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Abstract
Expressing hardware designs using hardware description

languages (HDLs) routinely involves using stateless signals

whose values change according to their underlying registers.

Unintended behaviours can arise when the stored values in

these underlying registers are mutated while their depen-

dent signals are expected to remain constant across multiple

cycles. Such timing hazards are common because, with a few

exceptions, existing HDLs lack abstractions for values that

remain unchanged over multiple clock cycles, delegating

this responsibility to hardware designers. Designers must

then carefully decide whether a value should remain un-

changed, sometimes even across hardware modules. This

paper proposes Anvil, an HDL which statically prevents tim-

ing hazards with a novel type system. Anvil is the only HDL

we know of that guarantees timing safety, i.e., absence of
timing hazards, without sacrificing expressiveness for cycle-

level timing control or dynamic timing behaviours. Unlike

many HLS languages that abstract away the differences be-

tween registers and signals, Anvil’s type system exposes

them fully while capturing the timing relationships between

register value mutations and signal usages to enforce timing

safety. This, in turn, enables safe composition of communi-

cating hardware modules by static enforcement of timing
contracts that encode timing constraints on shared signals.

Such timing contracts can be specified parametric on abstract

time points that can vary during run-time, allowing the type

system to statically express dynamic timing behaviour. We
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have implemented Anvil and successfully used it to imple-

ment key timing-sensitive modules, comparing them against

open-source SystemVerilog counterparts to demonstrate the

practicality and expressiveness of the generated hardware.
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1 Introduction
Hardware description languages (HDLs) shape the way peo-

ple think about and describe hardware designs. Ideally, an

HDL should provide easy-to-use abstractions for hardware

designers to express their intention precisely and correctly.

The concurrent and continuous behaviour of hardwaremakes

this goal challenging to achieve.

Unlike software programs, where values are all persistent

(stored either in registers or in memory), hardware designs

involve separate notions of signals and registers. While a reg-

ister can store persistent values and be assigned new values

every cycle, signals are stateless, with their values changing

with the registers they depend on. If the hardware designer

expects a signal to remain unchanged across multiple cy-

cles, they must explicitly ensure the stored values of their

underlying registers do not change. The incorrect timing of

register mutation (i.e., change of the stored value in a regis-

ter) and signal use thus easily introduces invalid or wrong
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values during run-time, and may even expose the hardware

design to time-of-check-to-time-of-use (TOCTOU) attacks.

We call such problems timing hazards. The problem of timing

hazards is further exacerbated by the concurrent nature of

hardware designs: A hardware design commonly consists of

large numbers of modules which are executing in parallel

and communicating with each other via shared signals.

Most existingHDLs such as SystemVerilog [22], VHDL [21],

and Chisel [3] do not catch timing hazards at compile time,

leaving designers to discover these issues only during simu-

lation. Designers frequently seek help on discussion forums

simply to pinpoint the origins of the errors [9, 13, 47]. Tim-

ing hazards are prevalent even among experienced designers

and in widely used open-source hardware components, as is

shown by several real-world examples given in Appendix C.

A principled way to eliminate timing hazards is to forbid

them in the HDL itself. We call such an HDL that only allows

designs without timing hazards timing-safe. The key chal-

lenge to achieve timing safety while also providing enough

expressiveness for writing general-purpose hardware de-

signs. Some existing HDLs can provide timing safety but only

at a significant cost of expressiveness, making them only

suitable for specific applications. For example, high-level

synthesis (HLS) languages [2, 24, 49] offer software-like pro-

gramming models for hardware design. In these languages,

timing hazards are not a concern because they abstract away

both cycle latencies and the distinction between wires and

registers, effectively treating all values as persistent, sim-

ilar to variables in software programming. Constructs for

expressing cycle-level control and wires are, unfortunately,

absent in such languages. Such expressiveness is essential in

general-purpose hardware designs, especially where perfor-

mance is a priority. Consequently, the applicability of HLS

languages is commonly limited to speeding up algorithms

with programmable hardware (e.g., FPGA). Other timing-safe

languages focus only on specific types of hardware designs,

such as CPU stages [51] and static pipelines [34, 44].

We present Anvil, the first HDL we know of that guaran-
tees timing safety while maintaining expressiveness
for general-purpose hardware design use cases. Anvil
is general-purpose in the sense that the designer retains full

control of the cycle-level timing and register states in RTL,

unlike HLS languages, and is not limited to design use cases

such as CPU-level abstractions and static pipelines. In par-

ticular, it allows hardware designers to seamlessly specify

cycle-level delays and to express whether a value is stored

in a register. It also supports expressing hardware designs

with dynamic timing behaviours easily.

Anvil achieves timing safety statically with a novel type

system which captures the timing relationships between

register mutations and use of signals. It performs type check-

ing that reasons about whether each use of signal takes

place in a time window throughout which it carries an un-

changing and meaningful value, and rejects code that is not

module Memory (

...

input [7:0] inp,

input req,

output [7:0] out

);

sig req

Clock

Module Top
address = 0x00 

every clock cycle:
req = ~req

  if req == 1:
    inp = (address++)

else:
print(out)

Memory
0x00     Val 0
0x01     Val 1
0x02     Val 2
0x03     Val 3

 ..........
 0xFF     Val 255

sig[8] inp

sig[8] out

0 1 2 3 4 5 6 7 8 9

clk

req

input 0x00 0x01 0x02 0x03 0x04

output Val 0 Val 2

expected Val 0 Val 1 Val 2 Val 3

e1 e2 e3 e4 e5 e6 e7

0 1 2 3

clk

req

input 0x00

output Val 0

[T, T+2)

[T+2, T+3)

Figure 1.Module Top interfaced with Memory.

timing-safe. Designs written in Anvil can thus specify precise

cycle-level behaviour and register updates. This is in contrast

to HLS languages [49] that hide wires and cycles beneath

their abstractions. Across hardware modules, Anvil’s type

system guarantees safe composition by statically checking

against timing contracts, which specify constraints regarding

communicated signals, including constraints about when

such signals must be kept unchanged. Although Anvil’s type

checking is entirely static, it explicitly allows dynamic timing

behaviours, i.e., the number of cycles for a behaviour of the

hardware design can vary during run-time (e.g., caches). The

type system achieves this by capturing time not in terms of

an absolute (fixed) number of cycles, but instead as abstract

time points that correspond to events that may occur arbitrar-

ily late, for example, the event corresponding to the receipt of

data from another module. This is in sharp contrast to recent

work [34] in which the proposed type system only allows

expressing designs with fixed static timing behaviours.

We have implemented theAnvil compiler (Section 6) which

performs type checking and compiles Anvil code to Sys-

temVerilog. Our evaluations highlight the expressiveness

and practicality of Anvil (Section 7). Designs written in Anvil

can be integrated in existing SystemVerilog code bases, thus

allowing incremental adoption and making Anvil immedi-

ately useful. We have successfully used Anvil to implement a

diverse set of 10 latency-sensitive components ranging from

an AES accelerator [38] to a page table walker in a RISC-V

CPU [52]. Despite the Anvil compiler being an early-stage

prototype, when compared with open-source SystemVerilog

implementations, the Anvil implementations show practi-

cal overhead averaging 4.50% for area and 3.75% for power.

Anvil is open-source at https://github.com/kisp-nus/anvil.

Our Contributions. We introduce Anvil, an HDL with a

novel type system that guarantees timing safety without

sacrificing expressiveness, e.g., for cycle-level control and dy-

namic timing behaviours. Anvil allows for general-purpose

hardware design use cases and integration with existing

SystemVerilog projects.

https://github.com/kisp-nus/anvil
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2 Motivation
The motivation of our work stems from the susceptibility of

RTL designs to timing hazards due to limitations of de facto
standard HDL abstractions.

2.1 Example of a Timing Hazard
Consider the interface of a memory module in SystemVerilog

in Figure 1 top left. Unlike software, hardware modules com-

municate using signals that can be continuously read and

updated. Consider an interfacing hardware module (Figure 1,

top right), Top, which reads a value from a memory module

with the same interface. The implementation of Top sends
an address as a request and expects to read the output in the

following cycle. However, the circuit outputs are incorrect,

as evident when the system is simulated (Figure 1, bottom

left). The culprit is an unexpected timing delay. The mod-

ule Top is written under the assumption that the memory

subsystem responds precisely one clock cycle after the req
signal is set. However, it takes the memory subsystem two

cycles to process the lookup request and return the output.

In more detail, the module Top requests address 0x00 by
setting the req signal high during cycle [0, 1). It expects the
output in the next cycle, but the memory has not finished

dereferencing the input address. The memory stops pro-

cessing since the req signal is unset in [1, 2). When req is
set again in [2, 3) with address 0x01, the memory is still

resolving 0x00, returning Val 0 in [3, 4). Meanwhile, the

input address changes from 0x01 to 0x02. When req is set
again in [4, 5), the memory starts processing 0x02, skipping
0x01. As a result, unexpected outputs are observed, and only
half of the requested addresses are dereferenced.

The above example illustrates a classic case of a timing

hazard, where unintended values are used or values in use

are changed unexpectedly. Here, the module Top modifies

its input while the memory is still processing a request. It

also reads the output before it is ready.

2.2 Timing Hazards in Existing HDLs
Timing hazards arise in SystemVerilog and VHDL, two stan-

dard and most widely used HDLs, as they lack an abstraction

for the designer to express values that are sustained across

multiple cycles. These languages also do not provide a mech-

anism to encode timing constraints pertaining to register as-

signments and use of signals shared between communicating

modules. The abstraction that SystemVerilog and VHDL pro-

vide over registers and signals specifies their relationships

within a single, non-specific cycle. The designer defines how

each register is updated based on the existing register state,

and during run-time the signal values are updated accord-

ingly. In other words, signals are essentially pure functions

of the current register state; when they are referenced in the

code, they simply carry the values of the current moment.

Such an abstraction makes it difficult to express intended

relationships between signal values across multiple cycles.

For example, a SystemVerilog implementation of the Top
module in Figure 1 does not convey the intent that req and

inp should remain steady for two consecutive cycles, or that

out should be meaningful only in the following cycle. Other

HDLs—including many newer ones that aim to raise the

abstraction level for hardware design (e.g., Chisel [3] and

SpinalHDL [45])—follow the same fundamental paradigm

for describing RTL designs as SystemVerilog and VHDL, and

are therefore similarly susceptible to timing hazards.

Some popular HDLs provide different abstractions than

SystemVerilog and VHDL but are still unable to avoid tim-

ing hazards. Bluespec SystemVerilog (BSV) [4], for example,

provides the abstractions of rules andmethods. Rules are bun-

dled hardware behaviours that execute atomically. Modules

can communicate through invoking each other’s exposed

methods, which add to the behaviours to be executed. The

BSV compiler generates hardware logic to choose rules to

execute in each cycle. For example, consider Figure 2. If Top
reads a value from a cache and enqueues it into a FIFO that

only accepts requests when it is not full, the design would

typically use two rules: one to invoke the read method of

the cache, and another to enqueue the retrieved value into

the FIFO. BSV’s scheduler ensures that, in each cycle, rules

that execute do not conflict (i.e., they do not mutate the same

registers), and each rule executes atomically. However, rules

only specify operations for the current cycle, and scheduling
is performed independently for each cycle. BSV does not

reason about behaviours that span multiple cycles [4].

In the example, if the module Top retrieves a value from
a cache and sends it to a FIFO, Anvil enforces the timing

contract by detecting violations and guiding the designer

towards a timing-safe implementation, as shown in Figure 2

(top). BSV, on the other hand, may still generate a conflict-

free schedule that is timing-unsafe because it does not cap-
ture inter-cycle constraints in its scheduling model.

Root Cause: HDL Abstractions. In summary, the root

cause behind the susceptibility of many popular HDLs to

timing hazards lies in the abstractions they provide. In par-

ticular, their abstractions do not express the designer’s intent
concerning when a signal is expected to carry a meaningful

value and in which time window the value is expected to

remain steady. As such, we provide a novel solution in a new

HDL design rather than basing it on existing ones.

2.3 Need for Timing-Safe HDL Abstractions
In this paper, we tackle the problem of timing hazards by cre-

ating timing-safe HDL abstractions to capture the designer’s

intent regarding register and signal uses across cycles and in

turn prevent timing hazards. An alternative approach is to

apply verification techniques to designs expressed in exist-

ing HDLs [16, 26, 33, 48]. Such techniques attempt to verify

that certain properties about a design (e.g., user-specified
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Top => address: [req, req->res)
Cache => data : [res, res->res+1) send cache.req (address) >>

set address := address + 1;   
let data = recv cache.res() >> 
send fifo.enq_req(data) >>

send cache.req (address) >>   
let data= recv cache.res() >>
set address := address + 1;
set enq_data := data >> 
send fifo.enq_req(data) >>

send cache.req (address) >>
let data = recv cache.res() >> 
set address := address + 1;   
send fifo.enq_req(data) >>

BSV Defined Rules:
rule send_cache_req(address)
rule change_address()
rule let data = rule get cache_res()
rule send_fifo_enqueu_req(data)

FIFO channel definition
Top => data: [enq_req, enq_req+1)

Error: Attempted assignment to loaned register

Possible Schedule 1:
rule send_cache_req(address) >>
rule change_address() >>
rule let data = rule get cache_res() >>
rule send_fifo_enqueu_req(data) >>

Possible Schedule 3:
rule send_cache_req(address) >>
rule let data = rule get cache_res() >>
rule change_address() >>
rule send_fifo_enqueu_req(data) >>

Possible Schedule 2:
rule change_address() >>
rule send_cache_req(address) >>
rule let data = rule get cache_res() >>
rule send_fifo_enqueu_req(data) >>

Error: Value does not live long enough in message send

Figure 2. Top: Anvil guiding designer through timing-safe design. Bottom: BSV timing-unsafe schedules.

RTL Design
(SystemVerilog)

RTL Design
(Anvil)

Specifications
(e.g., SystemVerilog

assertions)

Verification
Tools

(e.g., JasperGold)

Anvil Compiler

Assertions
violated

Revise design and specifications

Type errors
Revise design

Timing-Safe
RTL

Figure 3. High-level comparison between the flows en-

abled by verification- (top) and language-based (bottom)

approaches. Steps involving manual effort are marked with

the person icon. White and gray dashed boxes represent de-

sign and verification stages, respectively.

SystemVerilog assertions) hold, either statically through for-

mal verifications (e.g., model checking with Cadence Jasper-

Gold [7] or Yosys SMT-BMC [50]) or dynamically through

testing (e.g., simulation-based verification with UVM [23]

or cocotb [11]). This approach is general and may easily ex-

tend to other properties about an RTL design beyond timing

safety. It is also readily applicable to existing code bases and

does not require switching to a new language.

However, we have been motivated to focus on a language-
based approach because of its unique advantages. As illus-

trated in Figure 3, a language-based approach can preclude
designs with timing hazards during development. In con-

trast, verification detects timing hazards only after the fact,
in a separate verification stage. This allows a faster and

more integrated feedback loop. Through a language-based

approach, the language abstractions themselves directly ex-

press the properties to be checked, for example, as part of

a type system. A verification-based approach, on the other

hand, requires manually specified, implementation-specific

assertions to fill in missing information in the HDL abstrac-

tion. These assertions are error-prone and costly to maintain.

A language-based approach can also present a more abstract

model for reasoning about timing hazards efficiently. This

avoids the state explosion problem with verification [10].

For example, bounded model checking may fail to report

a violation even at large depths because of the prohibitive

size of the model generated from SystemVerilog code. In Ap-

pendix B, we present a concrete example comparing Anvil

—the language-based solution proposed in this paper—with

verification-based methods to illustrate these points further.

2.4 Goal: a Timing-Safe and Expressive HDL
Some existing HDLs do provide timing safety. However, they

face challenges in maintaining expressiveness. Some high-

level synthesis (HLS) languages [49] provide abstractions of

persistent values similar to variables in software programs.

They abstract away certain aspects of hardware design such

as register placements and cycle latencies. While their ab-

stractions directly prevent timing hazards, they lack the pre-

cise timing and register control desired in general-purpose

hardware design use cases, especially when the design needs

to be latency-sensitive or efficient.

The closest prior work to ours is the Filament HDL [34].

Filament exposes cycle latencies and registers to the designer,

and prevents timing hazards through its type system centred

around timeline types. A timeline type encodes constraints

regarding the time window in which each signal carries an

unchanging value that can be used. Timeline types also serve

to define contracts at module interfaces, allowing for safe

composition of modules. Our example memory module can

be augmented with such a contract which requires input
and req to remain constant during [𝑇,𝑇 + 2), and the out-

put to remain constant in [𝑇 + 2,𝑇 + 3). Figure 1 (bottom,

right) illustrates the output waveform for a system using

this contract. However, the timeline type and the contract it

represents only capture timing intervals whose duration is

fixed to be a statically determined, constant number of cycles.

Correspondingly, Filament only aims to support pipelined

designs with static timing. This prevents Filament from ex-

pressing common hardware designs such as caches and page

table walkers that exhibit dynamic timing behaviour.

To see why this is the case, consider a memory subsystem

with a cache. Its timing behaviour varies significantly be-

tween a cache hit and a cache miss. If the designer chooses a
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0 1 2 3 4 5 6 7 8

clk

req

input 0x00 0x01

output Val 0 Val 0 Val 1

cache hit Hit Miss

0 1 2 3 4 5 6

clk

cache ch req res req res

input 0x00 0x01

output Val 0 Val 1

cache hit Hit Miss

e0 | e1 e2 e0 | e1 e2

[T, T+3) [T+3, T+4)

Figure 4. Cache output waveform expressed safely with

static (left) and dynamic (right) timing contract.

conservative upper bound statically on the response time to

accommodate both cases, the static timing contract would

prevent timing hazards but nullify the advantage of caching.

Figure 4 (left) illustrates the output waveform for such a sys-

tem, where the contract uses the worst-case delay. In such

cases, one must trade off the flexibility of dynamic latencies

for the static guarantee of timing safety.

3 Timing Safety with Anvil
We present Anvil, an HDL with a novel type system that

statically guarantees timing safety while retaining the level

of expressiveness required for a general-purpose HDL. Un-

like HLS languages that abstract away registers and cycle

latencies, Anvil gives the designer full control over regis-

ter mutations and cycle latencies. And unlike Filament [34],

Anvil’s type system can capture and reason about timing

that varies during run-time. Anvil is thus able to enforce dy-
namic timing contracts across modules and precisely express

hardware designs with dynamic timing behaviours.

Channels. Anvil models hardware modules as communicat-

ing processes [19]. It allows specifying modules with a pro-

cess abstraction, using the keyword proc . A pair of commu-

nicating processes can share a bidirectional channel, through
which they send and receive values. Channels are stateless

and both sending and receiving are blocking. Channels are

the only way for processes to communicate.

Events.A central concept that enables Anvil to reason about

dynamic timing is events. Events are abstractions of time

which may or may not statically map to a fixed cycle. The

start of every clock cycle is an event that is statically known

(constant). An example of a dynamic event is when two pro-

cesses exchange a value through the channel. As described

above, sending and receiving values on a channel are block-

ing. The exchange of the value thus completes at a time both

sides agree on: when the sender signals the value is valid

and the receiver acknowledges. The completion of this value

exchange defines a dynamic event that may correspond to

varying clock cycles during run-time. Note that both events

and channel-based communication are only abstractions that

Anvil provides, and under the hood, do not imply overhead

in the resulting RTL design (see Section 6).

Event Graphs. A key observation enables Anvil to reason

about events: even though we cannot statically know which

exact cycle an event may correspond to, we know of the

relationships among events. For example, we can statically

obtain that event 𝑒1 corresponds to exactly two cycles after

the cycle 𝑒2 corresponds to, and event 𝑒3 corresponds to the

first time a specific value is exchanged on a channel after

the cycle 𝑒2 corresponds to. Such relationships form an event
graph (Section 5.3) which serves as the basis for Anvil’s type

system (Section 5.4 and Appendix D).

Lifetimes and Dynamic Timing Contracts. Anvil’s type
system uses events to encode the lifetime of a value carried

by a signal. The lifetime of a value is identified by a start

and an end event, between which the value is expected to

remain steady. Channel definitions in Anvil specify the tim-

ing contracts for the exchanged values. Since events can

be bound to varying concrete clock cycles at runtime, such

timing contracts can capture dynamic timing characteristics.

Enforcement of timing contracts ensures timing-safe com-

position of two processes when the events mentioned in the

timing contract are known to both processes, e.g., when they

correspond to value exchanges on the same shared channel.

Example: Anvil in Action. Figure 5 illustrates how Anvil’s

type system distinguishes between safe and unsafe process

descriptions. The description proc Top_Unsafe is Anvil’s rep-

resentation (simplified for understanding) of the same circuit

Top shown in Figure 1. In contrast, proc Top_Safe captures

the timing characteristics of the memory subsystem with

a cache, as depicted in Figure 4 (right). Anvil first derives

the action sequence and then verifies whether the process

description adheres to the constraints specified by the timing

contracts. In our examples, req marks the clock cycle when

address sent by Top_Unsafe or Top_Safe is acknowledged on

the channel. The event res marks the clock cycle when data

sent by the memory subsystem is acknowledged.

For memory without a cache, the expected behaviour is

specified in a timing contract, encapsulated in the memory

channel definition. This contract requires that address re-

main unchanging and available for two clock cycles after

req is sent. It also specifies that data sent by memory must

be available for one clock cycle after res is received.

The timing contract is not satisfied by Top_Unsafe , and

Anvil detects this at compile time. In the HDL code for

Top_Unsafe , address is sent during [𝑒0, 𝑒0 + 1), but the tim-

ing of acknowledgement is uncertain. The output value is

used during [𝑒0 + 1, 𝑒0 + 2), but when res will be received

is unknown, as it depends on when the memory system re-

sponds. As a result, it is unclear whether the next address was

sent before the previous output was received and acknowl-

edged. Furthermore, the input address is modified during

[𝑒0 + 1, 𝑒0 + 2), violating the requirement that the address

remain unchanging for two cycles after acknowledgement.

The contract for memory with a cache is specified in the

cache channel definition. It requires that the address sent by

Top_Safe remain available from the req event until the next
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occurrence of res , written as the lifetime (req, req->res) .

Similarly, the data sent by thememory subsystem has the life-

time (res, res->res+1) . As shown in Figure 5 (right), Top_Safe

satisfies this contract and is therefore deemed safe.

Summary. Anvil is a general-purpose HDL that eliminates

timing hazards. It allows designers to specify timing con-

tracts and provides higher-level abstractions to enforce these

contracts. The type system ensures that these contracts are

respected. Anvil achieves this without sacrificing expres-

siveness. Dynamic contract definitions make it possible to

design circuits with varying timing characteristics. It can

capture timing characteristics precisely without introducing

performance trade-offs such as additional latency.

Figure 4 shows the simulation output for Anvil’s dynamic

contracts (right) and static contracts (left). No extra clock-

cycle overhead is introduced in either case. In addition, Anvil

prevents the generation of unnecessary interface signals

through sync modes, which specify the frequency at which a

sender or receiver exchanges messages. We discuss this in

more detail in Section 4.1.

4 Anvil HDL
In this section, we give a tour of novel language primitives

in Anvil that are relevant to timing safety.

4.1 Channel
Anvil components communicate bymessage passing through

bidirectional channels, which are akin to unbuffered channels
in Go [14], where a send and its corresponding receive opera-

tions take place simultaneously. Each channel type definition
in Anvil describes a template for channels, for example:

chan mem_ch {

left rd_req : (logic[8]@#1) @#2-@dyn,

left wr_req : (addr_data_pair@#1),

right rd_res : (logic[8]@rd_req) @#rd_req+1-@#rd_req+1,

right wr_res : (logic[1]@#1) @#wr_req+1-@#wr_req+1

}

Messages. The definition specifies the different types of

messages that can be sent and received over a channel with

two endpoints, referred to as left and right, respectively. Each
type of message is identified by a unique message identifier

and annotated with its direction, which is left (travelling
left, i.e., from the right endpoint to the left endpoint) or

right (travelling right).

Message Contracts. Each message is also associated with

a message contract. This contract specifies the data type of
the message and indicates the event after which the message

content is no longer guaranteed to remain unchanging and

should, therefore, be considered expired. Depending on the

specified event of expiry, a message contract can be either

static or dynamic. For example, message rd_req in the chan-

nel definition earlier has a static contract: It carries 8 bits

of data, which expires 1 cycle after the synchronization on

the message takes place. In contrast, message rd_res has a

dynamic contract: It carries 8 bits of data which expires the

next time message rd_req is sent or received.

Sync Mode. Each message has a synchronization mode (sync
mode for short) for each side of the communication. The sync

mode specifies the timing pattern for sending or receiving

the message. In a message contract, the sync modes of both

endpoints are specified in the format:

<left-endpoint-sync-mode>-<right-endpoint-sync-mode>

The default sync mode, @dyn , specifies that a one-bit signal

is used for run-time synchronization. For example, in the

channel definition, the message wr_req uses this dynamic

sync mode on both endpoints. When static knowledge is

available about when sending or receiving can occur, the

sync mode can encode that information. The left side of the

message rd_req has the static sync mode @#2 . This specifies

that it must be ready to receive the message within at most

two cycles after the last time the message was received. For

the left endpoint, Anvil statically checks that this constraint

holds. For the right endpoint, Anvil uses this knowledge to

check that whenever rd_req is sent, the receiver will be ready.

A sync mode can also be dependent. For example, both sides

of wr_res use @#wr_req + 1 , meaning the message is sent and

received exactly one cycle after wr_req .

4.2 Process
Each Anvil component is represented as a process defined
with the keyword proc . A process signature specifies a list

of endpoints to be supplied externally when the process

is spawned. The process body includes register definitions,

channel instantiations, (sub-)process spawning, and threads.

proc memory(ep1: left mem_ch, ep2: left mem_ch) {/* ... */}

4.3 Thread
Each process contains one or more threads that execute

concurrently. Two types of threads exist: loops and recursives.
Loops.A loop is defined with loop { t } , where t is an Anvil

term (see Section 4.4). This term can represent the parallel

and sequential composition of multiple expressions. Each

time t completes execution, the loop recurses back to the

same behaviour. For example, the code below increments a

counter every two cycles.

loop { set counter := *counter + 1 >> cycle 1 }

Recursives. A recursive, defined with recursive { t } gen-

eralizes loops to allow recursion before t completes. Instead,

recusion is controlled with recurse . As t can restart before it

completes, multiple threads may execute in an interleaving

manner. Such constructs are therefore particularly useful



Anvil: A General-Purpose Timing-Safe Hardware Description Language ASPLOS ’26, March 21–26, 2026, Pittsburgh, PA, USA.

for expressing simple pipelined behaviours. For example, the

code below pipelines the logic for handling requests. Specifi-

cally, it first waits to receive a requestmessage, then performs

two things in parallel: 1) handling the request, and 2) recurs-

ing (repeating the process from the beginning, where it starts

waiting for the next request) in the next cycle. The direct

pipelining support enabled by recursives is comparable to

the pipelining support in Filament [34].

recursive {

let r = recv ep.rd_req >>

{ /* handle request */ };

{ cycle 1 >> recurse }

}

4.4 Term
Terms are the building block for describing computation and

timing control of threads in Anvil. Each term evaluates to a

value (potentially empty) and the evaluation process poten-

tially takes multiple cycles. In addition to literals and basic

operators for computing (e.g., addition, xor, etc), notable

categories of terms include the following.

Message Sending/Receiving. The terms send e.m (t) and

recv e.m send or receive a specified message. The evaluation

completes when the message is sent or received.

Cycle Delay. The term cycle N evaluates to an empty value

after N cycles and is used entirely for timing control.

Timing Control Operators. The >> and ; operators are

used for controlling timing. See Section 4.5.

4.5 Wait Operator
The wait operator is a novel construct that enables sequential

execution by advancing to a time point. In t1 >> t2 , the eval-

uation of the first term t1 must be completed before the eval-

uation of the second term begins. In contrast, t1; t2 initiates

both term evaluations in parallel. For example, set r := t

and set r := t; cycle 1 are equivalent, since register assign-

ment takes one cycle to complete.

This design not only provides a way to advance time by

explicitly specified numbers of cycles (e.g., cycle 2 >> ...).

It also serves as an abstraction for managing and composing

concurrent computations, in a way similar to the async-await

paradigm for asynchronous programming. A term may rep-

resent computation that has not completed. Multiple terms

can be evaluated in parallel. When the evaluation result of a

term is needed, one can use >> to wait for it to complete. For

example, the code below waits for messages from endpoints

ep1 and ep2 and processes the data concurrently.

loop {

let v1 = { let r = recv ep1.rd_req >> /* process r */ };

let v2 = { let r = recv ep2.rd_req >> /* process r */ };

v1 >> v2 >> ... /* now v1 and v2 are available */

}

4.6 Revisiting the Running Example
Figure 5 includes snippets of Anvil code for the running

example introduced in Section 2. The code demonstrates how

Anvil exposes cycle-level control and supports expressing

dynamic timing behaviours. The code uses the wait operator

to control when and how time is advanced. It is clear from

the source code when each operation takes place relative to

others. In the bottom right timing-safe Anvil code snippet, for

example, incrementing address and updating enq_data take

place at the same time (connected with ;), and sending of

fifo.enq_req starts one cycle afterwards, when both register

updates complete. Such timing control does not have to rely

on fixed numbers of cycles. For example, the two register

updates discussed above take place after cache.res is received,

which in turn takes place after cache.req . The exact numbers

of cycles those operations vary during run-time depending

on the interaction between Top and Cache .

Despite those dynamic timing behaviours that Anvil code

can express, Anvil is able to reason about them and ensure

timing safety statically, as we will discuss in detail next.

5 Safety of Anvil Programs
Anvil’s type system ensures that each process adheres to the

contracts defined by the channels it uses. The guarantee the

type system provides is as follows: any well-typed process

in Anvil can be composed with other well-typed processes

without timing hazards at run-time. To provide such guaran-

tees, the type system associates each term with an abstract

notion of a lifetime, which, intuitively, captures the time

window in which its value is unchanging and meaningful.

Each register, likewise, is associated with a loan time, which
describes when it is loaned, i.e., needs to remain unchanged.

The abstractions of lifetime and loan time form the founda-

tion for ensuring safety in Anvil. Based on them, the type

system checks for the following properties for a process —

1. Valid Value Use: Every use of a value falls in its asso-

ciated lifetime.

2. Valid Register Mutation: A register mutation does

not take place during its loan time.

3. Valid Message Send: The time window for which the

data sent needs to be live (based on the timing contract)

is covered by its associated lifetime. Additionally, such

time windows do not overlap for two send operations

of the same message type.

A formal presentation of the type system and the safety

guarantees of Anvil is available in Section 5.5. We first ex-

plain the intuition behind them in this section.

5.1 Events and Event Patterns
Anvil reasons about events which correspond to the times

specific terms complete evaluation. Note that such interest-

ing events as sending and receiving of messages and elapse

of a number of cycles are naturally included, as the those
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Unsafe Description (Memory without cache)

     e0->  

     e0->  

     e1->  

     e1->  

     e1->  

    }

}

memory channel definition

Top => address: [req, req+2)
Memory => data : [res, res+1)

Safe Description (Memory with cache)

cache channel definition

Top => address: [req, req->res)
Cache => data : [res, res->res+1)

     e0->  

     e1->  

     e2->  

     e2->  

    }

}
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Derived Action Sequence

• e1 = e0 + 1

• req happens in [e0, ?)

• res happens in [e1, ?)

• output used in [e1, e1+1)  

• address is mutated in [e1, e1+1)

Timing Contract Checks

     address constant between [e0, e0+2)

     output used [e0+1,e0+2) when available [?,?)

     address is mutated [e0+1, e0+2), when not being used

     next req happens [e0+2, ?) before previous req expires

 Final Decision: UNSAFE
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Derived Action Sequence

• e2≥e1≥e0 

• req happens in [e0, e1)

• res happens in [e1, e2)

• output used in [e2, e2+1)  

• address is mutated in [e2, e2+1)

Timing Contract Checks

     address constant between [e0, e2)

     output used [e2, e2+1) when available [e2, e2+1)

     address is mutated [e2, e2+1), when not being used

     next req happens [e2+1, ?) before previous req expires

 Final Decision: SAFE

Figure 5. Anvil checking the unsafe version of Top interfacing with memory subsystem with and without cache.

operations are all represented as terms (Section 4.4). Event
patterns can then be defined based on such events. A basic

event pattern is of the form 𝑒 ⊲ 𝑝 , which consists of an exist-

ing event 𝑒 and a duration 𝑝 and specifies the time when a

condition specified in duration 𝑝 is first satisfied after 𝑒 . The

duration can be either static or dynamic. A static duration

specifies a fixed number of clock cycles, in the form of #𝑁 . A

dynamic duration specifies a certain operation 𝜔 , in which

case 𝑒 ⊲ 𝑝 refers to when 𝜔 is first performed after 𝑒 . During

run-time, a dynamic duration can correspond to variable

numbers of cycles. The typical example of a dynamic dura-

tion is the sending or receiving of a specified message type

through a channel. In our discussion, this is represented as

𝜋.𝑚, where 𝜋 is the endpoint name and𝑚 is the message

identifier. Multiple event patterns can be combined as a set of

event patterns {𝑒𝑖 ⊲ 𝑝𝑖 }𝑖 to form a new event pattern, which

refers to the earliest event specified with each 𝑒𝑖 ⊲ 𝑝𝑖 .

5.2 Lifetime and Loan Time

Lifetime. The lifetime represents the interval during which

a value is expected to remain unchanging (constant). Anvil

infers a lifetime for each value, represented by an interval

[𝑒start, 𝑆end), where an event 𝑒start and an event pattern 𝑆end
mark the beginning and end of the interval. During run-time,

the events 𝑒start and 𝑆end will correspond to specific clock

cycles. Since each signal carries a value, it inherently has an

associated lifetime. At any given instant, a signal is live if it
falls within its defined lifetime. Conversely, it is dead.
Loan Time. Since signals and messages may source values

from registers, Anvil tracks the intervals during which a reg-

ister is loaned to a signal by associating each register with a

loan time. The loan time of a register 𝑟 is a collection of in-

tervals. For each interval included in the loan time, 𝑟 should

not be mutated. Anvil infers the lifetime for all associated

values and the loan time for all registers. Consider the exam-

ple in Figure 6 (left) of a component named Encrypt. This

component performs encryption on the plaintext received

through the endpoint ch1 using random noise obtained via

the endpoint ch2 . The following are examples of the lifetimes

and loan times that Anvil infers:

• The signal ptext is bound to a message identified by

enc_req received on the endpoint ch1 . Its lifetime is

inferred from the channel type definition as [𝑒1, 𝑒1 ⊲
ch1.enc_res), where 𝑒1 is the event of the message

being received.

• The signal r1_key is a constant literal and therefore

has an eternal lifetime, represented with ∞ as its end

event. i.e., it can always be used.

• The signal ctext_out is used as a value sent as a mes-

sage from the endpoint ch1 . Its inferred lifetime begins

at the evaluation of the term, represented as 𝑒5, and

extends until the message on ch1 expires, which is

𝑒9 ⊲ch1.enc_req, where 𝑒9 is the event corresponding
to the assignment completion. Therefore, the lifetime

is [𝑒5, 𝑒9 ⊲ ch1.enc_req).
• The signal (ptext ^ r1_key) + noise has a lifetime that

is the intersection of the lifetimes of ptext , r1_key , and

noise , [𝑒3, {𝑒2 ⊲ #1, 𝑒1 ⊲ ch1.enc_res}).
• The register rd2_key is loaned by amessage sent through

the endpoint ch2 and the signal ctext_out . Based on

the specified timing in the channel type definition

rng_ch , the lifetime of the message is [𝑒5, 𝑒8⊲#2), where
𝑒8 is the event of the message sending completion.

Therefore, rd2_key has an inferred loan time [𝑒5, 𝑒9 ⊲
ch1.enc_req) ∪ [𝑒5, 𝑒8 ⊲ #2).

See Figure 6 (left) for more examples of inferred lifetimes.

5.3 Event Graph
Events are related to one another by their associated opera-

tions. For example, an event 𝑒𝑎 may be precisely two cycles

after another event 𝑒𝑏 . As another example, 𝑒𝑎 can refer to the

completion of a specific message that starts at 𝑒𝑏 . In general,
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chan encrypt_ch {

left enc_req : (logic[8]@enc_res), right enc_res : (logic[8]@enc_req)

}

chan rng_ch {

left rng_req : (logic[8]@#1), right rng_res : (logic[8]@#2)

}

proc Encrypt(ch1 : left encrypt_ch, ch2 : left rng_ch) {

/* ... register definitions ... */

loop {

𝑒0 let ptext [𝑒1, 𝑒1 ⊲ ch1.enc_res) = recv ch1.enc_req;

𝑒0 let noise [𝑒2, 𝑒2 ⊲ #1) = recv ch2.rng_req;

𝑒0 let r1_key [𝑒0,∞) = 25;

𝑒0 ptext [𝑒1, 𝑒1 ⊲ ch1.enc_res) >>

𝑒1 if ptext != 0 {

𝑒1 noise [𝑒3, 𝑒2 ⊲ #1) >>

𝑒3 set rd1_ctext := (ptext ˆ r1_key) + noise [𝑒3, {𝑒2 ⊲ #1, 𝑒1 ⊲ ch1.enc_res})
𝑒1 } else { rd1_ctext := ptext [𝑒1, 𝑒1 ⊲ ch1.enc_res) };

𝑒1 cycle 1 >>

𝑒5 set r2_key := r1_key ˆ noise [𝑒6, 𝑒2 ⊲ #1) ;
𝑒5 let ctext_out = *rd1_ctext ˆ *r2_key [𝑒5, 𝑒9 ⊲ ch1.enc_req) ;
𝑒5 send ch2.rng_res(*r2_key [𝑒5, 𝑒8 ⊲ #2) ) >>

𝑒8 send ch1.enc_res(ctext_out [𝑒8, 𝑒9 ⊲ ch1.enc_req) ) >>

𝑒9 send ch1.enc_res(r1_key [𝑒9,∞) )
}

}

e0

e1 e2

e3

e4

e5

#1

e'0

e9
ch1.enc_res

e10
ch1.enc_res

e7

loop

e6e8

ch1.enc_req

ch2.rng_res

#1

ch2.rng_req

#1

Figure 6. Left: Encrypt in Anvil, annotated with timing information. Each blue-shaded annotation marks the event corre-

sponding to the time a term evaluation starts. Each yellow-shaded annotation marks the inferred lifetime associated with

the red-circled term next to it. Right: Event graph corresponding to Encrypt. Branch-related constructs which exist in the

event graph actually used in the type system are omitted for brevity. The operations associated with some of the events are

presented in yellow labels.

events and their interrelationships form a directed acyclic

graph (DAG), with each node being an event labelled with

its associated operation. We call such a DAG an event graph.
Encrypt in Figure 6 (left), for example, has an event graph

as shown in Figure 6 (right). The event graph captures the

events in one loop iteration only, with event 𝑒0 representing

the start of a loop iteration. The event 𝑒′
0
corresponds to 𝑒0

of the next loop iteration.

An event graph encodes sufficient information to capture

all possible timing behaviours in run-time. Intuitively, once

we replace each non-cycle operation label (e.g., those associ-

ated with 𝑒1, 𝑒2, 𝑒8, 𝑒9, and 𝑒10 in Figure 6 (right)) with a cycle

number that represents the actual amount of time taken

to complete the message passing, we can deterministically

obtain the exact time (in cycles) each event occurs.

5.4 Safety Checks

Building Blocks: ≤𝐺 and ⊆𝐺 . Based on an event graph

𝐺 , Anvil compares pairs of events as to the order in which

they occur during run-time. In particular, Anvil decides if

an event 𝑒𝑎 always occurs no later than another event 𝑒𝑏 ,

denoted as 𝑒𝑎 ≤𝐺 𝑒𝑏 . The simple scenario is when a path

exists from 𝑒𝑎 to 𝑒𝑏 in𝐺 and we directly have 𝑒𝑎 ≤𝐺 𝑒𝑏 . More

complex scenarios involve events with no paths between

them, which Anvil handles by considering the “worst” cases

time gap between when the two events are reached. For ex-

ample, we have 𝑒5 ≤𝐺 𝑒4, as even in the worst case (receiving

ch2.rng_req takes 0 cycles), 𝑒4 and 𝑒5 still occur at the same

time. We naturally extend the definition of ≤𝐺 to cover event

patterns and reuse the notation 𝑆𝑎 ≤𝐺 𝑆𝑏 .

With ≤𝐺 , the Anvil type system can decide that an inter-

val [𝑒𝑎, 𝑆𝑎) is always fully within another interval [𝑒𝑏, 𝑆𝑏),
denoted [𝑒𝑎, 𝑆𝑎) ⊆𝐺 [𝑒𝑏, 𝑆𝑏), if 𝑒𝑏 ≤𝐺 𝑒𝑎 and 𝑆𝑎 ≤𝐺 𝑆𝑏 . It

then decides if the lifetimes and the loan times comply with

the three types of constraints. We use the example in Figure 6

to explain them below.

Valid Value Use. Anvil’s type system verifies that events at

which a signal is used are within its defined lifetime. A use

of ptext occurs at 𝑒1 in the expression if ptext != 0 { ... } ,

where it has a a lifetime of [𝑒1, 𝑒1 ⊲ch1.enc_res). It requires
ptext to be live for one cycle, i.e., in [𝑒1, 𝑒1 ⊲#1). Anvil checks
that [𝑒1, 𝑒1 ⊲ #1) ⊆𝐺 [𝑒1, 𝑒1 ⊲ ch1.enc_res), which holds in

this case. Hence Anvil determines that ptext is guaranteed

to be live during this read.
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However, in rd1_ctext := (ptext ^ r1_key) + noise , the sig-

nal (ptext ^ r1_key) + noise cannot be statically guaranteed

to be live. In this case, Anvil compares its lifetime, [𝑒3, {𝑒2 ⊲
#1, 𝑒1 ⊲ch1.enc_res}) with the time when it is used, [𝑒3, 𝑒3 ⊲
#1) (the assignment starts at event 𝑒3 and takes one cy-

cle to complete). It cannot obtain 𝑒3 ⊲ #1 ≤𝐺 {𝑒2 ⊲ #1, 𝑒1 ⊲
ch1.enc_res}. Intuitively, if it takes more cycles to receive

ch1.enc_req (𝑒1) than ch2.rng_req (𝑒2), noise will already be

dead at 𝑒3 when the assignment happens.

Valid Register Mutation. Anvil ensures that each register

value remains constant during its loan time. For the example

in Figure 6, the loan time for r2_key is [𝑒5, 𝑒9⊲ch1.enc_req)∪
[𝑒5, 𝑒8 ⊲#2). To determine if r2_key is still loaned when the as-

signment r2_key := r1_key ^ noise takes place, Anvil checks

if [𝑒5, 𝑒7 ⊲ #1) is guaranteed not to be fully covered by any

interval in its loan time, i.e., for every [𝑒′, 𝑆 ′) in the loan time,

either 𝑆 <𝐺 𝑆 ′ or 𝑒′ <𝐺 𝑒 must hold. Here, 𝑒7 is the event that

corresponds to the assignment completion, exactly one cycle

after 𝑒5, which corresponds to when the assignment starts.

In other words, 𝑒5 and 𝑒7 are adjacent cycles in which the reg-

ister can carry different values. If an interval in the loan time

may contain both 𝑒5 and 𝑒7, at run-time during the interval

the register value may change. In the example, [𝑒5, 𝑒8 ⊲ #2)
potentially (surely in this case) fully covers [𝑒5, 𝑒7⊲#1), hence
this assignment conflicts with the loan time of r2_key and is

disallowed by Anvil. Intuitively, a value sourced from r2_key

is sent through ch2.rng_res at 𝑒5, which requires it to be live

until two cycles after the send completes. However, r2_key

already changes one cycle after 𝑒5.

Valid Message Send. In the example in Figure 6, the term

send ch1.enc_res(r1_key) attempts to send a new message be-

fore the previous enc_res message sent by the endpoint ch1

has expired. During run-time on the other end of channel,

this can lead to signals received through enc_res to change,

violating the message contract. Anvil detects such viola-

tions by examining whether the required lifetimes of the two

send operations are disjoint. The example violates such con-

straints as [𝑒8, 𝑒9 ⊲ch1.enc_req) and [𝑒9, 𝑒10 ⊲ch1.enc_req)
are overlapping. Anvil also checks that the lifetimes of sent

signals cover the required lifetime specified by the message

contract. For example, the send through ch1.enc_res at 𝑒9
checks that the lifetime of r1_key covers the required life-

time [𝑒9, 𝑒10 ⊲ ch1.enc_req). In this case, this check passes

as [𝑒9, 𝑒10 ⊲ ch1.enc_req) ⊆𝐺 [𝑒9,∞).

5.5 Formalization
Figure 7 presents the syntax of Anvil. Anvil’s type system

guarantees that any well-typed Anvil program is timing-

safe. Due to space limits, we leave the formal details of the

semantics, the type system of Anvil, the safety definitions,

and proofs to Appendices D and E.

process definition 𝑃 ::= proc 𝑝 (𝜋, . . .) {𝐵}
process body 𝐵 ::= ∅ | reg 𝑟 : 𝛿 ;𝐵 | ch 𝑐 (𝜋, 𝜋 ) ;𝐵

| spawn 𝑝 (𝜋, . . .) ;𝐵 | loop {𝑡 } 𝐵
term 𝑡 ::= true | false | () | cycle 𝑁 | 𝑥 | ∗𝑟

| 𝑡 ⇒ 𝑡 | let 𝑥 = 𝑡 in 𝑡 | ready (𝜋.𝑚)
| if 𝑥 then 𝑡 else 𝑡 | send 𝜋.𝑚 (𝑥 )
| recv 𝜋.𝑚 | 𝑟 := 𝑡 | 𝑡 ★ 𝑡 | D𝑡

𝛿 ∈ data-types ★ ∈ binary-operators D ∈ unary-operators

𝜋 ∈ endpoints 𝑥 ∈ identifiers 𝑟 ∈ registers 𝑚 ∈ messages

𝑐 ∈ channels 𝑝 ∈ processes 𝑁 ∈ N

Figure 7. Anvil syntax.

6 Implementation
We have implemented Anvil in OCaml. The Anvil compiler

performs type checking on Anvil code and generates synthe-

sizable SystemVerilog code. We have publicly released the

compiler at https://github.com/kisp-nus/anvil.
The compiler uses the event graph as an intermediate

representation (IR) throughout the compilation process. It

constructs an event graph from the concrete syntax tree of

the Anvil source code, performs type checking on it, and

lowers it to SystemVerilog. Optimizations are applied to the

event graph both before and after type checking. Since event

graph construction and type checking follow the type system

in a straightforward manner, we focus on the optimization

and lowering strategies in this section.

6.1 Event Graph Optimizations
Optimizations aim to reduce the number of events in the

event graph while keeping its semantics unchanged. The

Anvil compiler performs optimizations in passes, with each

pass applying a specific optimization strategy. Figure 8 shows

examples of such optimization passes. The figure illustrates

simplified event graphs during optimization. Edge labels

(including their colours illustrated in the figure) describe the

timing relationships between events (nodes in the figure). A

blue edge from 𝑒𝑎 to 𝑒𝑏 represents that 𝑒𝑏 waits for a fixed

delay after 𝑒𝑎 , with the number of cycles indicated in #N).
When an event waits on multiple other events, i.e., with

multiple inbound blue edges, it occurs at the latest of the

specified time points. Red edges represent branching. When

𝑒𝑟 has red edges to both 𝑒𝑎 and 𝑒𝑏 , either of them, but not

both, occurs in the same cycle as 𝑒𝑟 . Orange edges in turn

join branches: When 𝑒𝑎 and 𝑒𝑏 both have orange edges to

𝑒𝑐 , 𝑒𝑐 occurs in the same cycle when either of them occurs.

Triangles represent sets of edges. Recall that events represent

abstract time points. In a concrete run, they occur in specific

cycles (or are never reached). In general, two events can be

merged if they always occur at the same time. Many of the

optimization passes are based on identifying such cases.

https://github.com/kisp-nus/anvil
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Figure 8. Examples of event graph optimizations. The event

graphs are simplified for illustration purposes. Edges de-

scribe timing relationships: blue for fixed cycle delays, red

for branching, and orange for joining branches. Triangles

represent sets of edges.

(a) Merging identical outbound edge labels. This opti-
mization pass merges outbound edges of an event 𝑒𝑎 that

share the same label. For example, edges labelled with #N
going to 𝑒𝑏 and 𝑒𝑐 . The events those edges connect to are

merged. A shared label implies that they occur at identical

delays from the parent event.

(b) Removing unbalanced joins. This optimization pass

removes an 𝑒𝑐 with two predecessors when either of its pre-

decessors (𝑒𝑏 ) always occurs no earlier than the other (𝑒𝑎),

i.e., 𝑒𝑎 ≤𝐺 𝑒𝑏 . In this case, 𝑒𝑐 is unnecessary, and its outbound

edges are migrated to 𝑒𝑏 .

(c) Shifting branch joins.When the ending events of the

two branches 𝑒′𝑎 and 𝑒
′
𝑏
are both derived with 𝑁 cycles delay

after their predecessors 𝑒𝑎, 𝑒𝑏 , and have no associated actions

(e.g., register assignments or message sends/receives), the

event 𝑒𝑐 that joins the two can be shifted earlier. Instead of

delaying by 𝑁 cycles and then joining, the branches can join

first into 𝑒′𝑐 and then delay by 𝑁 cycles.

(d) Removing branch joins. If an event 𝑒𝑐 joins two branches
where the ending events 𝑒𝑎 and 𝑒𝑏 are also the first events of

their branches, and both share the same predecessor 𝑒𝑟 , then

𝑒𝑐 can be merged into 𝑒𝑟 . This means that if two branches

take no delay, their joining event can be merged into the pre-

decessor. All actions of the joining event are then performed

in the predecessor event.

6.2 Code Generation
The Anvil compiler maps each Anvil process to a SystemVer-

ilog module. For each process, it generates module input/out-

put ports for channel communication and a finite state ma-

chine (FSM) for control flow based on the event graph. Note

that the compiler generates no extra code formaintaining life-

times or enforcing timing safety as it reasons about lifetimes

statically and guarantees timing safety through static type

checking. As such, they incur no overhead in the generated

hardware design.

Message Lowering. Each message in an endpoint maps to

up to three module ports: data, valid, and ack. The data
port carries the communicated data, while valid and ack are
handshake ports for synchronization. The compiler only gen-

erates both valid and ack when the specified sync mode is

dynamic for both the sender and the receiver (see Section 4.1).

If the sync mode for either side is static or dependent, the

compiler omits the corresponding port (valid for the sender
and ack for the receiver). In particular, both handshake ports

are omitted for a sync mode that is not dynamic on either

side, leaving data as the only port generated.

FSM Generation. The compiler generates the FSM based on

the event graph structure. For each event, it uses a one-bit

wire current to indicate if the event has been reached. For

some events, the compiler also generates registers to record

the current state. Such events include: (a) Joins: which prede-

cessors have been reached; (b) Cycle delays: cycle count; (c)

Send/receive events (only those with dynamic sync modes):

whether the message has been sent or received.

7 Evaluation
We aim to answer three questions through evaluation:

1. Expressiveness: Can Anvil express diverse hardware

designs, without incurring any latency
1
overhead?

2. Safety: Can Anvil assist the designer to express and

meet the implicit timing contracts?

3. Practicality:What overheads doAnvil-generated hard-

ware designs incur in synthesis?

Artefacts.We have released the evaluation artefacts publicly

for reproducibility. Refer to Appendix A for information.

7.1 Expressiveness
SystemVerilog supports describing circuits with arbitrary

latencies. To assess expressiveness, we evaluate designs cre-

ated in Anvil against open-source designs written in Sys-

temVerilog.We also compareAnvil with Filament [34], which

provides specialized abstractions for static pipelines.

Common Cells Benchmarks. Anvil is designed to be a

general-purpose HDL. To test this, we implemented various

hardware components with different behaviours. Specifically,

we implemented a first-in first-out (FIFO) buffer, a spill reg-

ister, and a passthrough stream FIFO (which allows read and

write in the same cycle). These are taken from the Common

Cells IP and are highly optimized designs for synthesis [41].

With Anvil, we replicated these designs while ensuring iden-

tical functional behaviour through unit tests. Importantly,

1
Latency refers to clock cycle latency and not propagation delay.
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Table 1. Summary of area and power footprints of Anvil and baseline designs in SystemVerilog and Filament. SV stands for

SystemVerilog and dyn indicates dynamically varying cycle latencies.

Hardware Designs Area (um2) Power (mW) 𝑓max (MHz, ±50) Latency (cycles)
Baseline Anvil Baseline Anvil Baseline Anvil Baseline Overhead

FIFO Buffer (SV) 690 674 (−2%) 1.434 1.403 (−2%) 4062 4156 dyn 0

Spill Register (SV) 165 171 (3%) 0.459 0.469 (2%) 5187 5375 dyn 0

Passthrough Stream FIFO (SV) 679 679 (0%) 1.239 1.264 (2%) 4093 3625 1 0

CVA6 Translation Lookaside Buffer (SV) 5561 5611 (0%) 5.813 5.835 (0%) 2468 2406 dyn 0

CVA6 Page Table Walker (SV) 499 561 (12%) 0.649 0.676 (4%) 3531 3281 dyn 0

AES Cipher Core (SV) 9096 9090 (0%) 0.793 0.972 (22%) 781 1229 dyn 0

AXI-Lite Demux Router (SV) 1318 1469 (11%) 1.351 1.385 (2%) 2437 2125 dyn 0

AXI-Lite Mux Router (SV) 1448 1633 (12%) 1.336 1.324 (0%) 2406 2187 dyn 0

Average overhead compared with SystemVerilog baselines: Area = 4.50%,Power = 3.75%

Pipelined ALU (Filament) 501 404 (−19%) 0.658 0.678 (3%) 3312 4675 1 0

Systolic Array (Filament) 2522 2434 (−3%) 2.533 2.808 (10%) 2437 2862 1 0

Average overhead compared with Filament baselines: Area = −11.0%,Power = 6.5%

Anvil is able to express their dynamic behaviour without
introducing any latency overhead.
CVA6 MMU. We implemented the translation lookaside

buffer (TLB) and the page table walker (PTW), which to-

gether form the core of thememorymanagement unit (MMU)

in the CVA6 RISC-V core [52]. These units are highly sen-

sitive to dynamic latencies, which static contracts cannot

capture. For example, the PTW incurs varying latencies per

request due to its dependency on the data cache for fetching

page table entries. Anvil replicates the same functional be-

haviour (verified with baseline RISC-V smoke tests) without
incurring any cycle-level latency overhead over the baselines.
OpenTitan AESAccelerator [38].We implemented the un-

masked AES cipher core from OpenTitan. This core supports

encryption, decryption, and on-the-fly key generation for

AES-128 and AES-256. We verified its functional behaviour

using unit tests for encryption and decryption of plaintext.

The core has a clock-cycle latency proportional to the num-

ber of encryption rounds, and it flushes its state during oper-

ation. These characteristics make the latency dynamic, and

Anvil is able to replicate this behaviour. The original AES

core uses an S-box implementation intended for LUT map-

ping. To stay consistent with this design choice, we used the

baseline S-box IP optimized for LUT realization.

AXI-Lite Routers. Anvil abstracts communication inter-

faces using channels. To demonstrate the utility of this ab-

straction in real-world components, we implemented the

AXI-Lite demux router and AXI-Lite mux router with fair

arbitration. The AXI protocol itself is designed to provide

a channel-like interface between master and slave compo-

nents. We verified the correctness of our implementations

using unit tests with configurations of 8 slaves and 1 master,

and vice versa. These routers can be composed into an AXI

crossbar according to the desired configuration. With Anvil,

we replicated the same functional behaviour while abstract-

ing away the complexity of handling transaction requests

from the user. As in all our experiments, this design also

does not incur any additional latency overhead.

Pipelined Designs. Lastly, to demonstrate the ability of

Anvil recursives (Section 4.3) to express static pipelined de-

signs, we implemented a pipelined ALU and a pipelined

systolic array. We compared these implementations against

hardware designs generated by Filament. The evaluation

shows that Anvil allows for expressing such designs without

incurring any additional penalty.

Takeaway. Anvil provides cycle-level timing control and

precise expression of dynamic latency, with no additional

cycle latency or throughput overhead.

7.2 Safety
During our evaluation, we observed issues with the stream

FIFO. According to the IP documentation, the design goal is

clear: Reads are allowed only when the FIFO is not empty,

and writes only when it is not full. Additionally, if there is a

read and write request in the same cycle and the FIFO is full,

it should still allow the write.

However, we noticed that the original FIFO, even with

a handshake interface, does not actually prevent writes at

all. Instead, it relies on warning assertions (SVA) to alert

designers if they run into such cases. This means that unless

the design hits a specific overflow condition, no assertion

is raised. Moreover, once the overflow happens, there is no

further assertion until the FIFO again reaches its full depth.

This behaviour is ambiguous and is intended for revision as

confirmed with the maintainers [42].

This creates a gap between the documented contract and

the actual behaviour. The design does contain possible tim-

ing hazards and effectively pushes the responsibility onto

the designer to avoid them. In contrast, Anvil enforces these

contracts directly, and as we observe, does so without incur-

ring significant overhead. There are several such examples

of timing hazards in open-source IPs, where enforcement is
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either left to the designer or sometimes not handled at all.

We discuss several such instances in Appendix C.

7.3 Practicality
To evaluate the practicality of the generated designs, we

synthesized all of them on a commercial 22 nm ASIC process.

This shows how well Anvil designs scale during synthesis

compared to SystemVerilog, which is widely regarded as

the most efficient option for practical hardware. We then

provide a detailed analysis of the sources of overhead and

efficiency in these designs. Table 1 summarizes the resource

consumption of circuits generated with Anvil.

Setup.We report the area, power, the maximum frequencies

(𝑓max) at which designs do not violate slack requirements,

and the clock cycle latency of the baseline. The area and

power are reported at min(𝑓max (Anvil), 𝑓max (baseline))/2.
Propogation Delay. The maximum frequency evaluation

shows that Anvil is able to synthesize circuits that are not

worse than the baseline in supporting higher frequencies.

This is primarily because the critical path is the same in both

designs. The additional propagation delay only comes from

the extra combinational logic introduced by code genera-

tion. For pipelined designs, Anvil achieves higher maximum

frequency than the baseline.

Area.Anvil provides constructs that implicitly generate state

machines as efficiently as handwritten ones. This is reflected

in the area overheads when compared against handwritten

baselines. The overhead in non-combinational area across

all designs is equivalent to, or in some cases even lower than,

the baseline implementations.

For example, in the case of the AXI router, the observed

overhead for the AXI demux (1469 vs. 1318) arises entirely

from the FIFO component. The FIFO is required to preserve

the ordering of transactions on the AW/AR channels relative

to their corresponding W/B/R channels. The router instan-

tiates three FIFOs in total. Each FIFO contributes roughly

45 units of area overhead, as the select signal width is only

3 bits. However, as the data width increases, the relative

overhead becomes demagnified. This trend is evident in the

32-bit FIFO buffer results reported in Table 1.

A similar observation holds for the PTW. Here, the non-

combinational area is comparable (330 vs. 352), while the

combinational area shows a modest gap (168 vs. 208). This

difference essentially reflects a fixed cost of Anvil’s code gen-

eration. As a result, the relative overhead is more pronounced

for small-area designs but negligible for larger ones.

Power. The power overhead in Anvil arises primarily from

bundling signals and flattening data structures. In this repre-

sentation, the synthesis toolchain may treat the entire bundle

as active, even when only a portion is in use. Consequently,

switching activity, and thus dynamic power, increases with

datapath width, as observed in the AES cipher core. At the

same time, the Anvil compiler can reduce leakage power

because all signals are explicitly connected, leaving none

floating. Additionally, register assignments for explicitly de-

clared registers occur only when the corresponding event

is triggered. This behaviour implicitly provides clock gating

for some register writes.

Summary. Overall, Table 1 shows that Anvil achieves area
efficiency on par with handwritten SystemVerilog, with over-

heads typically within 12% and averaging 4.50%. Power over-

heads are more noticeable in wide datapath designs (e.g., the

AES cipher core) due to increased switching activity, but

remain modest overall (averaging 3.5%). The maximum fre-

quencies are generally on par with handwritten SystemVer-

ilog, and in pipelined cases, even exceed the baseline. Im-

portantly, none of the designs introduce extra cycle latency.

Takeaway.Anvil is practical for creating real-world hard-
ware designs with minimal area/power overheads and

seamlessly integrates into existing SystemVerilog designs.

8 Related Work
Timing-Oblivious HDLs. The industry-standard HDLs,

SystemVerilog [22] and VHDL [21], describe hardware be-

haviours with dataflows involving registers and wires within

single cycles. This abstract model equips them with low-

level expressiveness but is not conducive to time-related

reasoning, causing such problems as timing hazards. Em-

bedded HDLs [3, 12, 43, 45] use software programming lan-

guages for hardware designs for their better parameteri-

zation and abstraction capabilities. They follow the same

single-cycle model as in SystemVerilog and VHDL. Bluespec

SystemVerilog [5, 35] provides an abstraction of hardware

behaviours with sequential firing of atomic rules. It is still

limited to describing single-cycle behaviours and does not

provide timing safety. Higher-level HDLs, high-level synthe-

sis (HLS) languages, and accelerator description languages

(ADLs) [20, 24, 44, 49, 51] specialize in specific applications

and abstracts away cycle-level timing and the distinction

between stateless signals and registers.

Timing-Aware HDLs. Filament [34] achieves timing safety

with timeline types which only support statically fixed de-

lays. As a result, it is limited to designs with static timing

behaviours. HIR [31] is an intermediate representation (IR)

for describing accelerator designs. It introduces time vari-

ables to specify timing, and allows specifying a static delay

for each function to indicate when it returns. HIR abstracts

away the distinction between signals and registers and does

not capture the notion of lifetimes and only supports static

timing behaviours. Piezo [27] is an IR that supports specify-

ing both static and dynamic timing through timing guards.

Hazard Prevention. BaseJump [46] and Wire Sorts [8] are

type systems deigned to identify combinational loops, a sep-

arate concern than timing hazards. ShakeFlow [17] proposes

a dynamic control interface to prevent structural hazards
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in pipelined designs. Hazard Interfaces [25] generalizes it

further to cover data and control hazards as well. Both focus

on higher-level notions of hazards than timing hazards on

high-level abstractions specialized for pipelined designs.

RTL Verification. Verification techniques focus on more

general specifications for RTL designs, e.g., those based on

temporal logics [6, 16, 33, 39]. In practice, desired properties

are typically specified as assertions in source code, which

are verified either through testing [11, 23] or through for-

mal methods such as model checking [7, 48, 50]. Compared

with Anvil, verification-based techniques cover more general

properties, but suffer from a long feedback loop resulting

from a separate verification stage, the extra burden of main-

taining implementation-specific specifications, and tractabil-

ity issues such as state explosion. Section 2.4 compares Anvil

with verification-based methods in more detail.

9 Conclusions
In this work, we formalize the problem of timing hazards

and present Anvil, a hardware description language that

provides timing safety by capturing and enforcing timing

requirements on shared values in timing contracts. Anvil

ensures safe use of values, guaranteeing that they remain

unchanged throughout their lifetimes. Meanwhile, it pro-

vides the expressiveness for cycle-level timing control and

for describing designs with dynamic timing characteristics.
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A Artifact Appendix
A.1 Abstract
The artefacts include the Anvil compiler and the case stud-

ies used to evaluate Anvil’s practicality and expressiveness.

The experiments were conducted by re-implementing open-

source hardware designs in Anvil, ensuring that each design

matches the original behaviour at the cycle level. All designs

type check in Anvil, demonstrating that expressing the same

behaviour in Anvil does not introduce any additional clock-

cycle latency. We also provide the synthesis reports from a

commercial 22 nm ASIC flow as part of the artefacts. These

reports show that Anvil incurs minimal overhead compared

to the baselines and achieves comparable or better maximum

critical frequency.

A.2 Artefact check-list (meta-information)
• Algorithm: algorithms for type checking and code genera-

tion (implemented in the Anvil compiler )

• Program: OpenTitan AES accelerator, CVA6 MMU, AXI

routers, Common Cells IP (all included)

• Compilation: OCaml 5.2, Verilator v5.036

• Transformations: Anvil compiler (included)

• Run-time environment: Linux/Unix; Docker/Podman (no

root access required)

• Hardware: 16 GB RAM, 30 GB external storage

• Execution: <15 minutes to run all experiments

• Metrics: cycle-accurate logs; ASIC synthesis reports

• Output: log files; generated SystemVerilog; sample outputs

included

• Experiments: cycle-accurate behavioural matching; ASIC

synthesis evaluation (fully automated “push-button” simula-

tion)

• Howmuch disk space required (approximately)?: 30 GB
• How much time is needed to prepare workflow (ap-
proximately)?: 1 hour to build the container image

• How much time is needed to complete experiments
(approximately)?: 15 minutes to run experiments + manual

inspection time

• Publicly available?: Yes

• Code licenses (if publicly available)?: MIT License

• Workflow automation framework used?: Docker/Pod-
man with scripts

• Archived (provide DOI)?: 10.5281/zenodo.18346123

A.3 Description
A.3.1 How to access. The artefacts are available online
at https://github.com/kisp-nus/AnvilHDL-Experiments/tree/
artefact-asplos-2026. The repository contains the Anvil im-

plementation of the baselines from open source repositories.

It also includes all baseline benchmark implementations from

open-source projects as Git submodules.

A.3.2 Hardware dependencies. A multicore CPU with

at least 16 GB RAM and 30 GB of free disk space is required

to reproduce the artefacts.

A.3.3 Software dependencies. The only prerequisite for

evaluating the artefact is a working Docker or Podman in-

stallation.

A.4 Installation
To begin, clone the GitHub repository:

git clone \

https://github.com/kisp-nus/AnvilHDL-Experiments.git

cd AnvilHDL-Experiments

A.5 Experimental Workflow
The quickest way to run the complete experiment suite is to

use the provided Dockerfile, which sets up all dependencies

including benchmarks, Verilator, the Anvil compiler, and

supporting tools. A push-button script automates the entire

process—from building the container image to running all

experiments. With Docker or Podman installed and a Unix

shell, you are ready to proceed.

bash run.sh [-r]

The -r flag forces a rebuild of the container. Without it,

the script reuses an existing build (if present) or builds it,

and then executes the experiments sequentially, collecting

all logs in the out directory.

If you prefer to run the workflow locally (without using a

container), you can reproduce the same results using:

python3 run_artefact.py

Individual experiments can also be run independently.

Each experiment directory contains its own README with

detailed instructions.

A.6 Evaluation and expected results
After running the experiments, the out directory contains

cycle-accurate print logs for each design. These logs match

across Anvil and the corresponding baselines. An explana-

tion of each testbench is provided in the top-level README of

the repository. A sample output is provided in the sample_out

directory for their reference.

Synthesis reports are available in the synthesis_reports

directory. They can be inspected for area, power, and max-

imum frequency results from the commercial 22 nm ASIC

flow.

A.7 Experiment customization
The Anvil compiler is publicly available at https://github.
com/kisp-nus/anvil. It is actively maintained and includes

detailed instructions for installation, customization, and us-

age. Comprehensive documentation is available at https:
//docs.anvil.kisp-lab.org/. In addition, we provide an online

playground for editing and simulating simple Anvil designs

at https://anvil.kisp-lab.org/.

https://github.com/kisp-nus/AnvilHDL-Experiments/tree/artefact-asplos-2026
https://github.com/kisp-nus/AnvilHDL-Experiments/tree/artefact-asplos-2026
https://github.com/kisp-nus/anvil
https://github.com/kisp-nus/anvil
https://docs.anvil.kisp-lab.org/
https://docs.anvil.kisp-lab.org/
https://anvil.kisp-lab.org/
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chan ch {

right data : (logic @res),

left res : (logic @#1)

}

chan ch_s {

right data : (logic @#1)

}

proc grandchild(ep : left ch_s) {

reg cnt : logic[32];

loop {

set cnt := *cnt + 32'b1

}

loop {

let v = if *cnt > 32'h100000 { 1'b1 } else { 1'b0 };

send ep.data(v) >>

cycle 1

}

}

proc child(ep : left ch) {

reg r : logic;

chan ep_sl -- ep_sr : ch_s;

spawn grandchild(ep_sl);

loop {

set r := ~*r >>

let d = recv ep_sr.data >>

send ep.data (*r & d) >>

let _ = recv ep.res

}

}

proc Top() {

chan ep_sl -- ep_sr : ch;

spawn child(ep_sl);

loop {

let d = recv ep_sr.data >>

cycle 1 >>

dprint "Value: %b" (d) >>

cycle 1 >>

dprint "Value should be the same %b" (d) >>

cycle 1 >>

send ep_sr.res (1'b1) >>

cycle 1

}

}

Listing 1. Example Anvil code.

A.8 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-
and-badging-current

• https://cTuning.org/ae

module grandchild(/* omitted */);

logic [31:0] cnt;

logic data_q, data_d;

assign data_o = data_q;

assign data_valid_o = 1'b1;

always_comb begin

data_d = data_q;

if (data_ack_i) begin

data_d = cnt > 32'h100000 ? 1'b1 : 1'b0;

end

end

initial begin

cnt <= '0;

data_q <= 1'b0;

end

always_ff @(posedge clk_i) begin

cnt <= cnt + 32'b1;

data_q <= data_d;

end

endmodule

module child(/* omitted */);

/* omitted */

endmodule

module example(input logic clk_i);

/* omitted */

enum logic[1:0] { /* omitted */ } state_q, state_d;

assign data_ack = state_q == RECV;

assign res_valid = state_q == SEND;

always_comb begin

state_d = state_q;

unique case (state_q)

/* omitted */

endcase

end

initial state_q <= RECV;

always_ff @(posedge clk_i) begin

if (state_q == ST0 || state_q == ST1) begin

assert(data == $past(data));

end

state_q <= state_d;

end

endmodule

Listing 2. Example SystemVerilog code with assertions.

B Comparison with Verification
Consider the Anvil code in Listing 1. The module Top re-

ceives data and sends back a response to the child mod-

ule. The data received is expected to be usable and keep

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://cTuning.org/ae
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il proc FOO(dma_ch_le : left dma_ch, ...) {

  loop {
    ......

send dma_ch_le.req({...,*address,*cfg}) >>
  set address := protected_address >>
  let x = recv dma_ch_le.gnt_res;

    ......

  }

}

dma_ch
proc DMA

Error: Attempted assignment to a loaned register
dma_ch definition

 right req : dma_in@gnt_res, 

 left gnt_res : dma_out@#1

D
M

A 
in

te
rf

ac
ed

 w
ith

ex
te

rn
 F

O
O extern FOO

dma_ch definition

 right req : dma_in@#1,

 left gnt_res : dma_out@#1

proc DMA(dma_ch_ri : right dma_ch, ...) {
  loop {
    .......

  let input = recv dma_ch_ri.req >>
  send pmp_ch.req({..,input.address, ...}) >>

    ......

  }

}
Error: Value does not live long enough in message send

dma_ch

Figure 9. Anvil can assist in preventing bugs.

unchanged in between. The child module in turn commu-

nicates with grandchild to obtain the data. Anvil’s type sys-

tem rejects this code because the data child obtains from

grandchild, namely d, lives only for one cycle, but a value

that depends on it (*r & d) is sent to Top which requires it

to stay alive until the response. When fed with this code as

input, the Anvil compiler detects this type error and prints

the following error message:

Value not live long enough in message send!
Top.anvil:29:4:

29| send ep.data (*r & d) >>
| ^^^^^^^^^^^^^^^^^^^^^

Now let us consider the same design expressed in Sys-

temVerilog with an assertion for the same property, pro-

vided in Listing 2. Comparing the two versions leads us to

the following observations:

• The assertion in the SystemVerilog code is tied to the

implementation. For example, it already requires the

designer to manually and explicitly identify the states

where the data is used and needs to remain unchanged.

Anvil does not require such manual effort.

• Anvil can check the property individually for each

module due to the compositional contracts specified in

channel definitions. In the example, Anvil can report

the violation by just looking at child module alone.

Checking the property in the SystemVerilog code re-

quires reasoning across all three modules.

• Problems may arise if we attempt to apply formal ver-

ification techniques to verify the specified property in

the SystemVerilog code. For example, bounded model

checking on the SystemVerilog code using Yosys SMT-

BMC and z3 fails to detect the violation even with

large depth limits. This is due to the large number of

concrete states. In contrast, the Anvil code provides

abstractions that capture more of the hardware de-

signer’s intent, allowing the property to be checked

more easily.

C Safety Analysis on Real-World Errors
We were motivated to design Anvil by our own frustrating

experience implementing an experimental CPU architecture.

The frequent timing hazard we encountered during develop-

ment required significant debugging effort. We demonstrate

how Anvil can help designers address the following chal-

lenges with minimal effort:

1. Enforcing concrete timing contracts

2. Challenges in implementing timing contracts

Case 1: Enforcing Concrete Timing Contracts. The vul-

nerability class highlighted in CWE-1298 [32] illustrates a

hardware bug from HACK@DAC’21. This bug arose from

a missing timing contract in the DMA module of the Open-

Piton SoC. The module was intended to verify access to

protected memory using specific address and configuration

signals. However, it assumed these inputs would remain sta-

ble during processing without any mechanism to enforce

this assumption. This created a timing vulnerability across

module interactions.

If designed in Anvil, the DMA channel definition would

explicitly require that input signals remain stable until the

request is completed, as shown in Figure 9. Anvil would

enforce this stability requirement, ensuring that only com-

patible modules interact without introducing timing risks.

When the DMA module interfaces with non-Anvil modules,

Anvil imposes a one-clock-cycle lifetime on external signals.

If the DMA implementation does not follow the contract,

Anvil triggers an error: “Value does not live long enough. . . ,”

implying the need to register the signal immediately.

Similarly, designers using custom test benches with open-

source hardware often struggle to follow strict timing con-

tracts. This is particularly challenging when there is no

mechanism to enforce timing contracts. For instance, in

this GitHub issue [1], the designer observed unexpected be-

haviour during simulation while integrating a Verilog-based

Ethernet interface into their module. This Ethernet module

required a complex timing contract to be enforced on the

interfacing module for proper operation. However, without

a language that enforces this contract, the designer struggled

to explicitly meet these timing requirements and manage

synchronization.

Case 2: Challenges in Implementing Timing Contracts.
Designers often face challenges in implementing synchro-

nization primitives and dynamic timing contracts, evenwhen

they intend to define them clearly. This difficulty is evident in

various open-source project commit histories and issue track-

ers. For example, in Table 2, we highlight a few instances

from GitHub that showcase how designers have struggled

with these aspects. Our analysis demonstrates that Anvil

could have prevented these issues or helped catch the bugs

before compilation.

Even when contracts are explicitly defined, the instruc-

tions for compliance can be ambiguous. A case in point is
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Table 2. Summary of Issues in some open source repositories

Repository Issue Analysis How can Anvil help?

OpenTitan
(Issue [30])

In OpenTitan’s entropy source module, firmware (FW) is supposed to insert

verified entropy data into the RNG pipeline. However, a timing hazard

prevented reliable data writing and control over the SHA operation.

Solution Proposed in discussion: Add signals for FW to control the entropy

source state machine and a ready signal to safely write data into the pipeline.

If implemented in Anvil, FW would

inherently control the state machine when

asserting data without explicit implementa

-tion ensuring synchronization is built-in.

Coyote
(Issue [15])

The completion queue has a 2-cycle valid signal burst instead of one cycle.

The issue is still open. This happens when a write request is issued on the

sq_wr bus, and the cq_wr is observed for completion. The valid signal is

high for 2 cycles instead of one.

Core Issue: The timing contract was not properly implemented, though the

designer defined it. The timing control was deeply embedded within

interconnected state machines, making the bug difficult to detect even with

a thorough inspection.

Anvil implements the FSM for timing

contracts implicitly, providing synchroniza

-tion primitives to control the state and

ensure an error-free FSM implementation.

ibex
(Commit [29])

Commit Message: “Add an instr_valid_id signal to completely decouple the

pipeline stages, hopefully, it fixes the exception controller"

Commit Summary: Despite the pipeline being statically scheduled, the valid

signal was added later to enforce the timing contract only after unexpected

behaviour was observed.

In Anvil, even for statically scheduled

pipelines, stage-to-stage handshakes are

enforced implicitly, ensuring timing

contracts are upheld even if the

schedule isn’t strictly adhered to.

snax-cluster
(Commit [28])

Commit changes

assign a_ready_o = acc_ready_i && c_ready_i && (a_valid_i && b_valid_i);
assign b_ready_o = acc_ready_i && c_ready_i && (a_valid_i && b_valid_i);

Commit Summary: Fixes the implementation of the timing contract on the ALU

interface by adding the missing valid signal in the handshake.

Anvil implicitly handles handshake impl

-ementation for interfacing signals,

ensuring the enforcement of timing

contracts.

core2axi
(Commit [40])

Commit changes: w_valid_o = 1’b1;

Commit Summary: Ensure compliance with the timing contract by asserting

the missing valid signal when sending a new write request on the bus.

In Anvil, the assertion of valid signals and

synchronization is handled implicitly

whenever a message is sent

the documentation for CV-X-IF, where one issue [37] reveals

the complications involved in adhering to the timing con-

tract. Another issue [36] illustrates that the complexity of a

static schedule necessitated additional notes to clarify the

implementation guidelines for the interfacing module.

In contrast, Anvil simplifies the implementation of syn-

chronization and finite state machines (FSM) that handle

timing contracts. Designers only need to define the con-

tract within the corresponding channel, which can utilize dy-

namic message-passing events. The synchronization primi-

tives (handshakes) are implemented implicitly and efficiently,

ensuring no clock cycle overhead. Additionally, the wait con-

struct allows designers to express the dynamic times required

to process a state. In ambiguous process descriptions, Anvil

flags the description to make necessary changes to guarantee

runtime safety statically.
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message definitions 𝑀 ::= {𝜋.𝑚 : 𝑝, · · · }
message set Σ ::= {𝜋.𝑚, · · · }
composition 𝜅 ::= 𝑡 | 𝜅 ∥Σ 𝜅

program P ::= (loop{𝑡}, 𝑀) | P ∥Σ P

Figure 10. Anvil abstract syntax

D Formalization Details
D.1 Abstract Syntax
For convenience of formal reasoning, we also define an abstract syntax of Anvil programs, shown in Figure 10, allowing us to

discuss parallel composition in a style similar to communicating sequential processes (CSP) [18]. The ∥Σ notation represents

parallel composition with the two sides communicating through messages specified in the set Σ.𝑀 maps each message to the

associated duration requirement.

D.2 Semantics

Execution log. An execution log is simply a sequenceL = ⟨𝛼0, · · · , 𝛼𝑘⟩, where 𝛼𝑖 is represents the set of operations performed

during cycle 𝑖 . Operations can be one of the following — 1. ValCreate representing the creation of a new value that depends

on a set of registers and existing values, 2. ValUse, representing the use of a value, 3. RegMut, denoting mutation of a register,

4. ValSend, for sending of a value through a message, and 5. ValRecv, denoting the receipt of a value through a message.

Following this, we define the set of execution logs corresponding to a term, compositions, and finally programs. To capture the

non-determinism of message passing and branching in an execution log of a term, we delay each send and receive operation

by any non-negative number of cycles and allow each branching term to take either branch. Execution logs of compositions

are obtained by combining two execution logs, with the requirement that any send and receive operations for messages in Σ
must match and align in pairs, and each pair must use the same value identifier. In the combined execution log, the matching

send and receive operations are eliminated. This reflects that they have now become internal details, no longer affecting the

semantics of the composition. For programs, we take into consideration the looping semantics of each looping thread. We

achieve this by mapping a program to a set of compositions, where each composition is obtained by appending 𝑡 in each

looping thread loop{𝑡} arbitrarily many times. Any execution log of any such composition is an execution log of the program.

The semantics of those constructs is then defined by their sets of execution logs, which captures all their possible behaviours.

Definition D.1 (Execution log). An execution log consists of a sequence of sets L = ⟨𝛼0, 𝛼1, · · · , 𝛼𝑘⟩. The finite set 𝛼𝑖 contains
the actions in the 𝑖-th cycle, each of the following form:

• ValCreate(𝑣, {𝑟1, 𝑟2, · · · , 𝑟𝑚}, {𝑣1, 𝑣2, · · · , 𝑣𝑛}) (creating a value with name 𝑣 that depends on registers 𝑟1, 𝑟2, · · · , 𝑟𝑚 and

values 𝑣1, 𝑣2, · · · , 𝑣𝑛)
• ValUse(𝑣) (using the value identified by 𝑣)

• RegMut(𝑟 ) (mutating the register identified by 𝑟 )

• ValSend(𝜋.𝑚, 𝑣, 𝑝) (send a value with name 𝑣 through message 𝜋.𝑚 with duration 𝑝)

• ValRecv(𝜋.𝑚, 𝑣, 𝑝) (receive a value with name 𝑣 through message 𝜋.𝑚 with duration 𝑝)

Definition D.2 (Local execution log). A log L is a local execution log of a term 𝑡 if Γ; 𝐼 , 𝑀 ⊢ 𝑡 ; L ◁ 𝑣 , which is defined by

the following inference rules.

Γ; {𝑣}, 𝑀 ⊢ cycle #𝑘 ; (∅𝑘+1 ◦ ⟨{ValCreate(𝑣, ∅, ∅)}⟩) ◁ 𝑣
(E-Cycle)

Γ; {𝑣}, 𝑀 ⊢ 𝑛 ; ⟨{ValCreate(𝑣, ∅, ∅)}⟩ ◁ 𝑣
(E-Literal)

Γ; 𝐼1, 𝑀 ⊢ 𝑡1 ; L1 ◁ 𝑣1 Γ; 𝐼2, 𝑀 ⊢ 𝑡2 ; L2 ◁ 𝑣2
𝐼1 ∩ 𝐼2 = ∅

shift(Γ, |L1 | − 1); (𝐼1 ∪ 𝐼2), 𝑀 ⊢ 𝑡1 => 𝑡2 ; (L1 ◦ L2) ◁ 𝑣2
(E-Wait)
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Γ; 𝐼1, 𝑀 ⊢ 𝑡1 ; L1 ◁ 𝑣1 Γ, 𝑥 : ( |L1 | − 1, 𝑣1); 𝐼2, 𝑀 ⊢ 𝑡2 ; L2 ◁ 𝑣2

Γ; (𝐼1 ∪ 𝐼2), 𝑀 ⊢ let 𝑥 = 𝑡1 in 𝑡2 ; (L1 ⊎ L2) ◁ 𝑣2
𝐼1 ∩ 𝐼2 = ∅

(E-Let)

Γ(𝑥) = (𝑘, 𝑣)
Γ; ∅, 𝑀 ⊢ 𝑥 ; ∅𝑘+1 ◁ 𝑣

(E-Ref)

Γ; 𝐼 , 𝑀 ⊢ 𝑡 ; L ◁ 𝑣 𝑣 ′ ∉ 𝐼

Γ; 𝐼 ∪ {𝑣 ′}, 𝑀 ⊢ 𝑟 := 𝑡 ; L ⊎ ⟨{ValUse(𝑣), RegMut(𝑟 )}, {ValCreate(𝑣 ′, ∅, ∅)}⟩ ◁ 𝑣 ′
(E-RegAssign)

Γ; 𝐼 , 𝑀 ⊢ 𝑡 ; L ◁ 𝑣 𝑣 ′ ∉ 𝐼 𝑘 ∈ N
Γ; (𝐼 ∪ {𝑣 ′}), 𝑀 ⊢ send 𝜋.𝑚(𝑡) ; ∅𝑘+1 ◦ ⟨{ValSend(𝜋.𝑚, 𝑣,𝑀 (𝜋.𝑚)),ValCreate(𝑣 ′, ∅, ∅)}⟩ ◁ 𝑣 ′

(E-Send)

𝑘 ∈ N, 𝑢 ≠ 𝑣

Γ; ({𝑣,𝑢}), 𝑀 ⊢ recv 𝜋.𝑚 ; ∅𝑘◦
⟨{ValRecv(𝜋.𝑚, 𝑣,𝑀 (𝜋.𝑚)),ValCreate(𝑢, ∅, {𝑣})}⟩ ◁ 𝑢

(E-Recv)

Γ; 𝐼1, 𝑀 ⊢ 𝑡1 ; L1 ◁ 𝑣1
Γ; 𝐼2, 𝑀 ⊢ 𝑡2 ; L2 ◁ 𝑣2
Γ; 𝐼3, 𝑀 ⊢ 𝑡3 ; L3 ◁ 𝑣3

𝐼1 ∩ (𝐼2 ∪ 𝐼3) = ∅ 𝐼2 ∩ 𝐼3 = ∅
Γ; (𝐼1 ∪ 𝐼2 ∪ 𝐼3), 𝑀 ⊢ if 𝑡1 then 𝑡2 else 𝑡3 ; L1 ⊎ L2 ⊎ ⟨{ValUse(𝑣1)}⟩ ◁ 𝑣2

(E-IfThen)

Γ; 𝐼1, 𝑀 ⊢ 𝑡1 ; L1 ◁ 𝑣1
Γ; 𝐼2, 𝑀 ⊢ 𝑡2 ; L2 ◁ 𝑣2
Γ; 𝐼3, 𝑀 ⊢ 𝑡3 ; L3 ◁ 𝑣3

𝐼1 ∩ (𝐼2 ∪ 𝐼3) = ∅ 𝐼2 ∩ 𝐼3 = ∅
Γ; (𝐼1 ∪ 𝐼2 ∪ 𝐼3), 𝑀 ⊢ if 𝑡1 then 𝑡2 else 𝑡3 ; L1 ⊎ L3 ⊎ ⟨{ValUse(𝑣1)}⟩ ◁ 𝑣3

(E-IfElse)

∅; {𝑣}, 𝑀 ⊢ ∗𝑟 ; ⟨{ValCreate(𝑣, {𝑟 }, ∅)}⟩ ◁ 𝑣
(E-RegEval)

∅; {𝑣}, 𝑀 ⊢ ready(𝜋.𝑚) ; ⟨{ValCreate(𝑣, ∅, ∅)}⟩ ◁ 𝑣
(E-Ready)

Where ⟨𝛼0, 𝛼1, · · · , 𝛼𝑘⟩ ◦ ⟨𝛽0, 𝛽1, · · · , 𝛽𝑙 ⟩ = ⟨𝛼0, 𝛼1, · · · , (𝛼𝑘 ∪ 𝛽0), 𝛽1, · · · , 𝛽𝑙 ⟩.
The merge operator ⊎ is defined as (without loss of generality, assuming 𝑘 ≤ 𝑙): ⟨𝛼0, 𝛼1, · · · , 𝛼𝑘⟩ ⊎ ⟨𝛽0, 𝛽1, · · · , 𝛽𝑙 ⟩ =

⟨𝛼0 ∪ 𝛽0, 𝛼1 ∪ 𝛽1, · · · , 𝛼𝑘 ∪ 𝛽𝑘 , 𝛽𝑘+1, · · · , 𝛽𝑙 ⟩.
𝛼𝑘 = ⟨𝛼0, · · · , 𝛼𝑘−1⟩ where for all 𝑖 = 0, 1, · · · , 𝑘 − 1, 𝛼𝑖 = 𝛼 .

The function shift(Γ, 𝑘) shifts all delays in Γ by 𝑘 cycles. Formally,

shift(∅, 𝑘) = ∅
shift((Γ, 𝑥 : (𝑘 ′, 𝑣)), 𝑘) = shift (Γ, 𝑘), 𝑥 : (max(0, 𝑘 ′ − 𝑘), 𝑣)

Definition D.3 (Compositional execution log). L is an execution log of a 𝜅 if:

• 𝜅 = 𝑡 and L is a prefix of an execution log of 𝑡

• 𝜅 = 𝜅1 ∥Σ 𝜅2, L1,L2 are execution logs of 𝜅1 and 𝜅2 respectively, and let L1 = ⟨𝛼0, · · · , 𝛼𝑚⟩,L2 = ⟨𝛽0, · · · , 𝛽𝑚⟩, the
following holds:

– For all 𝜋.𝑚 ∈ Σ, 0 ≤ 𝑖 ≤ 𝑚, ValSend(𝜋.𝑚, 𝑣, 𝑝) ∈ 𝛼𝑖 if and only if ValRecv(𝜋.𝑚, 𝑣, 𝑝) ∈ 𝛽𝑖 , and ValRecv(𝜋.𝑚, 𝑣, 𝑝) ∈ 𝛼𝑖
if and only if ValSend(𝜋.𝑚, 𝑣, 𝑝) ∈ 𝛽𝑖 .

– L = ⟨𝛾0, · · · , 𝛾𝑚⟩, 𝛾𝑖 = 𝛼𝑖 ∪ 𝛽𝑖 − {ValSend(𝜋.𝑚, 𝑣, 𝑝) | 𝜋.𝑚 ∈ Σ} − {ValRecv(𝜋.𝑚, 𝑣, 𝑝) | 𝜋.𝑚 ∈ Σ}.
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Definition D.4 (Concretization). A composition 𝜅 is a concretization of program P, written P ; 𝜅 , by the following inference

rules:

(loop{𝑡}, 𝑀) ; 𝑡
(C-Base)

(loop{𝑡}, 𝑀) ; 𝑡 ′

(loop{𝑡}, 𝑀) ; 𝑡 ′ => 𝑡
(C-Extend)

P1 ; 𝜅1 P2 ; 𝜅2

P1 ∥Σ P2 ; 𝜅1 ∥Σ 𝜅2
(C-Compose)

Definition D.5 (Program execution log). L is an execution log of program P if there exists composition 𝜅 such that P ; 𝜅

and L is an execution log of 𝜅.

D.3 Type System

Event graph. The type system of Anvil is based on the event graph. An event graph, denoted 𝐺 = (𝑉 , 𝐸), is a directed acyclic

graph that describes the time ordering among events in an Anvil process. Each node (i.e., event) is labelled to indicate how

its corresponding starting time relates to those of its direct predecessors. Types in Anvil reference the event graph as part

of the typing environment to convey timing constraints. We choose this strategy because the timing constraints associated

with a term are not always local. Take the example of send ch.m1 (x) => recv ch.m2 , where ch.m1 specifies a duration of ch.m2.
It is necessary to be aware of the first ch.m2 event that occurs after ch.m1. This event does not appear in the expression

send ch.m1 (x) itself, but rather in the surrounding context in which send ch.m1 (x) appears, to ensure that x lives long enough.

We choose the event graph as it is a simple structure that captures all the necessary information to reason about such timing

constraints. As a shorthand, we use the notation 𝑒1 → 𝑒2 ∈ 𝐺 to say that 𝐺 contains an edge from event 𝑒1 to event 𝑒2. We

use 𝐺 (𝑒2) to denote ⟨𝜔, {𝑒1 | 𝑒1 → 𝑒2 ∈ 𝐺}⟩, which consists of the operation label 𝜔 of 𝑒2 as well as the set of all its direct

predecessors.

Types. Intuitively, a type encodes a lifetime by referencing the event graph and is a pair:

𝑇 ::= (𝑒𝑙 , 𝑆𝑑 ),
where 𝑒𝑙 is an event graph node that encodes the start time, and 𝑆𝑑 is a set of event patterns 𝑒𝑑 ⊲ 𝑝 , the earliest match of which

defines the end time. An empty 𝑆𝑑 indicates that the lifetime is eternal. Each time pointer specifier is a pair of event identifier

𝑒𝑑 and duration 𝑝 , which implies the first time 𝑝 is matched (the specified number of cycles have elapsed or a specified message

is sent or received) after 𝑒𝑑 is reached.

Typing Rules. A typing judgment is of the form

Γ;𝐺, 𝑅,𝑀,𝐶, 𝑒𝑐 ⊢ 𝑡 : 𝑇 .
The typing environment consists of Γ which maps each let-binding to its type, the event graph 𝐺 introduced above, 𝑅 which

maps a register to its loan time,𝑀 which maps a message specifier (an endpoint and a message identifier, of the form 𝜋.𝑚) to

the duration that specifies its lifetime requirement, 𝐶 which is a set of identifiers associated with all branch conditions that

have appeared, and 𝑒𝑐 which references a node in 𝐺 as an abstract specifier of the time at which 𝑡 is to be evaluated.

The typing rules use the ≤𝐺 and <𝐺 relations to apply timing constraints. Their complete and formal definitions are available

in Section D. Intuitively, 𝑎 ≤𝐺 𝑏 if the time specified by 𝑎 is always no later than that by 𝑏 in the event graph 𝐺 , and 𝑎 <𝐺 𝑏

if the time specified by 𝑎 is always strictly before that by 𝑏 in 𝐺 . Here 𝑎 and 𝑏 can be nodes or timing patterns in 𝐺 . In our

implementation, we use sound approximations of ≤𝐺 and <𝐺 .

Γ;𝐺, 𝑅,𝑀,𝐶, 𝑒𝑐 ⊢ 𝑡 : 𝑇
Γ, 𝑥 : 𝑇 ′

;𝐺, 𝑅,𝑀,𝐶, 𝑒𝑐 ⊢ 𝑡 : 𝑇
(T-Weaken)

𝐺 (𝑒𝑙 ) = ⟨#𝑘, {𝑒𝑐 }⟩
∅;𝐺, 𝑅,𝑀, ∅, 𝑒𝑐 ⊢ cycle 𝑘 : (𝑒𝑙 , ∅)

(T-Cycle)

Γ;𝐺, 𝑅,𝑀,𝐶1, 𝑒𝑐 ⊢ 𝑡1 : (𝑒𝑙 , 𝑆𝑑 )
Γ;𝐺, 𝑅,𝑀,𝐶2, 𝑒𝑙 ⊢ 𝑡2 : 𝑇2 𝐶1 ∩𝐶2 = ∅
Γ;𝐺, 𝑅,𝑀,𝐶1 ∪𝐶2, 𝑒𝑐 ⊢ 𝑡1 => 𝑡2 : 𝑇2

(T-Wait)
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𝑀 (𝜋.𝑚) = 𝑝 𝐺 (𝑒𝑙 ) = ⟨𝜋.𝑚, {𝑒𝑐 }⟩
∅;𝐺, 𝑅,𝑀, ∅, 𝑒𝑐 ⊢ recv 𝑚 : (𝑒𝑙 , {𝑒𝑙 ⊲ 𝑝})

(T-Recv)

𝑥 : (𝑒𝑙 , 𝑆𝑑 ) ∈ Γ 𝐺 (𝑒′
𝑙
) = ⟨#0, {𝑒𝑐 , 𝑒𝑙 }⟩

Γ;𝐺, 𝑅,𝑀, ∅, 𝑒𝑐 ⊢ 𝑥 : (𝑒′
𝑙
, 𝑆𝑑 )

(T-Ref)

Γ;𝐺, 𝑅,𝑀,𝐶, 𝑒𝑐 ⊢ 𝑡 : (𝑒𝑙 , 𝑆𝑑 )
𝐺 (𝑒′

𝑙
) = ⟨𝜋.𝑚, {𝑒𝑐 }⟩

𝑒𝑙 ≤𝐺 𝑒𝑐 𝑒′
𝑙
⊲𝑀 (𝜋.𝑚) ≤𝐺 𝑆𝑑

Γ;𝐺, 𝑅,𝑀,𝐶, 𝑒𝑐 ⊢ send 𝜋.𝑚(𝑡) : (𝑒′
𝑙
, ∅)

(T-Send)

Γ;𝐺, 𝑅,𝑀,𝐶1, 𝑒𝑐 ⊢ 𝑡1 : (𝑒1, 𝑆1)
Γ;𝐺, 𝑅,𝑀,𝐶2, 𝑒𝑐 ⊢ 𝑡2 : (𝑒2, 𝑆2)

𝐺 (𝑒′
𝑙
) = ⟨#0, {𝑒1, 𝑒2}⟩ 𝐶1 ∩𝐶2 = ∅

Γ;𝐺, 𝑅,𝑀,𝐶1 ∪𝐶2, 𝑒𝑐 ⊢ 𝑡1 ★ 𝑡2 : (𝑒′𝑙 , 𝑆1 ∪ 𝑆2)
(T-BinOp)

Γ;𝐺, 𝑅,𝑀,𝐶, 𝑒𝑐 ⊢ 𝑡 : (𝑒𝑙 , 𝑆𝑑 )
∀(𝑒, 𝑆) ∈ 𝑅(𝑟 ) : 𝑒𝑐 <𝐺 𝑒 ∨ 𝑆 ≤𝐺 𝑒𝑐

𝑒𝑙 ≤𝐺 𝑒𝑐 𝑒𝑐 ⊲ #1 ≤𝐺 𝑆𝑑 𝐺 (𝑒′
𝑙
) = ⟨#1, {𝑒𝑐 }⟩

Γ;𝐺, 𝑅,𝑀,𝐶, 𝑒𝑐 ⊢ 𝑟 := 𝑡 : (𝑒′
𝑙
, ∅)

(T-RegAssign)

∃(𝑒, 𝑆) ∈ 𝑅(𝑟 ) : 𝑒 ≤𝐺 𝑒𝑐 ∧ 𝑒𝑐 ≤𝐺 𝑆𝑑 ∧ 𝑆𝑑 ≤𝐺 𝑆

∅;𝐺, 𝑅,𝑀, ∅, 𝑒𝑐 ⊢ ∗𝑟 : (𝑒𝑐 , 𝑆𝑑 )
(T-RegEval)

Γ;𝐺, 𝑅,𝑀,𝐶1, 𝑒𝑐 ⊢ 𝑡1 : (𝑒1, 𝑆1)
Γ;𝐺, 𝑅,𝑀,𝐶2, 𝑒

′
𝑐 ⊢ 𝑡2 : (𝑒2, 𝑆2)

Γ;𝐺, 𝑅,𝑀,𝐶3, 𝑒
′′
𝑐 ⊢ 𝑡3 : (𝑒3, 𝑆3)

𝑒1 ≤𝐺 𝑒𝑐 ∧ 𝑒𝑐 ≤𝐺 𝑆1
𝑐 ∉ 𝐶1 ∪𝐶2 ∪𝐶3 𝐶1 ∩ (𝐶2 ∪𝐶3) = 𝐶2 ∩𝐶3 = ∅

𝐺 (𝑒′𝑐 ) = 𝐺 (𝑒′′𝑐 ) = ⟨&𝑐, {𝑒𝑐 }⟩ 𝑒′𝑐 ≠ 𝑒′′𝑐
𝐺 (𝑒′

𝑙
) = ⟨⊕, {𝑒2, 𝑒3}⟩

Γ;𝐺, 𝑅,𝑀,𝐶1 ∪𝐶2 ∪𝐶3 ∪ {𝑐}, 𝑒𝑐 ⊢ if 𝑡1 then 𝑡2 else 𝑡3 : (𝑒′𝑙 , 𝑆1 ∪ 𝑆2 ∪ 𝑆3)
(T-Cond)

Γ;𝐺, 𝑅,𝑀,𝐶1, 𝑒𝑐 ⊢ 𝑡1 : (𝑒1, 𝑆1)
Γ;𝐺, 𝑅,𝑀,𝐶2, 𝑒𝑐 ⊢ 𝑡2 : (𝑒2, 𝑆2)

𝐺 (𝑒′
𝑙
) = ⟨#0, {𝑒1, 𝑒2}⟩ 𝐶1 ∩𝐶2 = ∅

Γ;𝐺, 𝑅,𝑀,𝐶1 ∪𝐶2, 𝑒𝑐 ⊢ 𝑡1; 𝑡2 : (𝑒′𝑙 , 𝑆2)
(T-Join)

(𝜋.𝑚, 𝑝) ∈ 𝑀

∅;𝐺, 𝑅,𝑀, ∅, 𝑒𝑐 ⊢ ready(𝜋.𝑚) : (𝑒𝑐 , {𝑒𝑐 ⊲ #1})
(T-Ready)

Well-typedness. We define well-typed terms, processes, and programs based on the above.

Definition D.6 (Well-typed Anvil term). An Anvil term 𝑡 is well-typed under the context𝑀 if there exist 𝐺 , 𝑅, 𝑒0, 𝐶 , and 𝑇

such that 𝐺 (𝑒0) = ⟨0, ∅⟩ and ∅;𝐺, 𝑅,𝑀,𝐶, 𝑒0 ⊢ 𝑡 : 𝑇 .

Definition D.7 (Well-typed Anvil process). Under the context 𝑀 , we say a process loop loop{𝑡} is well-typed if the term

𝑡 ⇒ 𝑡 is well-typed under𝑀 .

Definition D.8 (Well-typed Anvil program). A program P is well-typed if

• P = (loop{𝑡}, 𝑀) and loop{𝑡} is well-typed under𝑀 .

• P = P1 ∥Σ P2, and Σ = 𝑀P1
∩𝑀P2

, where𝑀P𝑖
is the union of all𝑀s that appear in P𝑖 .
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D.3.1 Auxiliary Definitions. We define ≤𝐺 and <𝐺 that appear in the typing rules.

Definition D.9 (Timestamp). A function 𝜏𝐺 : 𝑉 → N is a timestamp function of event graph 𝐺 = (𝑉 , 𝐸) if for all 𝑒 ∈ 𝑉 :

• If 𝐺 (𝑒) = ⟨0, 𝑆⟩, then 𝜏𝐺 (𝑒) = 0.

• If 𝐺 (𝑒) = ⟨#𝑘, 𝑆⟩, then 𝜏𝐺 (𝑒) = max𝑒′∈𝑆 (𝜏𝐺 (𝑒′) + 𝑘).
• If 𝐺 (𝑒) = ⟨𝜋.𝑚, 𝑆⟩, then 𝜏𝐺 (𝑒) ≥ max𝑒′∈𝑆 𝜏𝐺 (𝑒′)
• If 𝐺 (𝑒) = ⟨&𝑐, 𝑆⟩ ∧ 𝜏𝐺 (𝑒) = max𝑒′∈𝑆 𝜏𝐺 (𝑒′), then ∀𝑒′ ∈ 𝑉 : (𝑒′ ≠ 𝑒 ∧𝐺 (𝑒) = ⟨&𝑐, 𝑆⟩) → 𝜏𝐺 (𝑒′) = ∞
• If 𝐺 (𝑒) = ⟨⊕, 𝑆⟩, then 𝜏𝐺 (𝑒) = min𝑒′∈𝑆 𝜏𝐺 (𝑒′).

It is obvious that for any event graph𝐺 , at least one timestamp function exists. We now extend this definition of timestamps

to event patterns.

Definition D.10 (Event pattern timestamp). Let 𝐺 be an event graph and 𝜏𝐺 be a timestamp function of 𝐺 . We define 𝑒 ⊲ 𝑝:

• 𝜏𝐺 (𝑒 ⊲ #𝑘) = 𝜏𝐺 (𝑒) + 𝑘
• 𝜏𝐺 (𝑒 ⊲ 𝜋.𝑚) = min𝐺 (𝑒′ )=⟨𝜋.𝑚,𝑆 ⟩,𝜏𝐺 (𝑒 )<𝜏𝐺 (𝑒′ ) 𝜏𝐺 (𝑒′) (or ∞ if no such 𝑒′ can be found).

Definition D.11 (≤𝐺 and <𝐺 ). Let 𝐺 be an event graph. We say 𝑒1 ⊲ 𝑝1 ≤𝐺 𝑒2 ⊲ 𝑝2 if for all timestamp functions 𝜏𝐺 of 𝐺 , it

holds that 𝜏𝐺 (𝑒1 ⊲ 𝑝1) ≤ 𝜏𝐺 (𝑒2 ⊲ 𝑝2). Similarly, we say 𝑒1 ⊲ 𝑝1 <𝐺 𝑒2 ⊲ 𝑝2 if for all timestamp functions 𝜏𝐺 of 𝐺 , it holds that

𝜏𝐺 (𝑒1 ⊲ 𝑝1) < 𝜏𝐺 (𝑒2 ⊲ 𝑝2).

It is easy to prove the following two lemmas.

Lemma D.12. If (𝑒1 → 𝑒2) ∈ 𝐺 , then 𝑒1 ≤𝐺 𝑒2.

Lemma D.13. 𝑆 ∪ 𝑆 ′ ≤𝐺 𝑆 .

D.4 Safety
Definition D.14 (Register dependency set). We define that the value 𝑣 has the register dependency set 𝐷 in the execution log

L, written L ⊢ 𝑣 ↓ 𝐷 , by the following inference rules:

⟨⟩ ⊢ 𝑣 ↓ ⊥
(R-Base)

L ⊢ 𝑣 ↓ 𝐷
L · ⟨∅⟩ ⊢ 𝑣 ↓ 𝐷

(R-Empty)

L · ⟨𝛼𝑖⟩ ⊢ 𝑣 ↓ 𝐷
𝑜 ∉ {ValCreate(𝑣, 𝑆𝑟 , 𝑆𝑣) | 𝑆𝑟 ∈ 2

RegId, 𝑆𝑣 ∈ 2
ValId}

L · ⟨𝛼𝑖 ∪ {𝑜}⟩ ⊢ 𝑣 ↓ 𝐷
(R-NonCreate)

L · ⟨𝛼𝑖⟩ ⊢ 𝑣1 ↓ 𝐷1 𝐷1 ≠ ⊥
...

L · ⟨𝛼𝑖⟩ ⊢ 𝑣𝑘 ↓ 𝐷𝑘 𝐷𝑘 ≠ ⊥
L · ⟨𝛼𝑖 ∪ {ValCreate(𝑣, 𝑆𝑟 , {𝑣1, · · · , 𝑣𝑘 })}⟩ ⊢ 𝑣 ↓ 𝑆𝑟 ∪ 𝐷1 ∪ · · · ∪ 𝐷𝑘

(R-Create)

Note: · is the normal concatenation operator.

Other auxiliary definitions, assuming L = ⟨𝛼0, 𝛼1, · · · , 𝛼𝑘⟩,
• UseSet(L, 𝑣) = {𝑖 | ValUse(𝑣) ∈ 𝛼𝑖 ∨ ValCreate(𝑣, 𝑆𝑟 , 𝑆𝑣) ∈ 𝛼𝑖 ∨ ValRecv(𝜋.𝑚, 𝑣, 𝑝) ∈ 𝛼𝑖 ∨ ValSend(𝜋.𝑚, 𝑣, 𝑝) ∈ 𝛼𝑖 }
• MutSet(L, 𝐷) = {𝑖 | 𝑟 ∈ 𝐷 ∧ RegMut(𝑟 ) ∈ 𝛼𝑖 }
• LtRecv(L, 𝑣) = ⋂

𝑢∈DepSet(L,𝑣),ValRecv(𝜋.𝑚,𝑢,𝑝 ) ∈𝛼𝑖 LtFun(L, 𝑖, 𝑝)
• LtSend(L, 𝑣) = ⋃

𝑢∈DeriveSet(L,𝑣),ValSend(𝜋.𝑚,𝑢,𝑝 ) ∈𝛼𝑖 LtFun(L, 𝑖, 𝑝)
• LtFun(L, 𝑖, 𝜋 .𝑚) = [𝑖,𝑤) where𝑤 is the lowest 𝑗 ≥ 𝑖 , such that ValSend(𝜋.𝑚, 𝑣, 𝑝) ∈ 𝛼 𝑗 or ValRecv(𝜋.𝑚, 𝑣, 𝑝) ∈ 𝛼 𝑗

• LtFun(L, 𝑖, #𝑙) = [𝑖, 𝑖 + 𝑙)

Defining safety. We first define when an execution log should be deemed safe. This notion, then, can be naturally lifted to

define the safety of a term, composition of terms and of an entire Anvil program.
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Definition D.15 (Safety of execution log). An execution log L is safe if for every value 𝑣 , there exists an interval [𝑎, 𝑏] such
that UseSet(L, 𝑣) ∪ LtSend(L, 𝑣) ⊆ [𝑎, 𝑏] ⊆ LtRecv(L, 𝑣), and for 𝐷 such that L ⊢ 𝑣 ↓ 𝐷 , MutSet(L, 𝐷) ∩ [𝑎, 𝑏) = ∅.

UseSet(L, 𝑣) includes all time points (cycle numbers) at which the value 𝑣 is used, LtSend(L, 𝑣) captures when 𝑣 needs to

be live as required by all send operations that involve 𝑣 or other values that depend on it, LtRecv(L, 𝑣) captures when 𝑣 is

guaranteed to be live through received messages from the environment, L ⊢ 𝑣 ↓ 𝐷 states that 𝑣 directly or indirectly depends

on the set of registers 𝐷 , and MutSet(L, 𝐷) captures when any register in 𝐷 is mutated. Intuitively, the safety definition above

states that all uses of a value 𝑣 and the lifetime promised to the environment should fall within a continuous time window.

During this time window, values received from the environment through receive are live, and no register that 𝑣 depends on is

mutated.

Since the set of all execution logs of a term, composition, or program captures all its possible run-time timing behaviours,

we define safety for those constructs as follows.

Definition D.16 (Term, composition, and program safety). A term, composition, or program is safe if all its execution logs are

safe.

Safety guarantees. We present a sketch of the proof of the safety guarantees of Anvil by providing the key lemmas. The

detailed proofs of the lemmas are available in Section E of the Appendix.

First, we show that well-typedness implies safety for terms.

Lemma D.17 (Safety of terms). A well-typed term is safe.

Then, by matching the LtSend(L, 𝑣) and LtRecv(L′, 𝑣) when obtaining the execution logs of well-typed compositions, we

prove that well-typedness implies safety also for compositions.

Lemma D.18 (Safety of compositions). A well-typed composition is safe.

Then, to account for the looping semantics in programs, we show that well-typedness for an Anvil process loop{𝑡} is
sufficient to guarantee that any number of 𝑡s joined together by wait (⇒) is also well-typed.

Lemma D.19 (Two iterations are sufficient). Let 𝑡 be an Anvil term and 𝑡𝑘 , 𝑘 = 1, 2, · · · be inductively defined as 𝑡1 = 𝑡 and

𝑡𝑘+1 = 𝑡𝑘 ⇒ 𝑡 . If 𝑡2 is well-typed, 𝑡𝑘 is well-typed for all 𝑘 = 2, · · · .
With the results above, the following theorem that describes the main safety guarantees of Anvil easily follows.

Theorem D.20 (Anvil safety guarantees). A well-typed Anvil program is safe.

E Proofs
E.1 Additional Lemmas
Lemma E.1. If a term 𝑡 is well-typed and ∅;𝐺, 𝑅,𝑀, ∅, 𝑒0 ⊢ 𝑡 : 𝑇 , then for every local execution log L = ⟨𝛼0, · · · , 𝛼𝑘⟩
of 𝑡 , there exists a timestamp function 𝜏𝐺 of 𝐺 , such that if Γ;𝐺, 𝑅,𝑀,𝐶, 𝑒𝑐 ⊢ 𝑡 ′ : (𝑒𝑙 , 𝑆𝑑 ) appears during inference of

∅;𝐺, 𝑅,𝑀, ∅, 𝑒0 ⊢ 𝑡 : 𝑇 , and Γ′; 𝐼 ′, 𝑀 ⊢ 𝑡 ′ ; L′ ◁ 𝑣 appears during inference of ∅; 𝐼 , 𝑀 ⊢ 𝑡 ; L ◁ 𝑣0, let L′ = ⟨𝛼 ′
0
, · · · , 𝛼 ′

𝑙
⟩,

then ∀0 ≤ 𝑖 ≤ 𝑙 : 𝛼 ′
𝑖 ⊆ 𝛼𝑖+𝜏𝐺 (𝑒𝑐 ) and 𝜏𝐺 (𝑒𝑐 ) + 𝑙 = 𝜏𝐺 (𝑒𝑙 ). And for all 𝑟 ∈ 𝐷,L ⊢ 𝑣 ↓ 𝐷 , there exists (𝑒, 𝑆) ∈ 𝑅(𝑟 ), such that

𝑒 ≤𝐺 𝑒𝑙 and 𝑆𝑑 ≤𝐺 𝑆 .

Proof. We first show that such a function 𝜏𝐺 , if it exists, is a timestamp function of 𝐺 . Consider the sub-terms 𝑡 ′ that appear
both in typing inference and evaluation. If Γ;𝐺, 𝑅,𝑀,𝐶, 𝑒𝑐 ⊢ 𝑡 ′ : (𝑒𝑙 , 𝑆𝑑 ) appears during inference of ∅;𝐺, 𝑅,𝑀, ∅, 𝑒0 ⊢ 𝑡 : 𝑇 , and
Γ′; 𝐼 ′, 𝑀 ⊢ 𝑡 ′ ; L′ ◁ 𝑣 appears during inference of ∅; 𝐼 , 𝑀 ⊢ 𝑡 ; L ◁ 𝑣0, we show that 𝜏𝐺 (𝑒𝑐 ) + 𝑙 = 𝜏𝐺 (𝑒𝑙 ) is consistent with
the timestamp function definition. In addition, we show ∀(𝑥 : (𝑘, 𝑣 ′)) ∈ Γ′ : Γ(𝑥) = (𝑒′

𝑙
, 𝑆 ′

𝑑
) → 𝑘 = max(0, 𝜏𝐺

(
𝑒′
𝑙

)
− 𝜏𝐺 (𝑒𝑐 )).

This is shown by considering all possibilities for the rules applied and for each case replacing one constraint for the timestamp

with a stricter equation. For example:

• T-Cycle and E-Cycle: 𝐺 (𝑒𝑐 ) = ⟨#𝑘, {𝑒𝑙 }⟩, 𝑙 = 𝑘 .

• T-Wait and E-Wait: 𝜏𝐺 (𝑒𝑐 ) + 𝑙1 = 𝜏𝐺

(
𝑒′
𝑙

)
, 𝜏𝐺

(
𝑒′
𝑙

)
+ 𝑙2 = 𝜏𝐺 (𝑒𝑙 ) , 𝑙 = 𝑙1 + 𝑙2.

• T-Ref and E-Ref: 𝑙 = 𝑘,𝐺 (𝑒𝑙 ) = ⟨#0, {𝑒𝑐 , 𝑒′𝑙 }⟩.
Let 𝑘 be the number of all such sub-terms, then there are 𝑘 linear equations, and each equation involves at least one unique

variable. Hence any subset of those equations contain at least as many variables as equations. Therefore, the system of linear

equations has at least one solution. In other words, 𝜏𝐺 exists and is a timestamp function of 𝐺 .

Now we prove that with such a 𝜏𝐺 , ∀0 ≤ 𝑖 ≤ 𝑙 : 𝛼 ′
𝑖 ⊆ 𝛼𝑖+𝜏𝐺 (𝑒𝑐 ) , where L′ = ⟨𝛼 ′

0
, · · · , 𝛼 ′

𝑙
⟩. This is shown by induction.

By induction, we can prove that for all 𝑟 ∈ 𝐷,L ⊢ 𝑣 ↓ 𝐷 , there exists (𝑒, 𝑆) ∈ 𝑅(𝑟 ), such that 𝑒 ≤𝐺 𝑒𝑙 and 𝑆𝑑 ≤𝐺 𝑆 . □
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E.2 Lemma D.17
Proof. Let 𝑡 be a well-typed Anvil term. From the definition of well-typedness, ∅;𝐺, 𝑅,𝑀, ∅, 𝑒0 ⊢ 𝑡 : 𝑇 . We show that for every

local execution log L = ⟨𝛼0, · · · , 𝛼𝑘⟩, ∅; 𝐼 , 𝑀 ⊢ 𝑡 ; L ◁ 𝑣0, the timestamp function in Lemma E.1 satisfies that for every value

𝑣 , if Γ′; 𝐼 ′, 𝑀 ⊢ 𝑡 ′ ; L′ ◁ 𝑣 appears during inference of ∅; 𝐼 , 𝑀 ⊢ 𝑡 ; L ◁ 𝑣0, and Γ;𝐺, 𝑅,𝑀,𝐶, 𝑒𝑐 ⊢ 𝑡 ′ : (𝑒𝑙 , 𝑆𝑑 ) appears in
during inference of ∅;𝐺, 𝑅,𝑀, ∅, 𝑒0 ⊢ 𝑡 : 𝑇 , let 𝑎 = 𝜏𝐺 (𝑒𝑙 ) , 𝑏 = 𝜏𝐺

(
min𝑒⊲𝑝∈𝑆𝑑 , 𝜏𝐺 (𝑒 ⊲ 𝑝)

)
, then UseSet(L, 𝑣) ⊆ [𝑎, 𝑏] and for all

𝐷 such that L ⊢ 𝑣 ↓ 𝐷 , MutSet(L, 𝐷) ∩ [𝑎, 𝑏) = ∅.
Consider each member 𝑖 ∈ UseSet(L, 𝑣). By induction, it is obvious that one of the following must hold:

• ValUse(𝑣) ∈ 𝛼 ′
0
by E-IfThen, E-IfElse, and E-RegAssign. By Lemma E.1, 𝑖 = 𝜏𝐺 (𝑒𝑐 )

• ValCreate(𝑣, 𝑆𝑟 , 𝑆𝑣) ∈ 𝛼 ′
0
by E-RegVal. Similarly, 𝑖 = 𝜏𝐺 (𝑒𝑙 )

• ValCreate(𝑣, 𝑆𝑟 , 𝑆𝑣) ∈ 𝛼 ′
𝑘
by E-Cycle. In this case, 𝑖 = 𝜏𝐺 (𝑒𝑙 )

In each case, we get 𝑖 ∈ [𝑎, 𝑏]. Thus UseSet(L, 𝑣) ⊆ [𝑎, 𝑏].
Now we prove for L ⊢ 𝑣 ↓ 𝐷,MutSet(L, 𝐷) ∩ [𝑎, 𝑏) = ∅. Consider each 𝑖 ∈ MutSet(L, 𝐷). By definition, we have some

𝑟 ∈ 𝐷, RegMut(𝑟 ) ∈ 𝛼𝑖 . By Lemma E.1, there must be applications of E-RegAssign and T-RegAssign where 𝜏𝐺 (𝑒𝑐 ) = 𝑖 and

there exists (𝑒, 𝑆) ∈ 𝑅(𝑟 ) such that 𝑒 ≤𝐺 𝑒𝑙 and 𝑆𝑑 ≤𝐺 𝑆 . Either 𝑒𝑐 <𝐺 𝑒 or 𝑆 ≤𝐺 𝑒𝑐 . If 𝑒𝑐 <𝐺 𝑒 , by definition of <𝐺 and ≤𝐺 , we

have 𝑖 = 𝜏𝐺 (𝑒𝑐 ) < 𝜏𝐺 (𝑒) ≤𝐺 𝜏𝐺 (𝑒𝑙 ) = 𝑎. Hence, 𝑖 ∉ [𝑎, 𝑏). If 𝑆 ≤𝐺 𝑒𝑐 , similarly, we have 𝑏 = 𝜏𝐺 (𝑆𝑑 ) ≤𝐺 𝜏𝐺 (𝑆) ≤𝐺 𝜏𝐺 (𝑒𝑐 ) = 𝑖 .

Hence, we also have 𝑖 ∉ [𝑎, 𝑏). Therefore, MutSet(L, 𝑣) ∩ [𝑎, 𝑏) = ∅.
By definition of safety, 𝑡 is safe. □

E.3 Lemma D.18
Proof. Let L be an execution log of 𝑡1 ∥Σ 𝑡2. By definition, L can be obtained by combining L1 and L2, each an execution

log of 𝑡1 and 𝑡2, respectively. Since 𝑡1 and 𝑡2 are well-typed, 𝑡1 and 𝑡2 are safe, and L1,L2 are also safe. By definition of

safety, for every value 𝑣 , there exists 𝑎1, 𝑏1, 𝑎2, 𝑏2, such that UseSet(L1, 𝑣) ∪ LtSend(L1, 𝑣) ⊆ [𝑎1, 𝑏1] ⊆ LtRecv(L1, 𝑣),L ⊢ 𝑣 ↓
𝐷1,MutSet(L1, 𝐷1) ∩ [𝑎1, 𝑏1) = ∅, and UseSet(L2, 𝑣) ∪ LtSend(L2, 𝑣) ⊆ [𝑎2, 𝑏2] ⊆ LtRecv(L2, 𝑣),L ⊢ 𝑣 ↓ 𝐷2,MutSet(L2

, 𝐷2) ∩ [𝑎2, 𝑏2) = ∅.
For 𝑖 ∈ {1, 2}, if a ValCreate(𝑣, 𝑆𝑟 , 𝑆𝑣) appears in L𝑖 , or, if no ValCreate(𝑣, 𝑆𝑟 , 𝑆𝑣) appears in either L𝑖 or L3−𝑖 but

LtRecv(𝜋.𝑚, 𝑣) appears in L𝑖 , we say that L𝑖 owns 𝑣 . Obviously every 𝑣 that appears in L is owned by either L1 or L2

but not both. We show that the following 𝑎, 𝑏 satisfies that UseSet(L, 𝑣) ∪ LtSend(L, 𝑣) ⊆ [𝑎, 𝑏] ⊆ LtRecv(L, 𝑣),L ⊢ 𝑣 ↓
𝐷,MutSet(L, 𝐷) ∩ [𝑎, 𝑏) = ∅:

1. If 𝑣 does not appear in L, then 𝑎 = 𝑎1, 𝑏 = 𝑏1.

2. If 𝑣 appears in L, and is owned by L𝑖 , 𝑎 = 𝑎𝑖 , 𝑏 = 𝑏𝑖 .

Case 1 is trivial.

For Case 2, by induction on the structure of DepSet(L, 𝑣), it is easy to obtain that UseSet(L, 𝑣) ∪ LtSend(L, 𝑣) ⊆
UseSet(L𝑖 , 𝑣) ∪ LtSend(L𝑖 , 𝑣) and LtRecv(L𝑖 , 𝑣) ⊆ LtRecv(L, 𝑣). Therefore, we get UseSet(L, 𝑣) ∪ LtSend(L, 𝑣) ⊆ [𝑎𝑖 , 𝑏𝑖 ] ⊆
LtRecv(L, 𝑣). Now we prove that MutSet(L, 𝐷) ∩ [𝑎𝑖 , 𝑏𝑖 ) = ∅. Without loss of generality, we assume 𝑖 = 1.

We use induction on DepSet(L, 𝑣). Consider the following cases:

1. DepSet(L, 𝑣) = ∅. In this case, either ValCreate(𝑣, 𝑆𝑟 , ∅) or LtRecv(𝜋.𝑚, 𝑣) appears in both L1 and L. In both cases,

MutSet(L, 𝐷) = MutSet(L1, 𝐷1). Since MutSet(L1, 𝐷1) ∩ [𝑎1, 𝑏1) = ∅, MutSet(L, 𝐷) ∩ [𝑎1, 𝑏1) = ∅.
2. DepSet(L, 𝑣) = 𝑆𝑣 . In this case, ValCreate(𝑣, 𝑆𝑟 , 𝑆𝑣) is in both L1 and L. Consider each 𝑢 ∈ 𝑆𝑣 . Either 𝑢 is owned by

L1, or it is owned by L2. Let 𝑎
′, 𝑏′ be selected such that UseSet(L 𝑗 , 𝑢) ∪ LtSend(L 𝑗 , 𝑢) ⊆ [𝑎′, 𝑏′] ⊆ LtRecv(L 𝑗 , 𝑢) and

MutSet(L 𝑗 , 𝐷
′) ∩ [𝑎′, 𝑏′), where L 𝑗 is the owner of 𝑢. Let 𝑎0, 𝑏0 be selected such that UseSet(L1, 𝑢) ∪ LtSend(L1, 𝑢) ⊆

[𝑎0, 𝑏0] ⊆ LtRecv(L1, 𝑢) and MutSet(L1, 𝐷0) ∩ [𝑎0, 𝑏0). If 𝑗 = 1, then 𝑎0 = 𝑎′𝑢, 𝑏0 = 𝑏′𝑢 . If 𝑗 = 2, there must be a send op-

eration involving 𝑢 in L2 and a matching receive operation in L1. We have [𝑎0, 𝑏0] ⊆ LtRecv(L1, 𝑢) ⊆ LtSend(L2, 𝑢) ⊆
[𝑎′𝑢, 𝑏′𝑢]. In both cases, we have [𝑎0, 𝑏0] ⊆ [𝑎′𝑢, 𝑏′𝑢]. By induction assumptions, [𝑎′, 𝑏′) ∩ MutSet(L, 𝐷𝑢) = ∅, hence
[𝑎0, 𝑏0) ∩MutSet(L, 𝐷𝑢) = ∅. Combining all 𝑢 ∈ 𝑆𝑣 , by definition of LtRecv(L1, 𝑣), MutSet(L1, 𝑣), and MutSet(L, 𝑣):
[𝑎, 𝑏] ⊆ ⋂

𝑢∈𝑆𝑣 LtRecv(L1, 𝑢) ⊆
⋂

𝑢∈𝑆𝑣 [𝑎′𝑢, 𝑏′𝑢],MutSet(L, 𝑣) = MutSet(
L1, 𝑣)∪

⋃
𝑢∈𝑆𝑣 MutSet(L, 𝑢). Hence [𝑎, 𝑏) ⊆ ⋂

𝑢∈𝑆𝑣 [𝑎′𝑢, 𝑏′𝑢), and [𝑎, 𝑏)∩MutSet(L, 𝑣) ⊆ ⋂
𝑢∈𝑆𝑣 [𝑎′𝑢, 𝑏′𝑢)∩

⋃
𝑢∈𝑆𝑣 MutSet(L, 𝑢) =

∅.

By induction, if 𝑣 is owned by L𝑖 , UseSet(L, 𝑣) ∪ LtSend(L, 𝑣) ⊆ [𝑎𝑖 , 𝑏𝑖 ] ⊆ LtRecv(L, 𝑣) and [𝑎𝑖 , 𝑏𝑖 ) ∩MutSet(L, 𝐷) = ∅.
Combining Case 1 and Case 2, we have shown that for all 𝑣 , there exist such 𝑎 and 𝑏. Therefore, the composition 𝑡1 ∥Σ 𝑡2 is safe.

□



Anvil: A General-Purpose Timing-Safe Hardware Description Language ASPLOS ’26, March 21–26, 2026, Pittsburgh, PA, USA.

E.4 Lemma D.19
Proof. We show that for 𝑘 ≥ 2, if 𝑡𝑘 is well-typed, 𝑡𝑘+1 is also well-typed. By induction, this implies that if 𝑡2 is well-typed,

𝑡𝑘 (𝑘 = 2, · · · ) are all well-typed.
Since 𝑡𝑘 is well-typed, we have ∅;𝐺, 𝑅,𝑀, ∅, 𝑒0 ⊢ 𝑡𝑘 : 𝑇 . Because 𝑡𝑘 = 𝑡𝑘−1 => 𝑡 , there exists ∅;𝐺, 𝑅,𝑀,𝐶1, 𝑒0 ⊢ 𝑡𝑘−1 : (𝑒1, 𝑆1)

and ∅;𝐺, 𝑅,𝑀,𝐶2, 𝑒1 ⊢ 𝑡 : (𝑒2, 𝑆2) which appear during inference. It is obvious that 𝑒1 is a cut vertex in 𝐺 , i.e., there exists a

partition of 𝑉 = 𝑉1 ∪𝑉2 ∪ {𝑒1}, such that all paths between 𝑉1 and 𝑉2 go through 𝑒1, and it can be found such that 𝑉2 ∪ {𝑒1} is
the set of all nodes that appear in the inference rules used to obtain ∅;𝐺, 𝑅,𝑀,𝐶2, 𝑒1 ⊢ 𝑡 : (𝑒2, 𝑆2). Let 𝐺2 be the subgraph of 𝐺

with 𝑉 ′ = 𝑉2 ∪ {𝑒1}. Let 𝐺 ′
2
be a graph obtained by relabelling nodes of 𝐺2 such that 𝑒1 is relabelled 𝑒2 and nodes in 𝑉2 are

relabelled to nodes in𝑉3, where𝑉3 ∩𝑉 = ∅. Now let𝐺 ′ = 𝐺 ∪𝐺 ′
2
. Obviously, assuming <𝐺 and ≤𝐺 always hold, we can obtain

∅;𝐺 ′, 𝑅′, 𝑀,𝐶′, 𝑒0 ⊢ 𝑡𝑘+1 : 𝑇 ′
such that the same nodes appear in rules inferring for 𝑡𝑘 , and additionally there are rules inferring

for 𝑡 that simply map nodes used inferring ∅;𝐺, 𝑅,𝑀,𝐶2, 𝑒1 ⊢ 𝑡 : (𝑒2, 𝑆2) from 𝑉2 ∪ {𝑒1} to 𝑉3 ∪ {𝑣2}. Therefore, if 𝑡𝑘+1 is not
well-typed, there must be some unattainable <𝐺 or ≤𝐺 that appear in those rules. Consider different cases:

• Some 𝑒𝑎 <𝐺 𝑒𝑏 or 𝑒𝑎 ≤𝐺 𝑒𝑏 , which only involves nodes but not event patterns, does not hold. Obviously, {𝑒𝑎, 𝑒𝑏} ∈ 𝑉1∪{𝑒1}
or {𝑒𝑎, 𝑒𝑏} ∈ 𝑉2 ∪ {𝑒1} or {𝑒𝑎, 𝑒𝑏} ∈ 𝑉3 ∪ {𝑒2}. This always implies that a corresponding typing judgment does not hold

for inferring well-typedness of 𝑡𝑘 , contradicting the assumption.

• Some typing judgment that involves 𝑒𝑎 ⊲ 𝑝 does not hold. This similarly imply a contradiction a rule involved in inferring

the well-typedness of 𝑡𝑘 does not hold.

By contradiction, 𝑡𝑘+1 is well-typed.
□
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