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Motivation: Patchwork of Security Extensions
Security Challenges

Memory Safety Fine-grained Isolation Confidential Computing

Patchwork of Security Extensions

Problem: Compose Security Extensions?
+ Exception handling

(Cui et al., 2021)
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Arbitrary code execution
Affecting 9 SGX runtimes

CVE-2021-0186, CVE-2021-33767

+ Memory sharing
(Yu et al., 2022)
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2–3 orders of magnitude overhead

Goal
Can one design a unified foundation for multiple security goals? (Yu et al., 2023)

Our answer:

Capstone

an ISA (instruction set
architecture) based on
RISC-V (RV64IZicsr)

Desired Properties in Capstone
P1: Exclusive Access
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P3: Extensible Hierarchy
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P4: Secure Domain Switching
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Starting Point: Hardware Capabilities
• A Hardware Capability is a (pointer, metadata) tuple

‣ Created or modified only by querying the hardware
‣ Sufficient and necessary to access the corresponding memory
‣ Has the associated permissions embedded in it and is enforced by hardware

• Capability machines existed in ‘80s, but had challenges scaling securely

Base Capability-based Model Is Insufficient
Example: P1 (Exclusive Access) cannot be achieved

Capabilities could do more (Watson et al., 2024)
• “Continuing to refine our understanding of memory safety”
• “Pushing beyond memory safety to … software compartmentalization… for malicious programmers”
• “Exploring potential opportunities to compose … memory- and type-safe … languages, such as Rust”

Capability-based Model in Capstone
Capability Types

Examples
• Linear capability: Non-duplicable
• Revocation capability: A capability “snapshot”, usable only for revocation

Nestable Two-Way Domain Isolation

• Isolated software components in domains
• Domains share memory exclusively

through capabilities
• A domain can be pure-cap, i.e., it uses

capabilities explicitly for all memory
accesses

• Alternatively, a domain can have an internal
structure with a compatible capability-
oblivious software stack in S-mode and U-
mode. Memory accesses in such software
ultimately translate to accesses with
capabilities the domain holds

Expressive Program Safety
• Spatial memory safety enforced through

bounds checking
• Temporal memory safety enforced through the

revocation mechanism

• Capstone model is similar to Rust’s ownership,
borrowing, and AXM principles, and detects
their violations in mixed Rust code
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