
Capstone: An Architecture Design for Expressive Security
Jason Zhijingcheng Yu†, Prateek Saxena

School of Computing, National University of Singapore
† final-year PhD student on the job market

Motivation: Patchwork of Security Extensions
Security Challenges

Memory Safety Fine-grained Isolation Confidential Computing

Patchwork of Security Extensions

Problem: Compose Security Extensions?
+ Exception handling

(Cui et al., 2021)

Trusted enclaveUntrus ted software

EENTER

AEX S S A
region

R eturn from
an OCALL

Kernel interrupt
handler

R S P
R 8
…

Craft regs
S et perms

R S P
R 8
…

User space
handler

EENTER

enclave
s tack

1

2

3S ignal

4

EEXIT

mov $ar g 2, %r s i
mov $ar g 1, %r di
r e t (r e t addr)
. . .

ER ES UME

6

R es tore in OCALL
return logic

5

S ave

Copy

Enclave entry point:

Exception handler:

xor %xdx, %xdx
. . .

s p=s s a. r s p;
i nf o=(i nf o*) s p;
i nf o . r 8=s s a. r 8;
. . .

xor %xdx, %xdx
. . .

Arbitrary code execution
Affecting 9 SGX runtimes

CVE-2021-0186, CVE-2021-33767

+ Memory sharing
(Yu et al., 2022)

encrypt

decrypt

P roducer Enclave

Consumer Enclave

Trus ted
Co-ordinator

Enclave

produce ()

consume()

2–3 orders of magnitude overhead

Goal
Can one design a unified foundation for multiple security goals? (Yu et al., 2023)

Our answer:

Capstone

an ISA (instruction set
architecture) based on
RISC-V (RV64IZicsr)

Desired Properties in Capstone
P1: Exclusive Access

I know I have
exclusive
access!

Domain A

Domain B

A delegates
memory to B

Domain C

...

Domain A

Domain B

Physical
memory

P2: Revocable Delegation

Domain A

Domain B

Domain A

Domain B

Physical
memory

A delegates
memory to B

Domain A

Domain B

A revokes
access from B

I don't want B
to have access
anymore!

P3: Extensible Hierarchy

I can also delegate
access to other
domains!

Domain A

Domain B

Physical
memory

Domain A

Domain B

Domain C

B delegates
memory to C

Domain A

Domain B

A revokes
access from B

Domain C

P4: Secure Domain Switching

Domain A

Domain B

Physical
memory

Domain A

Domain B
(switched

out)

A pre-empts B B resumes
execution

My data is
secured when
I am switched
out.

Domain A

Domain B

Starting Point: Hardware Capabilities
• A Hardware Capability is a (pointer, metadata) tuple

‣ Created or modified only by querying the hardware
‣ Sufficient and necessary to access the corresponding memory
‣ Has the associated permissions embedded in it and is enforced by hardware

• Capability machines existed in ‘80s, but had challenges scaling securely

Base Capability-based Model Is Insufficient
Example: P1 (Exclusive Access) cannot be achieved

Capabilities could do more (Watson et al., 2024)
• “Continuing to refine our understanding of memory safety”
• “Pushing beyond memory safety to … software compartmentalization… for malicious programmers”
• “Exploring potential opportunities to compose … memory- and type-safe … languages, such as Rust”

Capability-based Model in Capstone
Capability Types

Examples
• Linear capability: Non-duplicable
• Revocation capability: A capability “snapshot”, usable only for revocation

Nestable Two-Way Domain Isolation

• Isolated software components in domains
• Domains share memory exclusively

through capabilities
• A domain can be pure-cap, i.e., it uses

capabilities explicitly for all memory
accesses

• Alternatively, a domain can have an internal
structure with a compatible capability-
oblivious software stack in S-mode and U-
mode. Memory accesses in such software
ultimately translate to accesses with
capabilities the domain holds

Expressive Program Safety
• Spatial memory safety enforced through

bounds checking
• Temporal memory safety enforced through the

revocation mechanism

• Capstone model is similar to Rust’s ownership,
borrowing, and AXM principles, and detects
their violations in mixed Rust code

Publications
[1] J. Cui, J. Z. Yu, S. Shinde, P. Saxena, and Z. Cai, “SmashEx: Smashing SGX Enclaves Using Exceptions,” in Proceedings of the 2021 ACM SIGSAC

Conference on Computer and Communications Security, Virtual Event Republic of Korea: ACM, Nov. 2021, pp. 779–793. doi: 10.1145/3460120.3484821.

[2] J. Z. Yu, S. Shinde, T. E. Carlson, and P. Saxena, “Elasticlave: An Efficient Memory Model for Enclaves,” in 31st USENIX Security Symposium, USENIX
Security 2022, Boston, MA, USA, August 10-12, 2022, K. R. B. Butler and K. Thomas, Eds., USENIX Association, 2022, pp. 4111–4128. [Online].
Available: https://www.usenix.org/conference/usenixsecurity22/presentation/yu-jason

[3] J. Z. Yu, C. Watt, A. Badole, T. E. Carlson, and P. Saxena, “Capstone: A Capability-based Foundation for Trustless Secure Memory Access,” in 32nd
USENIX Security Symposium (USENIX Security 23), Anaheim, CA: USENIX Association, Aug. 2023, pp. 787–804. [Online]. Available: https://www.
usenix.org/conference/usenixsecurity23/presentation/yu-jason

Capstone Documentation Jason

https://doi.org/10.1145/3460120.3484821
https://www.usenix.org/conference/usenixsecurity22/presentation/yu-jason
https://www.usenix.org/conference/usenixsecurity23/presentation/yu-jason
https://www.usenix.org/conference/usenixsecurity23/presentation/yu-jason

	Security Challenges
	Patchwork of Security Extensions
	Problem: Compose Security Extensions?
	Example: P1 (Exclusive Access) cannot be achieved
	Capabilities could do more
	Capability Types
	Examples
	Publications

