575693.3575701
https://doi.org/10.1145/359576.359585
https://arxiv.org/abs/1811.01780
https://arxiv.org/abs/1811.01780
https://arxiv.org/abs/1811.01780
https://doi.org/10.1109/IEEESTD.2009.4772740
https://doi.org/10.1109/IEEESTD.2009.4772740
https://doi.org/10.1109/IEEESTD.2020.9195920
https://doi.org/10.1109/IEEESTD.2023.10246125
https://doi.org/10.1145/3656378
https://doi.org/10.1145/307988.307989
https://doi.org/10.1145/3689790
https://doi.org/10.1145/3689790

Anvil: A General-Purpose Timing-Safe Hardware Description Language

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

KULeuven-Micas. 2024. Fix ALU valid-ready signal by rgan-
tonio | Pull Request | #163 KULeuven-MICAS/snax_cluster.
https://github.com/KULeuven-MICAS/snax_cluster/pull/163/
commits/be67fbfd7ab821b7¢7928ccceb1801d3e34fb316 Accessed:
2024-11-12.

lowRISC. 2015. Add an INSTR_VALID_ID sig-
nal to completely decouple the pipeline stages,
LOWRISC/IBEX@F5D408D. https://github.com/lowRISC/ibex/

commit/f5d408d7f4523f4f105cf1fe3029bb28dba12d87 Accessed:
2024-11-12.

lowRISC. 2024. Timing issues in FW_OV "Insert Entropy" feature.
https://github.com/lowRISC/opentitan/issues/10983. Accessed: 2024-
11-12.

Kingshuk Majumder and Uday Bondhugula. 2023. HIR: An MLIR-based
Intermediate Representation for Hardware Accelerator Description. In
Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 4
(ASPLOS). 189-201. doi:10.1145/3623278.3624767

MITRE. 2024. CWE-1298: Hardware Logic Contains Race Conditions.
https://cwe.mitre.org/data/definitions/1298.html. Accessed: 2024-10-
26.

Moszkowski. 1985. A Temporal Logic for Multilevel Reasoning about
Hardware. Computer 18, 2 (1985), 10-19. doi:10.1109/MC.1985.1662795
Rachit Nigam, Pedro Henrique Azevedo De Amorim, and Adrian Samp-
son. 2023. Modular Hardware Design with Timeline Types. Proceed-
ings of the ACM on Programming Languages 7, PLDI (2023), 343-367.
doi:10.1145/3591234

Rishiyur Nikhil. 2004. Bluespec System Verilog: efficient, correct RTL
from high level specifications. In Proceedings. Second ACM and IEEE
International Conference on Formal Methods and Models for Co-Design
(MEMOCODE). 69-70. doi:10.1109/MEMCOD.2004.1459818
OpenHW Group. 2024. Issue 145: Clarification of valid-ready hand-
shake dependency. https://github.com/openhwgroup/core-v-xif/
issues/145 Accessed: 2024-11-12.

OpenHW Group. 2024. Issue 194: Hansdhake rules additional note.
https://github.com/openhwgroup/core-v-xif/issues/194 Accessed:
2024-11-12.

OpenTitan [n. d.]. AES - OpenTitan Documentation. https://opentitan.
org/book/hw/ip/aes/index.html Accessed: 2024-11-14.

Amir Pnueli. 1977. The Temporal Logic of Programs. In 18th Annual
Symposium on Foundations of Computer Science (SFCS). 46-57. doi:10.
1109/SFCS.1977.32

Pulp-Platform. 2016. Add missing w_valid pulp-
platform/core2axi@25eba94. https://github.com/pulp-platform/
core2axi/commit/25eba94af4a58249cfa65e1c259ed4b4c5bbfd 12
Accessed: 2024-11-12.

Pulp-Platform. 2025. GitHub - pulp-platform/common_cells: Com-
mon SystemVerilog components. https://github.com/pulp-platform/
common_cells Accessed: 2024-11-14.

Pulp-Platform. 2025. Passthrough Stream FIFO correct specification.
https://github.com/pulp-platform/common_cells/issues/264 Accessed:
2024-11-14.

Andy Ray, Benjamin Devlin, Fu Yong Quah, and Rahul Yesantharao.
2023. Hardcaml: An OCaml Hardware Domain-Specific Language for
Efficient and Robust Design. arXiv:2312.15035 [cs.PL] https://arxiv.
org/abs/2312.15035

Frans Skarman and Oscar Gustafsson. 2022. Spade: An HDL Inspired
by Modern Software Languages. In 2022 32nd International Conference
on Field-Programmable Logic and Applications (FPL). 454-455. doi:10.
1109/FPL57034.2022.00075

SpinalHDL 2025. Spinal Hardware Description Language — SpinalHDL
documentation. https://spinalhdl.github.io/SpinalDoc-RTD/master/
index.html Accessed: 2024-11-14.

[46]

[47]

[48]

[49]
[50]

[51]

[52]

ASPLOS 26, March 21-26, 2026, Pittsburgh, PA, USA.

Michael Bedford Taylor. 2018. Basejump STL: systemverilog needs a
standard template library for hardware design. In Proceedings of the
55th Annual Design Automation Conference (DAC). Article 73, 6 pages.
doi:10.1145/3195970.3199848

titan. 2014. Synchronizing Multiplier with Adder to Form
Mac. https://electronics.stackexchange.com/questions/102746/
synchronizing-multiplier-with-adder-to-form-mac Accessed: 2024-
11-14.

Hasini Witharana, Yangdi Lyu, Subodha Charles, and Prabhat Mishra.
2022. A Survey on Assertion-based Hardware Verification. Comput.
Surveys 54, 11s (2022), 1-33. doi:10.1145/3510578

XLS [n.d.]. XLS: Accelerated HW Synthesis. https://google.github.io/
xls/ Accessed: 2024-11-14.

YosysHQ 2025. YosysHQ/Yosys. https://github.com/YosysHQ/yosys
Accessed: 2025-08-21.

Drew Zagieboylo, Charles Sherk, Gookwon Edward Suh, and An-
drew C. Myers. 2022. PDL: A High-Level Hardware Design Language
for Pipelined Processors. In Proceedings of the 43rd ACM SIGPLAN
International Conference on Programming Language Design and Imple-
mentation (PLDI). 719-732. do0i:10.1145/3519939.3523455

F. Zaruba and L. Benini. 2019. The Cost of Application-Class Pro-
cessing: Energy and Performance Analysis of a Linux-Ready 1.7-GHz
64-Bit RISC-V Core in 22-Nm FDSOI Technology. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems 27, 11 (2019), 2629-2640.
doi:10.1109/TVLSI.2019.2926114

https://github.com/KULeuven-MICAS/snax_cluster/pull/163/commits/be67fbfd7ab821b7c7928ccceb1801d3e34fb316
https://github.com/KULeuven-MICAS/snax_cluster/pull/163/commits/be67fbfd7ab821b7c7928ccceb1801d3e34fb316
https://github.com/lowRISC/ibex/commit/f5d408d7f4523f4f105cf1fe3029bb28dba12d87
https://github.com/lowRISC/ibex/commit/f5d408d7f4523f4f105cf1fe3029bb28dba12d87
https://github.com/lowRISC/opentitan/issues/10983
https://doi.org/10.1145/3623278.3624767
https://cwe.mitre.org/data/definitions/1298.html
https://doi.org/10.1109/MC.1985.1662795
https://doi.org/10.1145/3591234
https://doi.org/10.1109/MEMCOD.2004.1459818
https://github.com/openhwgroup/core-v-xif/issues/145
https://github.com/openhwgroup/core-v-xif/issues/145
https://github.com/openhwgroup/core-v-xif/issues/194
https://opentitan.org/book/hw/ip/aes/index.html
https://opentitan.org/book/hw/ip/aes/index.html
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://github.com/pulp-platform/core2axi/commit/25eba94af4a58249cfa65e1c259ed4b4c5bbfd12
https://github.com/pulp-platform/core2axi/commit/25eba94af4a58249cfa65e1c259ed4b4c5bbfd12
https://github.com/pulp-platform/common_cells
https://github.com/pulp-platform/common_cells
https://github.com/pulp-platform/common_cells/issues/264
https://arxiv.org/abs/2312.15035
https://arxiv.org/abs/2312.15035
https://arxiv.org/abs/2312.15035
https://doi.org/10.1109/FPL57034.2022.00075
https://doi.org/10.1109/FPL57034.2022.00075
https://spinalhdl.github.io/SpinalDoc-RTD/master/index.html
https://spinalhdl.github.io/SpinalDoc-RTD/master/index.html
https://doi.org/10.1145/3195970.3199848
https://electronics.stackexchange.com/questions/102746/synchronizing-multiplier-with-adder-to-form-mac
https://electronics.stackexchange.com/questions/102746/synchronizing-multiplier-with-adder-to-form-mac
https://doi.org/10.1145/3510578
https://google.github.io/xls/
https://google.github.io/xls/
https://github.com/YosysHQ/yosys
https://doi.org/10.1145/3519939.3523455
https://doi.org/10.1109/TVLSI.2019.2926114

ASPLOS 26, March 21-26, 2026, Pittsburgh, PA, USA. Jason Zhijingcheng Yu, Aditya Ranjan Jha, Umang Mathur, Trevor E. Carlson, and Prateek Saxena

A Artifact Appendix
A.1 Abstract

The artefacts include the Anvil compiler and the case stud-
ies used to evaluate Anvil’s practicality and expressiveness.
The experiments were conducted by re-implementing open-
source hardware designs in Anvil, ensuring that each design
matches the original behaviour at the cycle level. All designs
type check in Anvil, demonstrating that expressing the same
behaviour in Anvil does not introduce any additional clock-
cycle latency. We also provide the synthesis reports from a
commercial 22 nm ASIC flow as part of the artefacts. These
reports show that Anvil incurs minimal overhead compared
to the baselines and achieves comparable or better maximum
critical frequency.

A.2 Artefact check-list (meta-information)

e Algorithm: algorithms for type checking and code genera-
tion (implemented in the Anvil compiler)

e Program: OpenTitan AES accelerator, CVA6 MMU, AXI
routers, Common Cells IP (all included)

e Compilation: OCaml 5.2, Verilator v5.036

e Transformations: Anvil compiler (included)

Run-time environment: Linux/Unix; Docker/Podman (no

root access required)

Hardware: 16 GB RAM, 30 GB external storage

Execution: <15 minutes to run all experiments

Metrics: cycle-accurate logs; ASIC synthesis reports

Output: log files; generated SystemVerilog; sample outputs

included

o Experiments: cycle-accurate behavioural matching; ASIC
synthesis evaluation (fully automated “push-button” simula-
tion)

e How much disk space required (approximately)?: 30 GB

e How much time is needed to prepare workflow (ap-
proximately)?: 1 hour to build the container image

e How much time is needed to complete experiments
(approximately)?: 15 minutes to run experiments + manual
inspection time

e Publicly available?: Yes

e Code licenses (if publicly available)?: MIT License

o Workflow automation framework used?: Docker/Pod-
man with scripts

e Archived (provide DOI)?: 10.5281/zenodo.18346123

A.3 Description

A.3.1 How to access. The artefacts are available online
at https://github.com/kisp-nus/AnvilHDL-Experiments/tree/
artefact-asplos-2026. The repository contains the Anvil im-
plementation of the baselines from open source repositories.
It also includes all baseline benchmark implementations from
open-source projects as Git submodules.

A.3.2 Hardware dependencies. A multicore CPU with
at least 16 GB RAM and 30 GB of free disk space is required
to reproduce the artefacts.

A.3.3 Software dependencies. The only prerequisite for
evaluating the artefact is a working Docker or Podman in-
stallation.

A.4 Installation
To begin, clone the GitHub repository:

git clone \
https://github.com/kisp-nus/AnvilHDL-Experiments.git
cd AnvilHDL-Experiments

A.5 Experimental Workflow

The quickest way to run the complete experiment suite is to
use the provided Dockerfile, which sets up all dependencies
including benchmarks, Verilator, the Anvil compiler, and
supporting tools. A push-button script automates the entire
process—from building the container image to running all
experiments. With Docker or Podman installed and a Unix
shell, you are ready to proceed.

bash run.sh [-r]

The-r flag forces a rebuild of the container. Without it,
the script reuses an existing build (if present) or builds it,
and then executes the experiments sequentially, collecting
all logs in the out directory.

If you prefer to run the workflow locally (without using a
container), you can reproduce the same results using:

python3 run_artefact.py

Individual experiments can also be run independently.
Each experiment directory contains its own README with
detailed instructions.

A.6 Evaluation and expected results

After running the experiments, the out directory contains
cycle-accurate print logs for each design. These logs match
across Anvil and the corresponding baselines. An explana-
tion of each testbench is provided in the top-level README of
the repository. A sample output is provided in the sample_out
directory for their reference.

Synthesis reports are available in the synthesis_reports
directory. They can be inspected for area, power, and max-
imum frequency results from the commercial 22 nm ASIC
flow.

A.7 Experiment customization

The Anvil compiler is publicly available at https://github.
com/kisp-nus/anvil. It is actively maintained and includes
detailed instructions for installation, customization, and us-
age. Comprehensive documentation is available at https:
//docs.anvil.kisp-lab.org/. In addition, we provide an online
playground for editing and simulating simple Anvil designs
at https://anvil.kisp-lab.org/.

https://github.com/kisp-nus/AnvilHDL-Experiments/tree/artefact-asplos-2026
https://github.com/kisp-nus/AnvilHDL-Experiments/tree/artefact-asplos-2026
https://github.com/kisp-nus/anvil
https://github.com/kisp-nus/anvil
https://docs.anvil.kisp-lab.org/
https://docs.anvil.kisp-lab.org/
https://anvil.kisp-lab.org/

Anvil: A General-Purpose Timing-Safe Hardware Description Language

ASPLOS 26, March 21-26, 2026, Pittsburgh, PA, USA.

chan ch {
right data : (logic @res),
left res : (logic @#1)

chan ch_s {
right data : (logic @#1)

proc grandchild(ep : left ch_s) {

reg cnt : logic[32];

loop {
set cnt := *cnt + 32'b1

}

loop {
let v = if *cnt > 32'h100000 { 1'b1 } else { 1'b0 };
send ep.data(v) >>
cycle 1

proc child(ep : left ch) {
reg r : logic;

chan ep_sl -- ep_sr : ch_s;
spawn grandchild(ep_sl);
loop {

set r := ~xr >>

let d = recv ep_sr.data >>
send ep.data (*r & d) >>

let _ = recv ep.res
3
}
proc Top() {
chan ep_sl -- ep_sr : ch;
spawn child(ep_sl);
loop {
let d = recv ep_sr.data >>
cycle 1 >>
dprint "Value: %b" (d) >>
cycle 1 >>
dprint "Value should be the same %b" (d) >>
cycle 1 >>
send ep_sr.res (1'b1) >>
cycle 1
3

Listing 1. Example Anvil code.

A.8 Methodology

Submission, reviewing and badging methodology:

e https://www.acm.org/publications/policies/artifact-review-

and-badging-current
e https://cTuning.org/ae

module grandchild(/* omitted */);
logic [31:0] cnt;
logic data_q, data_d;

assign data_o = data_q;
assign data_valid_o = 1'b1;
always_comb begin
data_d = data_q;
if (data_ack_i) begin
data_d = cnt > 32'h100000 ? 1'b1 : 1'b0;
end
end

initial begin
cnt <= '0Q;
data_q <= 1'b0;

end

always_ff @(posedge clk_i) begin
cnt <= cnt + 32'b1;
data_qg <= data_d;

end

endmodule

module child(/* omitted */);
/* omitted x/
endmodule

module example(input logic clk_i);
/* omitted */

enum logic[1:0] { /* omitted %/ } state_q, state_d;

assign data_ack = state_gq == RECV;
assign res_valid = state_q == SEND;
always_comb begin

state_d = state_q;

unique case (state_q)

/* omitted */

endcase

end

initial state_qg <= RECV;
always_ff @(posedge clk_i) begin
if (state_q == ST0@ || state_q == ST1) begin
assert(data == $past(data));
end
state_q <= state_d;
end

endmodule

Listing 2. Example SystemVerilog code with assertions.

B Comparison with Verification

Consider the Anvil code in Listing 1. The module Top re-
ceives data and sends back a response to the child mod-
ule. The data received is expected to be usable and keep

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://cTuning.org/ae

ASPLOS 26, March 21-26, 2026, Pittsburgh, PA, USA. Jason Zhijingcheng Yu, Aditya Ranjan Jha, Umang Mathur, Trevor E. Carlson, and Prateek Saxena

§ dma_ch prtc FOO(dma_ch_le : left dma_ch, ...) {

g proc DMA |« oop {

c send dma_ch_le.req({...,*address,*cfg}) >>
'E set address := protected_address >>

@ dma__ch definition let x = recv dma_ch_le.gnt_res;

E right req : dma_in@gnt_res y T Error: Attempted assignment to a loaned register
9 |[|1eft gnt_res : dma_oute#1 |3
£
H dma_ch |proc DMA(dma_ch_ri : right dma_ch, ...) {
] 8 extern FOO 1loop {

o 1 e
.g u’; let +input = recv dma_ch_ri.req >>
8 E dma_ch definition send pmp_ch.req({..,input.address, ...}) >>
£ % - = — | el
g @ {;%:tg;iq F;Sd'f‘aa;‘;‘@zi;@“) } (Error: Value does not live long enough in message send
a R

Figure 9. Anvil can assist in preventing bugs.

unchanged in between. The child module in turn commu-
nicates with grandchild to obtain the data. Anvil’s type sys-
tem rejects this code because the data child obtains from
grandchild, namely d, lives only for one cycle, but a value
that depends on it (*r & d) is sent to Top which requires it
to stay alive until the response. When fed with this code as
input, the Anvil compiler detects this type error and prints
the following error message:

Value not live long enough in message send!
Top.anvil:29:4:
29| send ep.data (*r & d) >>

| AAAAAAAAAAAAAAAAAAAAA

Now let us consider the same design expressed in Sys-
temVerilog with an assertion for the same property, pro-
vided in Listing 2. Comparing the two versions leads us to
the following observations:

e The assertion in the SystemVerilog code is tied to the
implementation. For example, it already requires the
designer to manually and explicitly identify the states
where the data is used and needs to remain unchanged.
Anvil does not require such manual effort.

e Anvil can check the property individually for each
module due to the compositional contracts specified in
channel definitions. In the example, Anvil can report
the violation by just looking at child module alone.
Checking the property in the SystemVerilog code re-
quires reasoning across all three modules.
Problems may arise if we attempt to apply formal ver-
ification techniques to verify the specified property in
the SystemVerilog code. For example, bounded model
checking on the SystemVerilog code using Yosys SMT-
BMC and z3 fails to detect the violation even with
large depth limits. This is due to the large number of
concrete states. In contrast, the Anvil code provides
abstractions that capture more of the hardware de-
signer’s intent, allowing the property to be checked
more easily.

C Safety Analysis on Real-World Errors

We were motivated to design Anvil by our own frustrating
experience implementing an experimental CPU architecture.
The frequent timing hazard we encountered during develop-
ment required significant debugging effort. We demonstrate
how Anvil can help designers address the following chal-
lenges with minimal effort:

1. Enforcing concrete timing contracts
2. Challenges in implementing timing contracts

Case 1: Enforcing Concrete Timing Contracts. The vul-
nerability class highlighted in CWE-1298 [32] illustrates a
hardware bug from HACK@DAC’21. This bug arose from
a missing timing contract in the DMA module of the Open-
Piton SoC. The module was intended to verify access to
protected memory using specific address and configuration
signals. However, it assumed these inputs would remain sta-
ble during processing without any mechanism to enforce
this assumption. This created a timing vulnerability across
module interactions.

If designed in Anvil, the DMA channel definition would
explicitly require that input signals remain stable until the
request is completed, as shown in Figure 9. Anvil would
enforce this stability requirement, ensuring that only com-
patible modules interact without introducing timing risks.
When the DMA module interfaces with non-Anvil modules,
Anvil imposes a one-clock-cycle lifetime on external signals.
If the DMA implementation does not follow the contract,
Anvil triggers an error: “Value does not live long enough...,
implying the need to register the signal immediately.

Similarly, designers using custom test benches with open-

source hardware often struggle to follow strict timing con-
tracts. This is particularly challenging when there is no
mechanism to enforce timing contracts. For instance, in
this GitHub issue [1], the designer observed unexpected be-
haviour during simulation while integrating a Verilog-based
Ethernet interface into their module. This Ethernet module
required a complex timing contract to be enforced on the
interfacing module for proper operation. However, without
a language that enforces this contract, the designer struggled
to explicitly meet these timing requirements and manage
synchronization.
Case 2: Challenges in Implementing Timing Contracts.
Designers often face challenges in implementing synchro-
nization primitives and dynamic timing contracts, even when
they intend to define them clearly. This difficulty is evident in
various open-source project commit histories and issue track-
ers. For example, in Table 2, we highlight a few instances
from GitHub that showcase how designers have struggled
with these aspects. Our analysis demonstrates that Anvil
could have prevented these issues or helped catch the bugs
before compilation.

Even when contracts are explicitly defined, the instruc-
tions for compliance can be ambiguous. A case in point is

Anvil: A General-Purpose Timing-Safe Hardware Description Language ASPLOS 26, March 21-26, 2026, Pittsburgh, PA, USA.

Table 2. Summary of Issues in some open source repositories

Repository Issue Analysis How can Anvil help?

In OpenTitan’s entropy source module, firmware (FW) is supposed to insert

verified entropy data into the RNG pipeline. However, a timing hazard If implemented in Anvil, FW would
OpenTitan prevented reliable data writing and control over the SHA operation. inherently control the state machine when
(Issue [30]) asserting data without explicit implementa

Solution Proposed in discussion: Add signals for FW to control the entropy -tion ensuring synchronization is built-in.

source state machine and a ready signal to safely write data into the pipeline.

The completion queue has a 2-cycle valid signal burst instead of one cycle.
The issue is still open. This happens when a write request is issued on the
sq_wr bus, and the cq_wr is observed for completion. The valid signal is

high for 2 cycles instead of one. Anvil implements the FSM for timing

contracts implicitly, providing synchroniza
-tion primitives to control the state and
ensure an error-free FSM implementation.

Coyote

(Issue [15]) Core Issue: The timing contract was not properly implemented, though the

designer defined it. The timing control was deeply embedded within
interconnected state machines, making the bug difficult to detect even with
a thorough inspection.

Commit Message: “Add an instr_valid_id signal to completely decouple the
pipeline stages, hopefully, it fixes the exception controller"

In Anvil, even for statically scheduled
pipelines, stage-to-stage handshakes are
enforced implicitly, ensuring timing
contracts are upheld even if the
schedule isn’t strictly adhered to.

ibex
(Commit [29]) | Commit Summary: Despite the pipeline being statically scheduled, the valid
signal was added later to enforce the timing contract only after unexpected
behaviour was observed.

Commit changes

assign a_ready_o = acc_ready_i && c_ready_i && (a_valid_i && b_valid_i); | Anvil implicitly handles handshake impl
snax-cluster assignb_ready_o = acc_ready_i && c_ready_i && (a_valid_i && b_valid_i); | -ementation for interfacing signals,
(Commit [28]) ensuring the enforcement of timing
Commit Summary: Fixes the implementation of the timing contract on the ALU | contracts.

interface by adding the missing valid signal in the handshake.
Commit changes: w_valid_o = 1’b1;

In Anvil, the assertion of valid signals and
synchronization is handled implicitly
whenever a message is sent

core2axi
(Commit [40]) | Commit Summary: Ensure compliance with the timing contract by asserting
the missing valid signal when sending a new write request on the bus.

the documentation for CV-X-IF, where one issue [37] reveals
the complications involved in adhering to the timing con-
tract. Another issue [36] illustrates that the complexity of a
static schedule necessitated additional notes to clarify the
implementation guidelines for the interfacing module.

In contrast, Anvil simplifies the implementation of syn-
chronization and finite state machines (FSM) that handle
timing contracts. Designers only need to define the con-
tract within the corresponding channel, which can utilize dy-
namic message-passing events. The synchronization primi-
tives (handshakes) are implemented implicitly and efficiently,
ensuring no clock cycle overhead. Additionally, the wait con-
struct allows designers to express the dynamic times required
to process a state. In ambiguous process descriptions, Anvil
flags the description to make necessary changes to guarantee
runtime safety statically.

ASPLOS 26, March 21-26, 2026, Pittsburgh, PA, USA. Jason Zhijingcheng Yu, Aditya Ranjan Jha, Umang Mathur, Trevor E. Carlson, and Prateek Saxena

message definitions M == {z.m:p,---}

message set X u={m.m,---}
composition k x=1t|k |5«

program P := (loop{t},M) | P ||s P

Figure 10. Anvil abstract syntax

D Formalization Details
D.1 Abstract Syntax

For convenience of formal reasoning, we also define an abstract syntax of Anvil programs, shown in Figure 10, allowing us to
discuss parallel composition in a style similar to communicating sequential processes (CSP) [18]. The ||z notation represents
parallel composition with the two sides communicating through messages specified in the set X. M maps each message to the
associated duration requirement.

D.2 Semantics

Execution log. An execution log is simply a sequence L = {aq, - - - , ak), Where ¢; is represents the set of operations performed
during cycle i. Operations can be one of the following — 1. ValCreate representing the creation of a new value that depends
on a set of registers and existing values, 2. ValUse, representing the use of a value, 3. RegMut, denoting mutation of a register,
4. ValSend, for sending of a value through a message, and 5. ValRecv, denoting the receipt of a value through a message.
Following this, we define the set of execution logs corresponding to a term, compositions, and finally programs. To capture the
non-determinism of message passing and branching in an execution log of a term, we delay each send and receive operation
by any non-negative number of cycles and allow each branching term to take either branch. Execution logs of compositions
are obtained by combining two execution logs, with the requirement that any send and receive operations for messages in =
must match and align in pairs, and each pair must use the same value identifier. In the combined execution log, the matching
send and receive operations are eliminated. This reflects that they have now become internal details, no longer affecting the
semantics of the composition. For programs, we take into consideration the looping semantics of each looping thread. We
achieve this by mapping a program to a set of compositions, where each composition is obtained by appending t in each
looping thread loop{t} arbitrarily many times. Any execution log of any such composition is an execution log of the program.
The semantics of those constructs is then defined by their sets of execution logs, which captures all their possible behaviours.

Definition D.1 (Execution log). An execution log consists of a sequence of sets £ = (o, a1, - - - , a). The finite set @; contains
the actions in the i-th cycle, each of the following form:
e ValCreate(v, {r1, 72, s rm}, {01, 02, - - - ,0n}) (creating a value with name o that depends on registers ry, 7, - - , rpy, and
values vy,0g, - - - , 0p)

e ValUse(v) (using the value identified by v)

e RegMut(r) (mutating the register identified by r)

o ValSend(s.m, v, p) (send a value with name o through message x.m with duration p)

e ValRecv(r.m, v, p) (receive a value with name o through message 7.m with duration p)

Definition D.2 (Local execution log). A log L is a local execution log of a term t if I; I, M + t ~» L < v, which is defined by
the following inference rules.

(E-CycLE)
[; {0}, M + cycle #k ~» (0F*! o ({ValCreate(v, 0, 0)})) <t v

(E-LITERAL)
T;{v}, M + n~ ({ValCreate(0,0,0)}) < v

F;Il,Ml-tl’\/)£14U1 F;Iz,MFtZMLZQUZ
Il OIZ Z(Z)

Shlft(r, |.£1| - 1), (I] U Iz),M it => ty ~ (.[,1 o .[,2) < Uy

(E-WarT)

Anvil: A General-Purpose Timing-Safe Hardware Description Language ASPLOS 26, March 21-26, 2026, Pittsburgh, PA, USA.

LMyt~ Ly<oy Tx: (| L] -Lo)L, Myt~ Ly <o,

F;(Il Ulz),MF let X =M in ty) ~> (.[:1L+J.£2) < 0y
11 01220

(E-LET)

I'(x) = (k,0)

E-REF
T:0,MF x~ 051 <o ()

IMrt~ L<ov 0 ¢l

(E-REGASSIGN)
LIU{o L, MEr =t~ LW {{ValUse(v), RegMut(r)}, {ValCreate(v’,0,0)}) < v’

iILMrt~ L <o vV¢]l keN

(E-SEND)
I;(IU{v'}),M+ send m.m(t) ~ 0! o ({ValSend(sr.m,v, M(rr.m)), ValCreate(o’, 0, 0)}) < v’
keNu+vo
- (E-RECV)
T; {o,u}),M+ recv m.m~ Q%o
{({ValRecv(sr.m,v, M(7r.m)), ValCreate(u, 0, {v})}) <u

F;Il,M F it~ ,L] < 01

L, MEty ~ .£2 < 0y

F;I3,M F 3~ .1:3 <03

LN(LUL)=0 LNE=0
1N (L2 U I3) 2N 13 (E-IFTHEN)
T, (Il Ul U I3),M Fif #; then t, else 3~ LW Ly W ({ValUse(vl)}) <0y

F;II,M it~ .£1 < 04

T, MFty~ Ly <oy

T;,M¥Ftz3~ L3 <us

LN(LUL)=0 LNIz=0
. 1N (LVI3) 2 N3 (E-I¥ELsE)
I(LHULUL),M¢rif t; then t, else t3~ L1 W L3 W ({ValUse(v1)}) < 03
(E-REGEvAL)
0;{v}, M + sr ~ ({ValCreate(v, {r},0)}) <o
(E-READY)
0; {v}, M + ready(m.m) ~ ({ValCreate(v,0,0)}) < v
Where (ao, ar, - -+, ak) © (fo, fr. -+, fi) = o, 1, -+, (ax U fo), Br. -+ . Bu)-
The merge operator @ is defined as (without loss of generality, assuming k < I): {ap, @1, -, o) W {Bo, b1, -, p1) =
<C(() Uﬁo:al Uﬂb" © Ok Uﬂk’ﬂk+1,' o ’ﬁl>
ak = (g, "+ ,ar_1) where foralli=0,1,--- ,k—1,a; = a.
The function shift(T, k) shifts all delays in T by k cycles. Formally,
shift(0, k) = 0
shift((T, x : (k’,v)), k) = shift (T, k), x : (max(0,k” — k), v)
Definition D.3 (Compositional execution log). L is an execution log of a « if:
e k =t and L is a prefix of an execution log of ¢
o k = K1 ||z K2, L1, L are execution logs of x; and k; respectively, and let L1 = (o, -+, am), L2 = (Po, -+, fm), the

following holds:
— Forall z.m € 3,0 < i < m, ValSend(rx.m, v, p) € ; if and only if ValRecv(z.m, v, p) € f;, and ValRecv(z.m, v, p) € ;

if and only if ValSend(rz.m, v, p) € f;.
- L= ¥Ym)Yi = a; U P —{ValSend(m.m,v, p) | =.m € £} — {ValRecv(r.m,v,p) | 7.m € X}.

ASPLOS 26, March 21-26, 2026, Pittsburgh, PA, USA. Jason Zhijingcheng Yu, Aditya Ranjan Jha, Umang Mathur, Trevor E. Carlson, and Prateek Saxena

Definition D.4 (Concretization). A composition k is a concretization of program P, written £ ~ «, by the following inference
rules:

(C-Basg)
(Loop{t}, M) ~t

(Loop{t}, M) ~ t’
(Loop{t},M) ~t" =>t

(C-EXTEND)

P~ K1 Pr~ kg

(C-ComPOSE)
P1 s P2~ x1 |5 k2

Definition D.5 (Program execution log). £ is an execution log of program % if there exists composition k such that £ ~ x
and £ is an execution log of k.

D.3 Type System

Event graph. The type system of Anvil is based on the event graph. An event graph, denoted G = (V, E), is a directed acyclic
graph that describes the time ordering among events in an Anvil process. Each node (i.e., event) is labelled to indicate how
its corresponding starting time relates to those of its direct predecessors. Types in Anvil reference the event graph as part
of the typing environment to convey timing constraints. We choose this strategy because the timing constraints associated
with a term are not always local. Take the example of send ch.m1 (x) => recv ch.m2, where ch.m1 specifies a duration of ch.m2.
It is necessary to be aware of the first ch.m2 event that occurs after ch.m1. This event does not appear in the expression
send ch.m1 (x) itself, but rather in the surrounding context in which send ch.m1 (x) appears, to ensure that x lives long enough.
We choose the event graph as it is a simple structure that captures all the necessary information to reason about such timing
constraints. As a shorthand, we use the notation e; — e; € G to say that G contains an edge from event e; to event e;. We
use G(ez) to denote (w, {e1 | e1 — e, € G}), which consists of the operation label w of e; as well as the set of all its direct
predecessors.
Types. Intuitively, a type encodes a lifetime by referencing the event graph and is a pair:

T ::= (e}, Sq),

where e; is an event graph node that encodes the start time, and Sy is a set of event patterns ey > p, the earliest match of which
defines the end time. An empty S, indicates that the lifetime is eternal. Each time pointer specifier is a pair of event identifier
eq and duration p, which implies the first time p is matched (the specified number of cycles have elapsed or a specified message
is sent or received) after e, is reached.
Typing Rules. A typing judgment is of the form

G RM,Coe +t:T.
The typing environment consists of I' which maps each let-binding to its type, the event graph G introduced above, R which
maps a register to its loan time, M which maps a message specifier (an endpoint and a message identifier, of the form z.m) to
the duration that specifies its lifetime requirement, C which is a set of identifiers associated with all branch conditions that
have appeared, and e, which references a node in G as an abstract specifier of the time at which t is to be evaluated.

The typing rules use the < and < relations to apply timing constraints. Their complete and formal definitions are available
in Section D. Intuitively, a <¢ b if the time specified by a is always no later than that by b in the event graph G, and a <G b
if the time specified by a is always strictly before that by b in G. Here a and b can be nodes or timing patterns in G. In our
implementation, we use sound approximations of < and <g.

I5GRMCe vt T
Ix:T;GRM,Cer+t:T

G(er) = (#k, {ec})
0;G,R M,0,e. +cycle k: (e, D)

(T-WEAKEN)

(T-CycCLE)

F;Ga Rs M’ Cl>ec F tl : (els Sd)
I;GRMCoerty: T, CiNCy=0

I5GRMCIUCy, e bty = t: T,

(T-WArT)

Anvil: A General-Purpose Timing-Safe Hardware Description Language ASPLOS 26, March 21-26, 2026, Pittsburgh, PA, USA.

M(z.m)=p G(er) = (m.m,{ec})
0;G,R,M,0,e. +recv m: (e, {e;>p})

(T-Recv)

x:(eSa) €T Gle) = (#0, {ec, er})
I';G R M0,e. + x: (el’, Sa)

(T-REF)

G, R M, Coe.+t: (e, Sq)
G(e)) = (m.m, {ec})
e1 <g e. e >M(m.m)<gSq
[5G, R, M,C,e. +send m.m(t) : (e}, 0)

(T-SEND)

IG R M, Cr,ec -ty : (e1,51)
TG, R M,Cy,ec ta: (€3,52)
G(e)) = (#0,{er,e2}) C1NCy =0

[5G RMCiUCy e ity xty: (e{,Sl U 52)

(T-BinOr)

F;G’ R’M’ C’ eC F t : (el’ Sd)
V(e,S) € R(r) :e. <g eV S < e
e1 <G e e>#1<cSs Gl(e) = (#1,{ec})

I'G,RM,Coe.b-r:=t: (e;,@)

(T-REGASSIGN)

d(e,S) eR(r):e<ge.Ne. <G SqANSq<gS
0;G,R,M,0,ec + =r: (e, Sq)

(T-REGEvAL)

TG, R M, Cyec vty : (61,51)
TG, R, M, Cy, €é ity (62,52)
;G R M, Cs,ell +t5: (es,S3)
e1 <ge.Ne. <g S
C¢C1UC2UC3 Clﬁ(C2UC3): C20C3:0
Gel) = G(e!) = (&e, {ec)) €, # ¢!
G(e)) = (@, {ez e3})

F;G,R, M, C] U C2 U C3 U {C}, ec F if 5t then [2) else I3 : (e;, S] U 52 U 53)

(T-Conb)

I;G,RM,Cyec+ty:(e1,51)
I;G,RM,Cyec 1ty : (e2,52)
G(el’) = (#0,{e;,e2}) Ci1NCy =0

F;G’ R’ M’ Cl) C2’eC F t1§t2 : (e;’ 52)

(T-JoIn)

(r.m,p) e M
0;G,R,M,0,e. + ready(m.m) : (e, {ec > #1})

(T-READY)

Well-typedness. We define well-typed terms, processes, and programs based on the above.

Definition D.6 (Well-typed Anvil term). An Anvil term ¢ is well-typed under the context M if there exist G, R, e, C, and T
such that G(eg) = (0,0) and @; G,R,M,C, ey -t : T.

Definition D.7 (Well-typed Anvil process). Under the context M, we say a process loop loop{t} is well-typed if the term
t = t is well-typed under M.
Definition D.8 (Well-typed Anvil program). A program % is well-typed if

o P = (loop{t}, M) and loop{t} is well-typed under M.

o P =P |5 Ps, and X = Mp, N Mp,, where Mp, is the union of all Ms that appear in P;.

ASPLOS 26, March 21-26, 2026, Pittsburgh, PA, USA. Jason Zhijingcheng Yu, Aditya Ranjan Jha, Umang Mathur, Trevor E. Carlson, and Prateek Saxena

D.3.1 Auxiliary Definitions. We define < and < that appear in the typing rules.

Definition D.9 (Timestamp). A function 7 : V — N is a timestamp function of event graph G = (V,E) iffor alle € V:

e If G(e) =(0,S), then 75 (e) = 0.

o If G(e) = (#k, S), then 75 (e) = maxe cs (7 (¢’) + k).

e If G(e) = (m.m,S), then 75 (e) = maxy cs 76 (€')

e If G(e) = (&c,S) A 1 (e) = maxe s 76 (€'), then Ve’ € V: (¢/ # e A G(e) = (&, S)) — 16 (e') = o0

e If G(e) = (@, S), then 75 (e) = ming cs 76 (€).

It is obvious that for any event graph G, at least one timestamp function exists. We now extend this definition of timestamps

to event patterns.

Definition D.10 (Event pattern timestamp). Let G be an event graph and 7 be a timestamp function of G. We define e > p:
o 7 (ev#k) =15 (e) +k
o 7 (e> m.m) = MiNG(e')=(r.m,S), 16 (e) <16 (¢') TG (€”) (or oo if no such e’ can be found).

Definition D.11 (<¢ and <g). Let G be an event graph. We say e; » p; < ez > p, if for all timestamp functions 7z of G, it
holds that 7 (e; » p1) < 76 (€2 > p2). Similarly, we say e; > p; <G e, > p, if for all timestamp functions 7 of G, it holds that
G (e1> p1) < 16 (e2 > p2).

It is easy to prove the following two lemmas.
Lemma D.12. If (e; — e;) € G, then e; < e.
Lemma D.13. SU S’ <5 S.

D.4 Safety

Definition D.14 (Register dependency set). We define that the value v has the register dependency set D in the execution log
L, written L + v | D, by the following inference rules:

m (R-BASE)
LrolD
——— (R-EmrTY)
L-0)ro|D
L-A{a;)Fo | D

o ¢ {ValCreate(v, S,,S,) | S, € 2Regld 5 ¢ 2Valld}
L-{aq;U{o})ro | D

(R-NONCREATE)
-£'<ai>|—01lD1 D]?tJ_

L-{a;)rop | D Di# L
L - {a; U {ValCreate (v, S;, {1, - ,or)} Fo | S,UDy U-+- U Dy

(R-CREATE)

Note: - is the normal concatenation operator.

Other auxiliary definitions, assuming £ = (@, a1, -+ , Qk),
o UseSet(L,v) = {i | ValUse(v) € a; V ValCreate(v, Sy, S;) € a; V ValRecv(.m, v, p) € a; V ValSend(.m, v, p) € a;}
o MutSet(L,D) = {i | r € D A RegMut(r) € a;}
d LtReCV(-Ea Z)) = mueDepSet(L,v),ValRecv(n’.m,u,p)Eai LtFun(.[:, I P)
i LtSend(L, U) = UuEDeriveSet(.C,u),ValSend(ir.m,u,p)Eai LtFun(.E, I P)
e LtFun(L, i, m.m) = [i,w) where w is the lowest j > i, such that ValSend(x.m, v, p) € a; or ValRecv(r.m,v,p) € a;
o LtFun(L,i,#) = [i,i+])

Defining safety. We first define when an execution log should be deemed safe. This notion, then, can be naturally lifted to
define the safety of a term, composition of terms and of an entire Anvil program.

Anvil: A General-Purpose Timing-Safe Hardware Description Language ASPLOS 26, March 21-26, 2026, Pittsburgh, PA, USA.

Definition D.15 (Safety of execution log). An execution log L is safe if for every value v, there exists an interval [q, b] such
that UseSet(£, v) U LtSend (L, v) C [a,b] C LtRecv(L,v), and for D such that £ + v | D, MutSet(£, D) N [a,b) = 0.

UseSet(L, v) includes all time points (cycle numbers) at which the value v is used, LtSend(£, v) captures when v needs to
be live as required by all send operations that involve v or other values that depend on it, LtRecv(L, v) captures when v is
guaranteed to be live through received messages from the environment, £ + v | D states that v directly or indirectly depends
on the set of registers D, and MutSet(L, D) captures when any register in D is mutated. Intuitively, the safety definition above
states that all uses of a value v and the lifetime promised to the environment should fall within a continuous time window.
During this time window, values received from the environment through receive are live, and no register that v depends on is
mutated.

Since the set of all execution logs of a term, composition, or program captures all its possible run-time timing behaviours,
we define safety for those constructs as follows.

Definition D.16 (Term, composition, and program safety). A term, composition, or program is safe if all its execution logs are
safe.

Safety guarantees. We present a sketch of the proof of the safety guarantees of Anvil by providing the key lemmas. The
detailed proofs of the lemmas are available in Section E of the Appendix.
First, we show that well-typedness implies safety for terms.

Lemma D.17 (Safety of terms). A well-typed term is safe.

Then, by matching the LtSend(£, v) and LtRecv(L’, v) when obtaining the execution logs of well-typed compositions, we
prove that well-typedness implies safety also for compositions.

Lemma D.18 (Safety of compositions). A well-typed composition is safe.

Then, to account for the looping semantics in programs, we show that well-typedness for an Anvil process loop{t} is
sufficient to guarantee that any number of ¢s joined together by wait (=) is also well-typed.

Lemma D.19 (Two iterations are sufficient). Let ¢ be an Anvil term and i,k = 1,2, - - be inductively defined as t; = t and
te1 = te = t.If £y is well-typed, ¢y is well-typed forallk =2, ---.

With the results above, the following theorem that describes the main safety guarantees of Anvil easily follows.

Theorem D.20 (Anvil safety guarantees). A well-typed Anvil program is safe.

E Proofs
E.1 Additional Lemmas

Lemma E.1. If a term ¢ is well-typed and 0; G, R, M,0,ey, + t : T, then for every local execution log £ = (@, -, o)
of t, there exists a timestamp function 75 of G, such that if I';G,R,M,C,e. + t’' : (e, S;) appears during inference of
0;G,RM,0,eo vt :T,and I";I',M + t' ~ L’ < v appears during inference of O; I, M + t ~ L < vy, let L = {(ag,- - ,a;),
then V0 < i <[: @ C Qiyrg(e,) and 76 (ec) +1 = 76 (¢;). And for all r € D, L + v | D, there exists (e, S) € R(r), such that
e<geandS; <; S.

Proof. We first show that such a function g, if it exists, is a timestamp function of G. Consider the sub-terms ¢’ that appear
both in typing inference and evaluation. If T'; G, R, M, C, e. + t’ : (e, S4) appears during inference of 0; G,R, M, 0, ey + t : T, and
I I',M+ t' ~ L’ <o appears during inference of 0;I, M + t ~ L < vy, we show that 7 (e;) + I = 75 (e;) is consistent with
the timestamp function definition. In addition, we show ¥(x : (k,0")) € I'" : T'(x) = (e}, S)) — k = max(0, 76 (e;) - 16 (e)).
This is shown by considering all possibilities for the rules applied and for each case replacing one constraint for the timestamp
with a stricter equation. For example:

e T-CycrE and E-Cycire: G(e.) = (#k, {e;}),]l = k.

e T-Wait and E-WAIT: 75 (e.) + [} = 76 (e’) e (el’) +hL=1c(e),l =14 +1.

e T-Rer and E-Rer: [= k, G(e;) = (#0, {ec, €/ }).

Let k be the number of all such sub-terms, then there are k linear equations, and each equation involves at least one unique
variable. Hence any subset of those equations contain at least as many variables as equations. Therefore, the system of linear
equations has at least one solution. In other words, 75 exists and is a timestamp function of G.

Now we prove that with such a 75,0 < i <[: & C ®iyrs(e.), Where L' = (o, -+, a;). This is shown by induction.

By induction, we can prove that for all » € D, £ + v | D, there exists (e, S) € R(r), such that e <g ¢; and Sy <¢ S. O

ASPLOS 26, March 21-26, 2026, Pittsburgh, PA, USA. Jason Zhijingcheng Yu, Aditya Ranjan Jha, Umang Mathur, Trevor E. Carlson, and Prateek Saxena

E.2 Lemma D.17

Proof. Let t be a well-typed Anvil term. From the definition of well-typedness, 0; G,R, M, 0, e +- ¢ : T. We show that for every
local execution log £ = {ap, - -+ , k), 0; I, M + t ~ L < v, the timestamp function in Lemma E.1 satisfies that for every value
0, if T"; I/, M + t' ~ L’ < v appears during inference of O; LM + t ~ L < vy, and T';G,R,M,C, e. + t’ : (e}, S;) appears in
during inference of O;G,R, M, 0,eq +t : T, let a = 7 (¢;) , b = 16 (mine,>p€5d, 76 (e l>p)), then UseSet(L,v) C [a, b] and for all
D such that £ + v | D, MutSet(£, D) N [a,b) = 0.

Consider each member i € UseSet(L,v). By induction, it is obvious that one of the following must hold:

e ValUse(v) € a; by E-IFTHEN, E-IFELSE, and E-REGASSIGN. By Lemma E.1, i = 75 (e.)
e ValCreate(v, S, Sy) € a, by E-REGVAL. Similarly, i = 75 (e;)
e ValCreate(v, Sy, Sy) € o by E-CycLE. In this case, i = 76 (e)

In each case, we get i € [a,b]. Thus UseSet(L,v) C [a, b].

Now we prove for £ + v | D, MutSet(L, D) N [a,b) = 0. Consider each i € MutSet(L, D). By definition, we have some
r € D,RegMut(r) € a;. By Lemma E.1, there must be applications of E-REGAssIGN and T-REGASSIGN where 75 (e.) = i and
there exists (e, S) € R(r) such that e <; ¢; and S; <¢ S. Either e, <g e or S <g e.. If e, <g e, by definition of < and <g, we
have i = 75 (e.) < 7 () <g 7 (e;) = a. Hence, i ¢ [a,b).If S <; e, similarly, we have b = 75 (S4) <¢ 76 (S) <¢ 76 (e.) = i.
Hence, we also have i ¢ [a, b). Therefore, MutSet(L,v) N [a,b) = 0.

By definition of safety, ¢ is safe. O

E.3 Lemma D.18

Proof. Let L be an execution log of t; ||5 t. By definition, £ can be obtained by combining £; and £, each an execution
log of t; and t,, respectively. Since #; and t, are well-typed, t; and t, are safe, and Ly, L, are also safe. By definition of
safety, for every value v, there exists ay, by, az, by, such that UseSet(L;,v) U LtSend(L,v) C [a1, b1] € LtRecv(Ly,0), Lo |
D1, MutSet(L1, D1) N [ag, by) = 0, and UseSet(L,, v) U LtSend(Ly, v) C [az, by] € LtRecv(L,0), L + 0 | Dy, MutSet(L,
,D2) N [az,b2) = 0.

For i € {1,2}, if a ValCreate(v,S,,S,) appears in L;, or, if no ValCreate(v, S,,S,) appears in either £; or L3_; but
LtRecv(sr.m,v) appears in L;, we say that £; owns v. Obviously every v that appears in £ is owned by either £; or £,
but not both. We show that the following a, b satisfies that UseSet(£, v) U LtSend(£L,v) € [a,b] € LtRecv(L,v), L + v |
D, MutSet(L,D) N [a,b) = 0:

1. If v does not appear in L, then a = a1, b = b;.
2. If v appears in L, and is owned by L;, a = a;, b = b;.

Case 1 is trivial.

For Case 2, by induction on the structure of DepSet(L,v), it is easy to obtain that UseSet(L,v) U LtSend(L,v) C
UseSet(L;,v) U LtSend(L;,v) and LtRecv(L;,v) C LtRecv(L,v). Therefore, we get UseSet(L,v) U LtSend(L,v) C [a;, b;] C
LtRecv(L,v). Now we prove that MutSet(L, D) N [a;, b;) = 0. Without loss of generality, we assume i = 1.

We use induction on DepSet(L, v). Consider the following cases:

1. DepSet(L,v) = 0. In this case, either ValCreate(o, S, 0) or LtRecv(s.m, v) appears in both £; and L. In both cases,
MutSet(L, D) = MutSet(L, D;). Since MutSet(Ly, D1) N [ay, by) = 0, MutSet(L, D) N [ay, by) = 0.

2. DepSet(L,v) = S,. In this case, ValCreate(v, Sy, Sp) is in both £; and L. Consider each u € S,. Either u is owned by
Ly, or it is owned by L. Let a’, b” be selected such that UseSet(L;, u) ULtSend(L;,u) C [a’,b"] C LtRecv(Lj,u) and
MutSet(L;, D) N [a’,b’), where L; is the owner of u. Let ay, by be selected such that UseSet(L;, u) U LtSend(Ly,u) €
[ao, bo] € LtRecv(Ly, u) and MutSet(Ly, Do) N [ao, by). If j = 1, then ag = a,,, by = b;,. If j = 2, there must be a send op-
eration involving u in £, and a matching receive operation in £;. We have [ao, by] C LtRecv(L;,u) C LtSend(Ly, u) C
[a,, b,]. In both cases, we have [ay, by] C [a], b,]. By induction assumptions, [a’,b") N MutSet(L, D,) = 0, hence
[ao, bo) N MutSet(L, D,,) = 0. Combining all u € S,, by definition of LtRecv(L;,v), MutSet(L;,v), and MutSet(L, v):
[a,b] € Nyes, LtRecv(Ly, u) C Nyes, [y, by,], MutSet(L, v) = MutSet(

L1,0)UU,es, MutSet(L, u). Hence [a,b) C (V,es,[ay, b;,), and [a, b)NMutSet(L,v) € (Nyes, [ay, b,)NUyes, MutSet(L, u) =
0.

By induction, if v is owned by £L;, UseSet(L,v) U LtSend(L,v) C [a;, b;] C LtRecv(L,v) and [a;, b;) N MutSet(L, D) = 0.
Combining Case 1 and Case 2, we have shown that for all v, there exist such a and b. Therefore, the composition #; ||5 t; is safe.
m]

Anvil: A General-Purpose Timing-Safe Hardware Description Language ASPLOS 26, March 21-26, 2026, Pittsburgh, PA, USA.

E4 Lemma D.19

Proof. We show that for k > 2, if ;. is well-typed, tx4; is also well-typed. By induction, this implies that if ¢, is well-typed,
te(k =2,---) are all well-typed.

Since ty is well-typed, we have 0; G, R, M, 0, eq + ty : T. Because ty = t_; => t, there exists 0; G, R, M, Cy,eq \ t;_1 : (e1,51)
and 0; G,R, M, Cy, e1 + t : (e, S2) which appear during inference. It is obvious that e; is a cut vertex in G, i.e., there exists a
partition of V = V; U V; U {e; }, such that all paths between V; and V; go through e;, and it can be found such that V; U {e;} is
the set of all nodes that appear in the inference rules used to obtain 0; G, R, M, Cy, €1 + ¢ : (e2,S2). Let G, be the subgraph of G
with V' =V, U {e;}. Let G, be a graph obtained by relabelling nodes of G, such that e; is relabelled e, and nodes in V; are
relabelled to nodes in V3, where V3 NV = 0. Now let G’ = G U G;. Obviously, assuming <¢ and <¢ always hold, we can obtain
0;G’,R',M,C’, ey + tx41 : T’ such that the same nodes appear in rules inferring for #, and additionally there are rules inferring
for t that simply map nodes used inferring 0; G, R, M, Cz, €1 + t : (e3,S;) from V; U {e;} to V3 U {v,}. Therefore, if #;,; is not
well-typed, there must be some unattainable < or <¢ that appear in those rules. Consider different cases:

e Somee, <G €, ore, <G €, which only involves nodes but not event patterns, does not hold. Obviously, {e,, e} € V1U{e; }
or {eg, ep} € Vo U {er} or {es ep} € V3 U {e;}. This always implies that a corresponding typing judgment does not hold
for inferring well-typedness of t, contradicting the assumption.

e Some typing judgment that involves e, > p does not hold. This similarly imply a contradiction a rule involved in inferring
the well-typedness of f; does not hold.

By contradiction, t is well-typed.

	Abstract
	1 Introduction
	2 Motivation
	2.1 Example of a Timing Hazard
	2.2 Timing Hazards in Existing HDLs
	2.3 Need for Timing-Safe HDL Abstractions
	2.4 Goal: a Timing-Safe and Expressive HDL

	3 Timing Safety with Anvil
	4 Anvil HDL
	4.1 Channel
	4.2 Process
	4.3 Thread
	4.4 Term
	4.5 Wait Operator
	4.6 Revisiting the Running Example

	5 Safety of Anvil Programs
	5.1 Events and Event Patterns
	5.2 Lifetime and Loan Time
	5.3 Event Graph
	5.4 Safety Checks
	5.5 Formalization

	6 Implementation
	6.1 Event Graph Optimizations
	6.2 Code Generation

	7 Evaluation
	7.1 Expressiveness
	7.2 Safety
	7.3 Practicality

	8 Related Work
	9 Conclusions
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artefact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experimental Workflow
	A.6 Evaluation and expected results
	A.7 Experiment customization
	A.8 Methodology

	B Comparison with Verification
	C Safety Analysis on Real-World Errors
	D Formalization Details
	D.1 Abstract Syntax
	D.2 Semantics
	D.3 Type System
	D.4 Safety

	E Proofs
	E.1 Additional Lemmas
	E.2 Lemma D.17
	E.3 Lemma D.18
	E.4 Lemma D.19

